初中几何三角形五心及定理性质之欧阳歌谷创作

合集下载

初中几何三角形五心及定理性质之欧阳科创编

初中几何三角形五心及定理性质之欧阳科创编

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 =∠2 。

初中数学几何证明题技巧之欧阳歌谷创作

初中数学几何证明题技巧之欧阳歌谷创作

初中数学几何证明题技巧欧阳歌谷(2021.02.01)几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。

掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。

在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。

很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。

我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。

这里的记有两层意思。

第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。

分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。

然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

七年级数学下册 第九章《三角形》9.2 三角形的内角和外角 三角形“五心歌”素材 冀教版

七年级数学下册 第九章《三角形》9.2 三角形的内角和外角 三角形“五心歌”素材 冀教版

三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,五心性质很重要,认真掌握莫记混.重心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清,
(H为垂心,点A.F、H、E共圆,
点E.H、D.C共圆,
点F、B.D.H共圆)
内心
三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.
外心
三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
0为三角形外心
旁心
三角形有三内角,尚有外角两个三,
三对外角平分线,两两相交有一点,
点点命名曰“旁心”,只因能作旁切圆.。

三角形的五心定理

三角形的五心定理

三角形的五心定理三角形五心定理三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

5. 以重心为起点,以三角形三定点为终点的三条向量之和等于零向量。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

三角形各种心的性质归纳之欧阳音创编

三角形各种心的性质归纳之欧阳音创编

三角形各种心的性质研究一、基础知识三角形的心是指重心、外心、垂心、旁心和界心.三角形的心是三角形的重要几何点.在数学竞赛中,有关三角形的心的几何问题是竞赛的热点问题,因此,我们对三角形的心的几何性质做概括归纳,对有关的证明方法和解题技巧做深入探讨.1.重心:设G 是ABC ∆的重心,AG 的延长线交BC 于D ,则,DC BD =)1(, ( 2)3:2:=AD AG ;(3)4222222BC AC AB AD -+=,(4)3ABCGBC S S ∆∆=. 2.外心:设⊙O (R )是ABC ∆的外接圆,BC OD ⊥于D交⊙O 于E ,则(1)R OC OB OA ===;(2)A BOC ∠=∠2或)180(20A ∠-; (3)DC BD =⌒BE =⌒EC ;(4)C B A R RabcS ABCsin sin sin 24==∆(正弦定理) 3.内心:设ABC ∆的内心圆⊙I ()r 切边AB 于P ,AI 的延长线交外接圆于D ,则 (1)A BIC ∠+︒=∠2190;(2)a cb a ac b A r AP -++=-+=∠=)(21221cot ;(3)DC DI DB ==;(4)2)(c b a r S ABC ++=∆;4.垂心:设H G O ,,分别是ABC ∆的外心,重心,垂心,BC OD ⊥于D ,AH 的延长线交外接圆于1H ,则,(1)OD AH 2=;(2)H 与1H 关于BC 成轴对称;(3)⊙=BCH ⊙ABC ;(4),,,H G O 三点共线,且2:1:=GH OG ;5.旁心:设ABC ∆在A ∠内的旁切圆⊙1I ()1r 与AB 的延长线切于1P ,则,(1)A C BI ∠-=∠219001;(2)2211c b a A ctg r AP ++=∠=;(3)21c b a BP -+=;(4)21CB AI ∠=∠;(5)2)(1a c b r S ABC -+=∆6.三角形中内切圆、旁切圆和外圆半径的几个关系 在△ABC 中,内切圆⊙O 分别与三边相切于点K M ,L ,BC 边上的帝切圆⊙a O 与BC 边切于点H ,且分别与AB 边和AC 这的延长线相切于点Q 、点P .设三边BC 、CA 、AB 分别为c b a ,,,C B A ∠∠∠,,分别为γβα,,,)(21c b a p ++=,内切圆半径为r ,旁切圆半径分别为c b a r r r ,,,外接圆半径为R ,三角形面积为∆S ,则有如下关系式:(1)p AP =,a p AK -=,c b LH -=;(2)ap rpr a-=;(3)直角三角形斜边上的旁切圆的半径等于三角形周长的一半;(4)))((1c p b p rr a --=;(5)c b a r r r r 1111--=;(6)2tan2tanγβ⋅=rr a7.界心如果三角形一边上的一点和这边对的顶点把三角形的周界分割为两条等长的折线,那么就称这一点为三角形的周界中点.其中三角形的周界是指由M三角形的三边所组成的围.由于三角形的任意两边之和大于第三边,可知三角形任一边上的周界中点必介于这边两端点之间.三角形的顶点与其对边的周界中点的连线,叫三角形的周界中线(有时也称周界中线所在直线为三角形的周界中线).三角形的周界中线交于一点.定义:称三角形的周界中线的交点为三角形的界心.二、例题分析例1.设△ABC的外接圆O的半径为R,内心为I,A∠B,C∠,A<∠60︒=∠的外角平分线交圆O于E,证明:(1)AEIO=;(2)R<+2++<.IOIC1(IAR)3【证明】(1)延长BI交外接圆于M,连结Am,,OA,OM易知︒B∠60AOM,故△AOM为正三角形,==∠∴CM=.易证MAI=AMOM=OA=∠,MIA∠∴MIMA=.同理,MIMC=,即CA,,在以M为圆心,R为,OI半径的圆上,设AI的延长线交⌒BC于F,则AF、AE分别为A∠的内、外角平分线,︒EAF,即EF为⊙O的直径,=∠90∴AOE OFI OAI ∠=∠=∠21.又在⊙M 中,OMI OAI ∠=∠21,∴OMI AOE ∠=∠,但⊙M 与⊙O 为等圆,故OI AE =.(2)连接FC ,同上易证FC IF =,又︒=∠=∠60ABC IFC ,∴△IFC 为等边三角形,IF IC =∵)60(21)(212121︒-∠=∠-∠=∠=∠=∠C AMO AMI OMI AOE AFE ,记AFE ∠为θ∴AFAE AF IA AE IC IA IO +=++=++)cos (sin 2cos 2sin 2θθθθ+=+=R R R由C A ∠<∠知,︒<∠<︒12060C ,从而有︒<∠<︒602130C ,即︒<︒+∠<︒75152145C∴︒<++<︒75sin 2245sin 22R IC IA IO R ,又46275sin +=︒,故R IC IA IO R )31(2+<++<.例2.锐角△ABC 的外心为O ,线段BC OA ,的中点分别为M 、N .,OMN ABC ∠=∠4OMN ACB ∠=∠6.求OMN ∠.【解】设θ=∠OMN ,则θ4=∠ABC ,θ6=∠ACB ,θ10180)(180-︒=∠+∠-︒=∠ACB ABC BAC又θ1018021-︒=∠=∠=∠BAC BOC NOC ;θ82=∠=∠=∠ABC AOC MOC从而θθθ2180)10180(8-︒=-︒+=∠MON即OMN ∆为等腰三角形,OC OA OM ON 2121===∵︒=∠90ONC ,∴︒=∠60NOC ,又∵θ10180-︒=∠NOC ,∴︒==∠12θOMN例3.如图I O ,分别为△ABC 的外心和内心,AD 是BC边上的高。

三角形的五心定义及性质

三角形的五心定义及性质

三角形的五心定义及性质
三角形五心是指三角形的重心、外心、内心、垂心、旁心。

定义:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。

三角形的性质
1.在平面上三角形的内角和等于180°(内角和定理)。

2.在平面上三角形的外角和等于360°(外角和定理)。

3.在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4.一个三角形的三个内角中最少有两个锐角。

5.在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6.三角形任意两边之和大于第三边,任意两边之差小于第三边。

7.在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8.直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。

*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

9.直角三角形斜边的中线等于斜边的一半。

10.三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

11.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

12.等底同高的三角形面积相等。

13.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。

14.三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

15.等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。

三角形的五心定理

三角形的五心定理

三角形的五心定理三角形是几何学中最基本的图形之一,具有丰富的性质和定理。

其中,五心定理是一条十分重要的定理,它揭示了三角形内包含的五个特殊点,这些点被称为三角形的五心。

本文将从五心定理的定义和推导开始,详细介绍五心的概念、性质以及应用。

一、五心定理的定义和推导五心定理是指在任意三角形ABC中,存在五个特殊点O、I、H、G、N,它们分别为外心、内心、垂心、重心和费马点。

这些特殊点具有一些特殊性质,对于研究三角形的性质和问题具有重要作用。

首先,我们来推导五心定理。

假设三角形ABC的外接圆圆心为O,内切圆圆心为I,垂心为H,重心为G,费马点为N。

根据几何学的基本定理和性质,可以得到以下关系:1. 外心定理:三角形的三条边的中垂线交于一点,该点即为三角形的外心O。

2. 内心定理:三角形的三条角平分线交于一点,该点即为三角形的内心I。

3. 垂心定理:三角形的三条高交于一点,该点即为三角形的垂心H。

4. 重心定理:三角形的三条中线交于一点,该点即为三角形的重心G。

5. 费马点定理:三角形内所有角的顶点到三个顶点的距离之和最短,该点即为三角形的费马点N。

综上所述,我们可以得出三角形ABC内含有五个特殊点O、I、H、G、N,它们分别为三角形的外心、内心、垂心、重心和费马点。

接下来,我们将详细介绍这五个特殊点的性质和应用。

二、五心的性质和应用1. 外心O:外心O是三角形的外接圆圆心,该圆将三角形的三个顶点都包含在内。

外接圆的半径等于三角形的外心到任意顶点的距离,外心到三个顶点的连线都互相垂直。

2. 内心I:内心I是三角形的内切圆圆心,该圆与三条边都相切。

内切圆的半径等于三角形的内心到任意边的距离,内心到三条边的连线都互相垂直。

3. 垂心H:垂心H是三角形的三条高交于的点,该点到三个顶点的连线都互相垂直。

垂心是一个重要的概念,在三角形的高问题以及垂心距离等方面有广泛的应用。

4. 重心G:重心G是三角形的三条中线交于的点,该点将三角形分成六个三角形的面积之比为2:1。

三角形五心定律

三角形五心定律

三角形五心定律
形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等。

三、三角形垂心定理
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:
1、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

2、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

3、垂心分每条高线的两部分乘积相等。

四、三角形内心定理
三角形内切圆的圆心,叫做三角形的内心。

内心的性质:
1、三角形的三条内角平分线交于一点。

该点即为三角形的内心。

2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

3、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
4、△ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
5、(内角平分线分三边长度关系)△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
6、内心到三角形三边距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何三角形五心定律及性质
欧阳歌谷(2021.02.01)
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理
三角形外接圆的圆心,叫做三角形的外心。

外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

推论:
1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。

(图1)
2. 三角形的垂心是其垂足三角形的内心。

(图1)
3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。

(图2)
定理证明
已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB
证明:
连接DE
∵∠ADB=∠AEB=90度
∴A、B、D、E四点共圆
∴∠ADE=∠ABE
又∵∠ODC=∠OEC=90度
∴O、D、C、E四点共圆
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
因此,垂心定理成立
内心定理
三角形内切圆的圆心,叫做三角形的内心。

内心的性质:
1、三角形的三条内角平分线交于一点。

该点即为三角形的内心。

2、直角三角形的内心到边的距离等于两直角边的和与斜边的差的二分之一。

3、P为ΔABC所在空间中任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).
4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
5、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
6、(内角平分线分三边长度关系)
△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
7、内心到三角形三边距离相等。

旁心定理
三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。

旁心的性质:
1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。

旁心一定在三角形外。

2、任何三角形都存在三个旁切圆、三个旁心。

3、旁心到三角形三边的距离相等。

如图,点M就是△ABC的一个旁心。

三角形任意两角的外角平分线和第三个角的内角平分线的交点。

一个三角形有三个旁心,而且一定在三角形外。

附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

巧记诗歌
三角形五心歌(重外垂内旁)
三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.
外心
三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.
此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.
垂心
三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.
内心
三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.。

相关文档
最新文档