搅拌机设计流程
浅谈混凝土搅拌站的整体设计及生产工艺流程

6 配 料 及 卸 料 系统
此 系 统 是 将 混 凝 土 所 需 的各 种 物 料 ( 料 、 料 、 、 加剂 等 ) 骨 粉 水 外 , 骨料 计 量 按 汁量 方 式 区 分 , 砂 、 独 立计 量 和 累积 计 量 两 种 。 有 石 独 按 照 配 比 , 过 精 确 地 计 量 后 送 人 搅 拌 机 内 。目前 , 拌站 配料 的 汁量 通 搅 立计 量 是 在 每 个 贮 料 斗 下 设 置 称 量 斗 , 完成 计 量 后 开 肩 计 量 斗 气 动 用 电 子称 重 计 量 , 般 称 量 斗 采 用 三 点 式 . 计 量 槽 皮 带 机 采用 四 点 一 带 门, 骨料 落 到 下 方 的 水 平 皮 带 机 , 由水 平 胶 带 机 输 出 。 累积 计 量 是 在 水 式 , 量 斗 称 量值 较 小 ( 液 态 外 加 剂 ) 也 可 采 用 点 式 照 计 量 称 如 时 依
要】 混凝土搅拌站是用于生产 混凝土 的成套设备 , 适用于水电、 场、 机 公路 、 梁等 中小型规模的工程和商品混凝土生产, 桥 本文主要介
绍 混 凝 土 搅 拌 站 的 整 体设 计 及 生产 _ T 的流 程 -艺
【 关键词】 混凝土搅拌站; 骨料 ; 粉料 ; 配料 ; 搅拌机
人 们 对 于 混凝 土 的认 识 , 于 2 始 O世 纪 初 , 随着 人们 对 于 混凝 的 应 接 力 的 方 式 实 现 . 接续 螺 旋 设 置 两个 进 料 【 。 _ = I 用 也 越 来 越 多 ,能 够 大 量 生 产 各 种 类 型 混 凝 土 的 搅 拌 站 也 应 运 而生 。 下 面 简 单谈 淡混 凝 土搅 拌 站 的整 体 设 计 及 生 产 工 艺 流程 。 混 凝 土 搅 拌 站 是 由 骨 料 配 料 、 料送 料 、 料 料 、 料 给 料 、 骨 粉 粉 水
自动喂料搅拌机方案e--课程设计自动喂料搅拌机--课程设计

自动喂料搅拌机方案e--课程设计自动喂料搅拌机--课程设计方案概述:本方案的目标是设计一种自动喂料搅拌机,能够根据预设的配方自动将原料加入搅拌机中,并进行搅拌,最终产生所需的混合物。
本方案将包括硬件设计和软件编程两个部分。
硬件设计方案:1. 主控制器:选择一款适合的单片机或开发板作为主控制器,用于控制整个系统的运行。
主控制器需要有足够的输入输出接口,以便与其他模块进行通信。
2. 传感器模块:通过使用重量传感器或压力传感器,可以实时测量料斗中的原料重量或容器中的液体体积。
3. 执行机构:设计一个能够自动开关料斗或输送带的装置,用于控制原料的投放。
可以使用电磁阀、气缸或电机等执行机构。
4. 运动控制模块:用于控制搅拌机的运动,可以选择合适的电机和驱动器,通过控制电机的速度和方向来实现搅拌。
5. 人机界面:设计一个用户友好的人机界面,可以通过触摸屏或按键来设置配方、启动和停止搅拌机,并显示当前操作状态和混合物状态。
软件编程方案:1. 界面设计:使用合适的界面设计软件,设计一个直观的用户界面,可以输入和显示配方信息,并提供启动和停止按钮。
2. 系统控制:编写控制程序,根据用户设置的配方信息,控制传感器模块实时监测原料的重量或液体的体积,并根据设定的规则自动投放原料和启动搅拌机。
3. 数据存储和处理:使用合适的数据库或文件系统,将每次操作的配方信息、搅拌时间、原料投放量等数据进行存储和处理,便于后续的统计和分析。
4. 异常处理:编写异常处理程序,监测系统运行中可能出现的异常情况,例如原料不足、运动控制故障等,及时进行报警和处理。
5. 调试和优化:对系统进行测试和调试,检查各个模块的功能是否正常,优化程序的性能和稳定性。
以上是一个初步的自动喂料搅拌机设计方案,具体的实施方案需要根据具体要求和条件进行调整和优化。
在实施过程中,需要合理安排时间和资源,进行设计、制造、调试和测试等工作,最终完成一个稳定、高效的自动喂料搅拌机系统。
搅拌机设计流程

摘要搅拌机是搅拌设备的心脏。
在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。
论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。
通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则.论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7-1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m/s—1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。
[关键词]:搅拌机、主要参数、合理性、实验研究第1章前言1.1国内外研究现状及发展趋势19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。
1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。
20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示.形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。
1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。
1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。
从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。
自动喂料搅拌机课程设计说明书机械原理课程设计

机械原理课程设计说明书设计题目自动喂料搅拌机基本系数方案C系机电院专业机械设计班14-2设计者张国忠指导教师兰海鹏2012年5月29日目录、机器的工作原理及外形图 ..... 错误! 未定义书签、要求数据 ............ 错误! 未定义书签三、设计要求 (2)四、机器运动系统简图 (3)五、过程循环方式 (4)六、四杆机构尺寸设定 (4)七、凸轮机构尺寸设定 (6)八、机械传动计算 (7)九、齿轮设计 (8)十、飞轮转动惯量的确定 (10)十一、心得体会 (10)十二、参考文献 (10)自动喂料搅拌机方案设计(方案C)设计用于化学工业和食品工业的自动喂料搅拌机。
无聊的搅拌动作:电动机通过减速装置带动容器绕垂直轴缓慢整周转动;同时,固连在容器内半勺点E沿图1虚线所示轨迹运动,将容器中拌料均匀搅动。
物料的喂料动作:物料呈粉状或粒状定时从漏斗中漏出,输料持续一段时间后漏斗自动关闭。
一.数据:半勺E的搅拌轨迹数据(表1)自动喂料搅拌机运动分析(表2)自动喂料搅拌机动态静力分析及飞轮转动惯量数据(表3)二.设计要求(1) 机器应包括齿轮(或蜗杆蜗轮)机构、连杆机构、凸轮机构三种以上机构。
(2) 设计机器的运动系统简图、运动循环图。
(3) 设计实现搅料拌勺点E轨迹的机构,一般可米用铰链四杆机构。
该机构的两个固定铰链A、D的坐标值已在表2给出(在进行传动比计算后确定机构的确切位置时,由于传动比限制,D点的坐标允许略有变动)。
(4) 对平面连杆机构进行运动分析,求出机构从动件在点E的位移(轨迹)、速度、加速的;求机构的角位移,角速度,角加速度;绘制机构运动线图。
(5) 对连杆机构进行动态静力分析•曲柄1的质量与转动惯量略去不计,平面连杆机构从动件2、3的质量m、m及其转动惯量J s2J s3以及阻力曲线F Q参见表3。
根据F Qmin、F Qmax和拌勺工作深度h绘制阻力线图,拌勺所受阻力方向始终与点E 速度方向相反。
混凝土搅拌机搅拌部分设计

混凝土搅拌机搅拌部分设计混凝土搅拌机是一种常用于工程施工中的机械设备,主要用于将水泥、砂、石料等原料进行搅拌,形成均匀的混凝土。
搅拌部分是混凝土搅拌机的核心部件,其设计合理与否直接影响到混凝土搅拌机的工作效率和搅拌质量。
下面将从搅拌部分的结构设计、材料选择和动力系统等方面对混凝土搅拌机搅拌部分的设计进行详细阐述。
混凝土搅拌机搅拌部分的结构设计是影响其搅拌效果和维修保养的重要因素之一、一般情况下,搅拌部分由搅拌系统、传动系统和搅拌筒组成。
搅拌系统主要包括搅拌轴、搅拌叶片和搅拌桨等,其设计要保证能够充分混合原料,并提供足够的搅拌力。
搅拌轴应尽量设置可调节的转速,以满足不同类型混凝土的搅拌要求。
搅拌叶片和搅拌桨的形状和角度也需要经过仔细的计算和优化,以保证混凝土能够快速而均匀地进行搅拌。
材料的选择是混凝土搅拌机搅拌部分设计的关键。
由于混凝土搅拌机在工作过程中受到较大的力和摩擦,因此需要选择高强度、耐磨损的材料作为搅拌叶片和搅拌桨的制造材料。
常用的材料有高铬合金铸铁、高锰钢等,这些材料具有良好的耐磨性和抗冲击性能,能够有效延长搅拌部件的使用寿命。
动力系统是混凝土搅拌机搅拌部分的重要组成部分,其设计要合理、可靠,能够提供足够的动力供给。
一般情况下,混凝土搅拌机的动力系统采用电动机或柴油发动机,其选择要根据实际施工情况和工作环境来确定。
电动机一般适用于城市建筑施工等环境,柴油发动机适用于无电力供应的工地。
在动力系统的设计中,还需要考虑到机械传动部分的选型和合理配置,以提高传动效率和减少能量损失。
除了以上提到的几个方面,混凝土搅拌机搅拌部分的设计还需要考虑到结构的简化和操作的便捷性。
混凝土搅拌机的搅拌部分应尽可能简化结构,减少零部件的数量和重量,以降低成本和提高施工效率。
此外,搅拌部分的设计还应考虑到操作人员的安全和方便性,例如设置操作平台和安全防护设施等,以提供良好的工作环境。
综上所述,混凝土搅拌机搅拌部分的设计是一项复杂而重要的任务。
搅拌机设计

第一节 罐体的尺寸确定及结构选型 (一)筒体及封头型式选择圆柱形筒体,采用标准椭圆形封头 (二)确定内筒体和封头的直径发酵罐类设备长径比取值范围是 1.7~2.5,综合考虑罐体长径比对搅拌功率、传热以及物料特性的影响选取/ 2.5i H D =根据工艺要求,装料系数0.7η=,罐体全容积39V m =,罐体公称容积(操作时盛装物料的容积)390.7 6.3g V V m η=•=⨯=。
初算筒体直径iii D H D H D V 442ππ=≈34ηπi gi D H V D ≈即m D i 66.17.05.214.33.643≈⨯⨯⨯=圆整到公称直径系列,去mm DN 1700=。
封头取与内筒体相同内经,封头直边高度mm h 402=, (三)确定内筒体高度H当mm h mm DN 40,17002==时,查《化工设备机械基础》表16-6得封头的容积30.734v m =224(90.734)3.643.14 1.74i V vH m D π--===⨯,取 3.7H m = 核算/i H D 与η/ 3.7/1.7 2.18i H D ==,该值处于1.7~2.5之间,故合理。
226.30.69'1.7 3.70.73444g gi V V V D H vηππ====+⨯⨯+该值接近0.7,故也是合理的。
(四)选取夹套直径表1 夹套直径与内通体直径的关系由表1,取10017001001800j i D D mm =+=+=。
夹套封头也采用标准椭圆形,并与夹套筒体取相同直径 (六)校核传热面积工艺要求传热面积为211m ,查《化工设备机械基础》表16-6得内筒体封头表面积23.34,3.7i A m m =高筒体表面积为21 3.7 3.14 1.7 3.719.75i A D m π=⨯=⨯⨯=总传热面积为3.1419.7523.0911A =+=>故满足工艺要求。
第二节 内筒体及夹套的壁厚计算 (一)选择材料,确定设计压力按照《钢制压力容器》(15098GB -)规定,决定选用0189Cr Ni 高合金钢板,该板材在150C 一下的许用应力由《过程设备设计》附表1D 查取,[]103t MPa σ=,常温屈服极限137s MPa σ=。
基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计搅拌机是一种常见的工业设备,它用于混合和搅拌各种物料,包括粉末、液体、颗粒等。
传统的搅拌机控制系统通常采用传感器和继电器进行控制,但这种方式存在一些问题,例如控制精度低、响应时间长、可靠性差等。
为了提高搅拌机的控制性能和可靠性,我们可以采用基于PLC的控制系统。
PLC是可编程逻辑控制器的缩写,它是一种专用的计算机控制设备,具有高速、高可靠性、易于编程和配置的特点。
基于PLC的控制系统可以通过将传感器和执行器与PLC连接,实现对搅拌机的精确控制。
搅拌机控制系统的设计需要以下几个步骤:1.确定控制需求:根据搅拌机的工作要求,确定需要控制的参数,例如转速、时间、温度等。
2.选择传感器和执行器:根据控制需求选择合适的传感器和执行器。
例如,可以使用旋转编码器或霍尔传感器测量搅拌机的转速,使用温度传感器测量搅拌机的温度。
3.设计控制逻辑:根据控制需求和传感器的反馈信号,设计PLC的控制逻辑。
例如,可以使用PID控制算法来控制搅拌机的转速,根据传感器测量的实际转速和设定值,调整搅拌机的驱动器。
4.编程PLC:根据设计的控制逻辑,使用PLC编程软件编写PLC程序。
PLC程序主要包括输入输出的配置、控制逻辑的实现和报警功能的设置。
6.性能优化:根据测试结果和用户反馈,对控制系统进行性能优化。
例如,可以调整PID控制算法的参数,优化控制精度和响应时间。
1.高可靠性:PLC具有高可靠性和抗干扰能力,能够稳定地工作在恶劣的工业环境下。
2.高精度控制:PLC的计算和控制速度快,能够实现对搅拌机的高精度控制,提高产品质量。
3.易于配置和扩展:PLC具有模块化的设计,可以根据需求进行灵活配置和扩展。
4.易于维护和诊断:PLC的编程和配置工具友好易用,能够快速诊断和修复故障。
总结:基于PLC的搅拌机控制系统能够提高搅拌机的控制性能和可靠性,增加生产效率和产品质量。
设计和实施这样的控制系统需要仔细考虑搅拌机的工作要求、选择合适的传感器和执行器、设计控制逻辑、编程PLC、调试和测试,并进行性能优化。
搅拌机设计

搅拌机设计搅拌机是一种广泛用于化工、食品、医药、冶金等领域的机械设备。
它主要作用是通过搅拌将混合物中的各种成分均匀混合,从而达到一定目的。
搅拌机的种类繁多,根据用途不同可以分为多种类型,如搅拌缸、搅拌桶、搅拌器等。
本文将重点介绍基于单臂搅拌桶的搅拌机设计。
1. 设计思路单臂搅拌桶搅拌机是搅拌机的一种,其主要结构由搅拌器和桶体组成。
搅拌器作为搅拌桶的核心部分,即负责将搅拌桶内的混合物材料进行均匀混合的部分。
其设计思路主要是根据不同的混合物特性和工艺要求,确定搅拌器的型号、参数、功率等技术指标,采用相应的结构设计、加工工艺和制造工艺来满足混合物材料的混合要求。
2. 设计要素2.1 搅拌器型号搅拌器型号是搅拌机设计中的一个重要因素。
它的选择应该根据混合物的物理和化学特性以及混合要求来决定。
常用的搅拌器类型有桨叶式、桶槽式、锥桶式、螺旋搅拌器等。
2.2 搅拌器参数搅拌器参数是指搅拌器的尺寸、转速、角度、形状等具体参数。
其取值应该在满足混合物材料粘度、密度、粒径等要求的前提下,尽量使搅拌效果更加均匀和充分。
搅拌器设计中应注意到需求和制造技术方案。
2.3 搅拌器功率搅拌器的功率是指搅拌器所需的电力功率。
其取值应该在满足混合物材料的混合要求的前提下,尽量降低能耗,减少搅拌机的能源浪费。
3. 设计流程搅拌机的设计流程通常涉及多个环节,包括参数选取、结构设计、加工制造、安装调试等。
下面将具体介绍搅拌机的设计流程。
3.1 参数选取参数选取阶段是搅拌机设计的第一阶段,也是最基础的阶段。
在这个阶段,设计人员需要确定搅拌器的型号、参数、功率等技术指标。
具体的方法通常是通过实验和理论计算相结合。
3.2 结构设计结构设计阶段是搅拌机设计的关键环节,也是最复杂的环节。
在这个阶段,设计人员需要根据参数要求和制造工艺对搅拌器的结构进行设计,包括搅拌器的尺寸、形状、传动方式、速度控制方式等方面。
3.3 加工制造加工制造阶段是搅拌机设计的另一关键环节,也是最重要的环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要搅拌机是搅拌设备的心脏。
在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。
论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。
通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则。
论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7—1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m /s-1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。
[关键词]:搅拌机、主要参数、合理性、实验研究第1章前言1.1国内外研究现状及发展趋势19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。
1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。
20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示。
形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。
1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。
1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。
从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。
在这期间,仍然以各种有叶片或无叶片的自落式搅拌机的发明与应用为主⋯。
自落式搅拌机依靠被拌筒提升到一定高度的物料的自落完成搅拌。
工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。
由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。
自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。
此种搅拌机适于拌制普通塑性混凝土,广泛应用于中小型建筑工地。
按拌筒形状和卸料方式的不同,有鼓筒式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等,其中鼓简式搅拌机技术性能落后,已于1987年被我国建设部列为淘汰产品。
随着多种商品混凝土的广泛使用以及建筑规模的大型化、复杂化和高层化对混凝土质量、产量不断提出的更高要求,有力地促进了混凝土搅拌设备在使用性能和技术水平方面的提高与发展。
各国研究人员开始从混凝土搅拌机的结构形式、传动方式、搅拌腔衬板材料以及搅拌生产工艺等方面进行改进和探索。
20世纪40年代后期,德国ELBA公司最先发明了强制式搅拌机,和自落式搅拌机的工作原理不同,强制式搅拌机利用旋转的叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到匀质搅拌。
强制式搅拌机工作原理如图1.3,与自落式搅拌机相比,强制式搅拌机搅拌作用强烈,搅拌质量好,搅拌效率高,但拌筒和叶片磨损大,功耗增大。
此种搅拌机适于拌制干硬性、轻骨料混凝土以及特种混凝土和专用混凝土,多用于施工现场的混凝土搅拌站和预拌混凝土搅拌楼。
根据构造特征不同,主要有立轴涡浆式搅拌机、立轴行星式搅拌机、立轴对流式搅拌机、单卧轴搅拌机和双卧轴搅拌机等。
图1.2 自落式搅拌机工作原理示意图图1.3强制式搅拌机工作原理示意图随着技术的发展,强制式搅拌机在德国的BHS公司和ELBA公司、美国的JOHNSON 公司和REX WORKS公司、意大利的SICOMA公司和SIMEN公司、日本的日工株式会社和光洋株式会社等企业发展迅速,目前已形成系列产品。
比如德国的EMC系列、EMS系列搅拌站和UBM系列、EMT系列搅拌楼,意大利的MAO系列搅拌站、MSO系列大型搅拌基地等。
我国混凝土搅拌设备的生产从20世纪50年代开始。
1952年,天津工程机械厂和上海建筑机械厂试制出我国第一代混凝土搅拌机,进料容量为400L和1000L。
20世纪70年代未至80年代初,我国为适应建筑业商品混凝土大规模发展的需要,在引进国外样机的基础上,有关院所厂家陆续开发了新一代Jz型双锥自落式搅拌机、.D型单卧轴强制式搅拌机。
其中,JS型双卧轴搅拌机在80年代初研制成功。
80年代末,我国混凝土搅拌产品开发重点转向商品混凝土成套设备,研制出了10多种混凝土搅拌楼(站)。
经过引进吸收、自主开发等几个阶段,到本世纪初,国内混凝土搅拌机技术得到长足发展,在产品规格和生产数量上,都达到了一定规模,出现了一批具有自主知识产权的新技术,逐步形成了一个具有一定规模和竞争能力的行业。
2006年,我国生产装机容量O.5~6m3的搅拌站2100多台,已成为混凝土搅拌设备的生产大国。
1.2国内外搅拌机参数的研究现状对搅拌设备来说,搅拌机构是核心装置,混凝土搅拌质量的好坏,搅拌机生产率的高低以及使用维修费用的多少都与它有关,目前,双卧轴搅拌机是国内的主导机型,因此,国内外对卧轴搅拌机技术进行了比较广泛、深入的研究。
国外对卧轴搅拌机技术的研究起因于对沥青混和料拌和抽样和方法准确度的分析,由于试验中采用的1t间歇式卧轴强制搅拌器,抽取的样品测试数据显示了在搅拌器的一种设计与另一种设计之间,由于桨叶的排列方式不同,有可能成为造成混合料均匀度的明显差别的主要原因。
研究人员分析认为:所用的双轴桨叶式搅拌器中,材料的主要运动是一种在与轴垂直的平面内,围绕着每根轴的不规则转动。
在桨叶相遇或重叠的部位,材料在一根轴之间的区域内相互交换着,材料的辅助运动是与两根轴平行的,从搅拌轴的一个旋转平面到另一旋转平面。
在用来构成辅助运动方面,不同设计方案的搅拌器,变化是很广泛的。
混合料在两根轴之间的区域内运动是不规则的,但是在轴的两侧,物料则围绕着搅拌器内壁在水平面内作某种循环运动,运动的程度都会受到桨叶端面与它们移动方向的夹角的影响。
为了找到在搅拌器其它设计特点保持不变的情况下,由于改变桨叶端面的角度和安装方式而产生的不同方案的辅助运动,以及对被搅拌的混和料均匀度的影响程度,研究人员制造了一套带有可调桨叶的特殊桨臂。
通过央紧作用,将桨叶紧固到桨臂的圆柱部分,并可按任意角度调整,而且可按根右旋或左旋螺距来安装于搅拌轴上。
在一些搅拌器中,将垂直于它们移动方向的平面桨叶,向左和向右交替地转一定角度,使这些桨叶的排列方式不是按照产生一种有规则的辅助运动,所以在搅拌器内材料的输送不是始终如一地从一端到另一端。
当使物料由轴的两端向中心运动时。
物料向中心堆积,有一些物料则从堆积料的顶端溢出,再从两端返回,那旱物料的水平面要低得多。
在另外一些搅拌器中,桨叶的排列可使物料产生有规则的辅助运动。
一轴上的所有桨叶端面都使物料朝一个方向运动,而另一根轴上的所有桨叶端面部使物料朝相反的方向运动。
在桨叶相对于搅拌轴不同的倾斜角度情况下,分别采用两种桨叶排列方式进行试验:①将所有桨叶调至使物料向搅拌器的中心运动:②将一根轴上的所有桨叶都安装成使物料向右运动,而另一根轴上的所有桨叶都安装成使物料向左运动,以便能使物料在平面内围绕着搅拌器产生顺时针方向的循环或旋转运动。
这两种排列方式被称为“向心”方式和“旋转”方式。
试验按18批物料作为一个系列来进行,它覆盖的变化因素包括:三种桨叶角度(15、30和45)、两种桨叶排列方式和三种搅拌时间(1min、2min和4min)。
获得拌和匀质性分析的样品总数为213个。
分别计算出每批混和料样品中粘结料的百分比标准离差和通过给定筛子的物料百分比标准离差,将标准离差转换为离差系数,以便提供不同混和料之间合理有效的比较。
第2章搅拌机主要参数2.1双卧轴搅拌机的主要参数本文以目前广泛使用的双卧轴搅拌机为主,对搅拌装置几何和运动参数的合理取值范围进行分析和试验研究。
搅拌装置参数主要有:搅拌臂的排列、搅拌叶片的安装角、拌筒的长宽比及搅拌线速度等,其结构如图2 1(a)所示,主要参数如图2 1(b)所列:图2.1(a)双卧轴搅拌机结构图2.1双卧轴搅拌机主要参数2.2搅拌机参数选取的准则目前国内外广泛使用的自落式和强制式搅拌机己沿用了50余年。
但在搅拌机设计和使用中,仍采用类比法这样的经验方法,缺乏合理性;由于对搅拌过程的机理研究不够,对如何选择这一参数,说法不一,缺乏科学性;在搅拌过程中,混合料的物理一化学性能都发生了变化,这一过程极其复杂而影响因素又较多,但由于对诸参数综合优化的试验研究不深入,且设计和使用者在选择转速值时缺少依据。
搅拌机是混凝土制备设备的心脏,它必须满足搅拌质量与搅拌效率等性能要求。
搅拌质量就是生产出符合国家标准要求的新拌混凝土;搅拌效率就是在满足搅拌质量的前提下,搅拌时间要尽量短,以提高设备的生产率和设备的利用率,降低生产成本。
百年大计,质量第一。
混凝土是重要的建筑材料,新拌混凝土质量是对搅拌机性能的最基本的要求,也是首要的性能要求。
混凝土质量用其宏观及其微观均匀度来评价,宏观均匀性用拌和物中砂浆密度的相对误差埘<O.8%和粗骨料质量的相对误差AG<5%来衡量,微观均匀性用混凝土强度的平均值豆,标准差盯和离差系数G来衡量。
豆值越高、G值越小,说明混凝土质量越好;反之亦然。
因此,搅拌机械应在保证新拌混凝土质量满足国家标准要求的前提下高效节能的工作,这就是确定搅拌机合理参数的准则。
搅拌机在设计和使用中主要参数的选取准则也可用数学表达式来表示。
对搅拌搅拌过程进行综合模拟,给出了搅拌机参数优化的目标函数:式中,搅拌的平均时间f的角标表示拌缸(或拌筒)三维坐标(x,y,z)或(z,r,由)及其顺序。
该式的物理意义是:合理的搅拌机参数应保证在满足给定的均匀度指标的前提下,在拌缸内各个方向的搅拌时间相接近。
这时选取的搅拌机的主要参数较合理。
可利用实验来调整搅拌机的参数,使其趋于合理。
在不同的搅拌时间,按三维坐标方向测搅拌的均匀度就可知道,在所有方向都达到给定的均匀度的时间。
一般来}兑,在三个方向同时都达到给定的均匀度指标是不可能的,总会有先有后。
应根据实验结果,调整搅拌机结构及相应的参数,使得能够在搅拌室内所有方向上能接近同时达到给定的均匀度。