二次根式上课用
二次根式教案(优秀8篇)

本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
二次根式教案

二次根式教案二次根式教案(精选11篇)二次根式教案篇1教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算。
教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x-2且x0.解因为n2-90,9-n20,且n-30,所以n2=9且n3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a0和1-a>0.解因为1-a>0,3-a0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.注意:所以在化简过程中,例6分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a2B.a2C.a2D.a<2A.x+2B.-x-2C.-x+2D.x-2A.2xB.2aC.-2xD.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:二次根式教案篇2目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简单的实际问题;3.进一步体验二次根式及其运算的实际意义和应用价值。
最新二次根式教案详案

最新二次根式教案详案一、教学内容本节课我们将学习《二次根式》这一章节,具体内容包括二次根式的定义、性质、运算及其应用。
涉及的教材章节为第二章第三节。
二、教学目标1. 理解二次根式的定义,掌握二次根式的性质和运算方法。
2. 能够运用二次根式解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和运算能力。
三、教学难点与重点难点:二次根式的性质和运算方法。
重点:二次根式的定义及其应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:练习本、计算器。
五、教学过程1. 实践情景引入利用课件展示实际生活中含有二次根式的例子,如土地面积、建筑物的对角线长度等,让学生认识到二次根式在实际生活中的应用。
2. 知识讲解(1)二次根式的定义:讲解二次根式的概念,如√a(a≥0)。
(2)二次根式的性质:讲解二次根式的性质,如乘法、除法、开方等。
(3)二次根式的运算:讲解二次根式的加减乘除运算方法。
3. 例题讲解选取具有代表性的例题,讲解解题思路和步骤,让学生掌握二次根式的运算方法。
4. 随堂练习让学生完成教材上的练习题,巩固所学知识。
5. 课堂小结六、板书设计1. 二次根式2. 内容:(1)二次根式的定义(2)二次根式的性质(3)二次根式的运算方法七、作业设计1. 作业题目(2)应用题:某正方形的对角线长为10cm,求该正方形的面积。
2. 答案(1)√9=3,√16=4,√25=5。
(2)正方形的面积=50cm²。
八、课后反思及拓展延伸1. 反思:本节课学生对二次根式的定义和性质掌握较好,但在运算方面还需要加强练习。
2. 拓展延伸:引导学生探索二次根式的有理化方法,为后续学习打下基础。
重点和难点解析1. 教学目标中的能力培养2. 教学难点与重点的区分3. 实践情景引入的生活化例子4. 例题讲解的代表性5. 作业设计的针对性与答案的详细性6. 课后反思与拓展延伸的实际应用一、教学目标中的能力培养(1)理解二次根式的定义:学生应掌握二次根式的概念,理解其数学表达形式,并能够识别生活中的二次根式。
《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。
2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。
它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。
再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。
教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。
二次根式 教案

二次根式教案教案:二次根式教学目标:1. 了解二次根式的概念。
2. 能够进行二次根式的化简和计算。
3. 能够应用二次根式进行实际问题的解决。
教学重点:1. 二次根式的概念和特点。
2. 二次根式的化简和计算方法。
教学难点:1. 二次根式的化简和计算方法的灵活运用。
2. 实际问题的解决。
教学准备:1. 教师准备二次根式的示例题目。
2. 教师准备教学PPT和黑板。
教学过程:步骤一:导入新课教师通过问题导入,如:如果以一个边长为a的正方形,将其中一条边分成n等份,那么该正方形中一条边为1份的部分的面积是多少?引导学生思考,提出使用二次根式进行计算。
步骤二:讲解二次根式的概念和特点教师通过示例和解释介绍二次根式的概念和特点,如:√a表示对a开平方,其中a为非负实数,a称为被开方数,√a称为二次根式。
步骤三:二次根式的化简和计算方法教师通过示例讲解二次根式的化简和计算方法,包括:1. 同底同指数相乘得到新的二次根式,如:√a * √b = √(a * b)。
2. 同底同指数相除得到新的二次根式,如:√a / √b = √(a / b)。
3. 合并同类项得到新的二次根式,如:√a + √b + √c = √(a + b +c)。
4. 分解因式得到新的二次根式,如:√(ab) = √a * √b。
步骤四:教师示范解题教师通过几个典型的二次根式题目,进行示范解答,引导学生理解并掌握二次根式的化简和计算方法。
步骤五:学生练习学生根据教师示范进行练习,师生互动,教师及时纠正错误并给予指导。
步骤六:课堂小结教师对本节课的重点内容进行总结和归纳,强调学生需要掌握和运用的方法和技巧。
步骤七:作业布置教师布置相关的作业,并要求学生在完成作业时运用二次根式的化简和计算方法。
步骤八:课后反思教师对本节课的教学过程进行反思,总结教学经验,寻找不足之处,并进行修正。
《二次根式课件》公开课课件

二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. a≥0,
( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
说一说: 下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (6) a 1 ,
2
(4) - m (m≤0),
(5) xy (x,y 异号),
3
(7)
5
在实数范围内,负数没有平方根
?
1 已知 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
a )
?
1 下列式子 2 x 6 中字母x的 2x 取值范围是 3 x _0 __________
2x+6≥0
∵
-2x>0
∴
x≥-3 x<0
?
a 1+
=0,求a2004+b2004的值 b1
y的值 x 3=0,求x
x y 1 +
.
12 n为一个整数 , 求自然数n的值.
例3 求下列二次根式中字母的取值范围:
1 a 1 2 3 a 3
1 2 1 2a
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
2、二次根式的简单性质
例3、计算:
例4、把下列非负数写成一个数 的平方的形式:
(1)5; (2)11; (3)1.6; (4)0.35.
知识回顾
什么叫做平方根? 一般地,如果一个数的平方等于a,那 么这个数叫做a的平方根。 什么叫算术平方根?
正数的正平方根和零的平方根,统称算术平方根。
用 a (a 0)表示.
50米
?米
a米
塔座所形成的这个直角三角形的
2 斜边长为______________米。 a 2500
S
圆的面积为S, 则半径为____________.
2 x为全体实数
(5) x
3
x0
1 (4) x
1 (6) x2
x0
x0
解 : (1) x 1 0
x 1
你有什么收获? x 0 (2) 3x 0
(3) 无论x为何实数 4x 0 x为全体实数 , . ②分母中有字母时,要保证分母不为零。2源自①被开方数不小于零;S
b-3
如图示的值表示正方形的面积,则 正方形的边长是
b3
a 2500
2
s
b3
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a叫被开方数
凭着你已有的知识,
说说对二次根式 a 的认识,好吗?
?
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
例6、实数a、b在数轴上对应点 的位置如下图所示:
分析:体现数形结合的思想,进一步 巩固二次根式的定义、性质, 由于a<0,b>0,且|a|>|b|.
已知y 2 x x 2 5, 5 y 则 ____ 2 x ∴x=2, y=5
2-X≥0 X-2≥0 x ≤2
x≥2
?
已知a.b为实数,且满足 a 2b 1 1 2b 1 求a 的值.
(a为任何实数)
1 1 解:由 1 2a 0 得 a 2
解:由 a 1 0 得a
(3)
(a为任何实数)
(1) (2)
(a 1)
2
(a=1)
总结:被开方数不小于零;
例2 x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
例1、当a为实数时,下列各式 中哪些是二次根式?
解:因为a是实数时,a+10、a2-1不 能保证是非负数, 即a+10、a2-1可以是负数 (如当a<-10时,a+10<0;又如当0 <a<1时,a2-1<0 )
例1 a取何值时,下列根式有意义?
(1)
(3)
(a 1) (2)
1 (a ) 2