二次根式重难点题型及易错题
二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析一、选择题1.如果一个三角形的三边长分别为12、k、72,则化简21236k k-+﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+-|2k-5|,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:=.故选B .5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .8.5130.5a 22a b -22x y +中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】 5 133 0.5a 2a ,不是最简二次根式; 22a b -b ,不是最简二次根式;22x y +是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.下列计算错误的是( )A .2598a a a +=B .14772⨯=C .3223-=D .60523÷= 【答案】C【解析】【分析】 根据二次根式的运算法则逐项判断即可.【详解】解:A. 259538a a a a a +=+=,正确;B. 14727772⨯=⨯⨯=,正确;C. 32222-=,原式错误;D. 6051223÷==,正确;故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.11.有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数. 根据题意,得20{30x x -≥-≠解得,x≥2且x≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.计算201720192)2)的结果是( )A.B2 C.7 D.7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.16.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-= D .2222)3441a a a ÷=-+【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a -=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .17.下列运算正确的是( )A =B 2÷=C .3=D .142=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】=,故错误;2÷=,正确;C. =D. 142故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D 【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知25523y x x =--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .。
八年级数学下学期《二次根式》易错题集

《二次根式》易错题集易错题知识点1.忽略二次根式有意义的条件,只有被开方数a≥0时,式子a才是二次根式;若a<0,则式子a就不能叫二次根式,即a无意义。
2.易把2a与2)(a混淆。
3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。
4.对同类二次根式的定义理解不透。
5.二次根式的混合运算顺序不正确。
典型例题选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)考点:二次根式的性质与化简。
分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.2.当x取某一范围的实数时,代数式的值是一个常数,该常数是()A.29 B.16 C.13 D.3考点:二次根式的性质与化简。
分析:将被开方数中16﹣x和x﹣13的取值范围进行讨论.解答:解:=|16﹣x|+|x﹣13|,(1)当时,解得13<x<16,原式=16﹣x+x﹣13=3,为常数;(2)当时,解得x<13,原式=16﹣x+13﹣x=29﹣2x,不是常数;(3)当时,解得x>16;原式=x﹣16+x﹣13=2x﹣29,不是常数;(4)当时,无解.故选D点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.3.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4考点:二次根式的性质与化简。
分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.4.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a考点:二次根式的性质与化简;绝对值。
二次根式十大易错题(带答案)

二次根式十大经典易错题1. 下列说法正确有 个. (1)2(2)若236a =,则6a =±(34=±(4的平方根是10±. (5(6)2a 的算术平方根a .(76=,则6a =. (8)2a -没有平方根. (9)若两个数平方后相等,则这两个数也一定相等.(10)如果两个非负数相等,那么他们各自的算术平方根也相等.2. 下列二次根式中,最简二次根式的个数是( )A .1个B .2个C .3个D .4个3. 实数a ,b ,c 在数轴上的对应点如图所示,化简2c b a a -++的值是( )A .c b --B .b c -C .)(2c b a +-D .c b a ++24.(0)=a >( ) A . B .C .D .5. 已知a ,b 满足11a ab ++=,则ab =________.6. 已知非零实数a ,b 满足a b a b a 24)3(2422=+-+++-,则a b +=________.7. 计算:23)3412(22---÷-.( ) A . B . C . D .ab a 2-ab ab -a ab 2-b b a 2-2-232-32+-322--8. 计算:40282015)32()347(+-的结果为( )A .1B .32+C .347-D .9. 已知0xy >,化简二次根式 )ABC. D.10. 已知2a b +=-,12ab =347+1. 【解析】(2)(10)正确【答案】22. 【解析】此题的关键是看二次根式的被开方数是否满足最简二次根式的两个条166x x -=0.5中的13是分数,它们都不满足条件1中有能开得尽方的因式2b中有能开得尽方的因数22,()22x -,它们都不满足条件2;满足最简二次根式的两个条件.. 点评:要牢记最简二次根式的两个条件,判断时只须看被开方数,注意当被开方数是多项式时要先分解因式,找一找有没有能开得尽方得因式和因数,特别要分清2a 和2b ,但2a 和2b 不是2a +2b 的因式. 【答案】B 3. 【答案】B 4. 【答案】D 5. 【答案】-1 6. 【答案】1 7. 【答案】A 8. 【答案】C9.【解析】解题的关键是确定被开放式字母的符号.由题可知20x >,且20,0yy x-≥∴≤,又0xy >,0x ∴<,∴原式=. 【答案】D10. 【解析】∵102ab =>,∴a b ,同号,又∵2a b +=-,∴00a b <<,,2===【答案】。
二次根式知识结构(知识常考点、易错点、重难点)

二次根式章节复习典型易错题10道:1、使代数式)62(2+-t t 有意义的t 的取值范围是___________2、设0,≠b a ,式子43)(b a --有意义,化简该式等于3、设b a ≠,根式b a ab --2有意义,则次根式可化简为4、已知10<<x ,化简=-+-+-4)1(4)1(22x x x x 5、将xx 231)23(---中根号外的式子移到根号里面,结果为___________ 6、已知实数a 满足11=--a a ,那么22)1(a a +-等于7、已知5,1a b ab +=-=,那么ba a ab b +=___________ 8、如果1)23(<-x ,则x ___________9、()()2222a a -+-的值是___________10、若的值___________ 典型难题15道 :1、比较大小:;n m - 20172017+-+n m;2、已知4152522=+-+x x ,则=+++221525x x3、(1)设)11(23-+++=+++c b a c b a ,则=++222c b a(2)实数y x b a ,,,满足2213,13b y x a x y --=--=-+,则b a y x x +++2的值4、已知a 和b 都是有理数,且38)3(2-=+b a ,则b a -=5、化简求值:(1)15252329+++=___________(2)541523412-+-=___________(3)=-+221a a (121<<a ).(4___________ (5)=+++-+--1325182336210153 ___________ (6)=++++)23)(36(23346___________ (7)411011009998+⨯⨯⨯___________ 6、已知333124++=a ,那么=++32133a a a 7、计算:裂项相消(1)1009999100143341322312121++⋯⋯++++++=___________ (2)2222222220001199911413113121121111+++⋯⋯+++++++++=___________ 8、当219941+=x 时,求多项式20013)199419974(--x x 的值 9、求:6)22(+的整数部分10、已知b a 、满足753=+b a ,则b a s 32-=的取值范围为 。
专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6 二次根式易错题疑难题综合拓展题及2022中考真题集训类型一 易错题:教材易错易混题集训易错点1 考虑问题不全面典例1(2021春•+x 的取值范围是( )A .x >﹣2B .x ≥3C .x ≥3且x ≠﹣2D .x ≥﹣2思路引领:根据二次根式有意义的条件即可求出答案.解:由题意可知:x ―3≥0x +2>0,解得:x ≥3,故选:B .总结提升:本题考查二次根式以有意义的条件,解题的关键是正确理解二次根式的条件,本题属于基础题型.变式训练1.(2019•x 应满足的条件是( )A .x ≠3B .x ≤―13C .x ≥―13且x ≠3D .x >―13且x ≠3思路引领:根据二次根式有意义的条件,分式有意义的条件列出不等式,解不等式即可.解:由题意得,1+3x ≥0,x ﹣3≠0,解得,x ≥―13且x ≠3,故选:C .总结提升:本题考查的是二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.易错点2 (0)a a =³时,忽略a ≥0典例2(2022春•乐陵市期末)先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:===在上述化简过程中,第 ④ 步出现了错误,化简的正确结果为 (2思路引领:(1|a |即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.解:(1)在化简过程中④故答案是:④―(2)原式====总结提升:本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.变式训练1= .思路引领:根据二次根式的性质和完全平方公式化简即可.===―1,―1.总结提升:本题考查了二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.2.对于题目:“化简并求值:1a+a =15”,甲、乙两人的解答不同.甲的解答是:1a 1a +1a ―a =2a―a =495,乙的解答是:1a 1a +a ―1a =a =15.阅读后你认为谁的解答是错误的?为什么?思路引领:已知二次根式具有双重非负性,即被开方数为非负数,二次根式的值为非负数,已知a =15,故可得1a ―a =5―15>01a―a ,再对待求式进行化简求值即可解答题目.解:乙错误,理由如下:1a +=1a +=1a +|1a―a |.∵a =15,∴1a―a =5―15=245>0,∴|1a ―a |=1a―a ,1a +1a +1a ―a =2a ―a =495.故乙的解答是错误的.总结提升:本题考查分式的化简求值,正确进行计算是解题关键.易错点3 忽视二次根式的隐含条件典例3阅读下列解答过程,判断是否正确.如果正确,请说明理由;如果不正确,请写出正确的解答过程.已知a ―a (a ﹣1思路引领:先根据二次根式有意义的条件求出a 的取值范围,再进行化简.解:不正确,∵﹣a 3>0,∴a <0,―=﹣=(﹣a+1总结提升:本题考查了二次根式有意义的条件,二次根式的化简是解题的关键.变式训练1.(2022秋•长安区期中)求代数式a+a=﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 的解法是错误的;(2)求代数式a a=4―思路引领:(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=4――3=1―0,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=4―6﹣(4―2+总结提升:=|a|是解题的关键.易错点4 成立的条件是a≥0,b≥0典例4(2022春•⋅x的取值范围是( )A.x≥1B.x≥0C.0≤x≤1D.x为任意实数思路引领:根据二次根式有意义的条件列不等式组求解.解:由题意可得x≥0x―1≥0,解得:x≥1,故选:A.总结提升:a≥0)是解题关键.变式训练1.(2021春•―(x x的取值范围是( )A.x≥﹣1B.x≥﹣2C.x≤﹣1D.﹣2≤x≤﹣1思路引领:根据二次根式化简与有意义的条件,即可求得:x+1≤0x+2≥0,解此不等式组即可求得答案.=―(x+1∴x+1≤0 x+2≥0,解得:﹣2≤x≤﹣1.故选:D.总结提升:此题考查了二次根式化简与有意义的条件.此题比较简单,注意掌握二次根式有意义的条件.易错点5 运用想当然的运算法则典例5(2021秋•÷解:原式=―①=②=(2―③=④(1)老师认为小明的解法有错,请你指出小明从第 步开始出错的;(2)请你给出正确的解题过程.思路引领:根据二次根式的运算法则即可求出答案.解:(1)③,故答案为:③.(2)原式==―=总结提升:本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则.变式训练1.(2022春•―=4.他的解答过程是否有错误?如果有错误,请写出正确的解答过程.思路引领:根据二次根式的加减法的法则进行分析即可.解:有错误,==总结提升:本题主要考查二次根式的加减法,解答的关键是对二次根式的加减法的法则的掌握.易错点6 误用乘法公式典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.易错点7 运用运算律出现符号错误典例7(2022秋•迎泽区校级月考)下面是小明同学进行实数运算的过程,认真阅读并完成相应的任务:×+1)︸①×︸②第一步―10+2……第二步―8……第三步任务一:以上化简步骤中第一步中:标①的运算依据是 ;标②的运算依据是 (运算律).任务二:第 步开始出现错误,错误原因是 ,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.解:任务一、①由②的运算依据是乘法的分配律;故答案为:二次根式的性质.乘法的分配律;任务二、从第二步开始出现错误.×+1)×1―10﹣2―12,故答案为:任务一:二次根式的性质;乘法的分配律.任务二:①12.总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.变式训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是 .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.易错点8 滥用运算律典例8(2021秋•迎泽区校级月考)下面是小倩同学进行实数运算的过程,认真阅读并完成相应的任务:÷1 )第一步1⋯第二步+2第三步+2﹣10…第四步―8…第五步任务一:以上化简步骤中第一步化简的依据是 .任务二:第 二 步开始出现错误,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.故答案为:二次根式的性质.任务二、从第二步开始出现错误.÷1)÷1)=2+4++52总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.类型二疑难题:常考疑难问题突破疑难点1 二次根式非负性的应用1.已知实数a 满足|2019﹣a |+a ,求a ﹣20192的值.思路引领:首先由二次根式有意义的条件来去绝对值,得到a ﹣2019a ,由此得到a ﹣20192=2019.解:∵a ﹣2019≥0,∴a >2019.∴由|2019﹣a |+=a 得到a ﹣2019+a ,整理,得a ﹣2019=20192.∴a ﹣20192=2019.总结提升:a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.疑难点2 整体思想在二次根式中的应用2.(2018春•禹州市期中)已知a =+1,b ―1(a b +b a―1)的值思路引领:先由a 、b 的值计算出ab 、a +b 的值,再代入到原式=•a 2b 2abab a 2得.解:∵a =1,b =―1,∴a +b =ab 1)1)=2,则原式=•a 2b 2ab ab=总结提升:本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.3.(1)已知x =x 2﹣2x +5的值;(2)若a =2b =2,求a思路引领:(1)先把x 2﹣2x +5化简,再代入求值;(2)先把a―解:(1)由x 2+1,∴x 2﹣2x +5+1)2﹣2+1)+5=―2+5=7;(2=a =ab a b,当a =2+b =2―原式=总结提升:先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.疑难点3 判断求知问题4.(2019春•西湖区校级期中)王老师为了解学生掌握二次根式知识的情况,出了这样一道题:“根据所给”粗心的黎明同学把式子看错了,他根据条件得到2”思路引领:2,继而求出答案.解:45﹣x 2﹣(35﹣x 2)=10,2,5.总结提升:本题考查二次根式的乘除法运算,难度不大,关键是平方差公式的运用.类型三 综合拓展题:思维能力专项特训专题1 二次根式性质的应用1.(2022秋•+|2a ﹣b +1|=0,则(b ﹣a )2022=( )A .﹣1B .1C .52022D .﹣52022思路引领:因为算术平方根具有非负性,在实数范围内,任意一个数的绝对值都是非负数,若+|2a ﹣b +1|=0,则a +b +5=0,2a ﹣b +1=0,联立组成方程组,解出a 和b 的值即可解答.|2a ﹣b +1|=0,∴a+b+5=02a―b+1=0,解得a=―2 b=―3,∴(b﹣a)2022=(﹣3+2)2022=(﹣1)2022=1.故选:B.总结提升:本题考查了非负数的性质以及解二元一次方程组,根据几个非负数的和等于0,则每一个算式都等于0列出关于a、b的方程是解题的关键.2.已知x、y为实数,且y=+12,求5x﹣3y的值.思路引领:根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.解:由题意得,3x﹣4≥0,4﹣3x≥0,解得,x=4 3,∴y=1 2,则5x﹣3y=5×43―3×12=316.总结提升:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(2022春•大连月考)已知实数a在数轴上的对应点位置如图,则化简|a―1|―( )A.2a﹣3B.﹣1C.1D.3﹣2a思路引领:根据数轴上a点的位置,判断出(a﹣1)和(a﹣2)的符号,再根据非负数的性质进行化简.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:A.总结提升:此题主要考查了二次根式的性质与化简,正确得出a﹣1>0,a﹣2<0是解题关键.4.当x+6有最小值,最小值为多少?思路引领:≥0,可以得出最小值.0,∴当x =―12时,6有最小值,最小值为6.总结提升:本题考查了算术平方根.解题的关键是掌握算术平方根的非负性.5.(2019秋•渠县校级期中)已知x 、y 、a 满足:+=x 、y 、a 的三条线段组成的三角形的面积.思路引领:直接利用二次根式的性质得出x +y =8,进而得出:3x ―y ―a =0x ―2y +a +3=0x +y =8,进而得出答案.解:根据二次根式的意义,得x +y ―8≥08―x ―y ≥0,解得:x +y =8,0,根据非负数得:3x ―y ―a =0x ―2y +a +3=0x +y =8,解得:x =3y =5a =4,∴可以组成直角三角形,面积为:12×3×4=6.总结提升:此题主要考查了二次根式的应用,正确应用二次根式的性质是解题关键.专题2 二次根式大小比较方法1 平方法1.(2022•思路引领:++解:2=202=∴20+故答案为:<.总结提升:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是比较出两个数的平方的大小关系.方法2 分子有理化法2.认真阅读下列解答过程:比较2―解:∵2―(2―1,=1,又20即22的大小关系.思路引领:认真阅读题目,然后依据题目所给的方法进行比较即可.―2=21,2>0,<1.2.总结提升:1,―2=1是解题的关键.方法3 作商法3.利用作商法比较大小思路引领:根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=×=1,总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确作商法比较大小的方法.方法四定义法4思路引领:根据非负数的性质和有理数大小的比较方法即可得到结论.解:∵5﹣a≥0,∴a≤5,∴a﹣6<0,00,总结提升:本题考查的是实数的大小比较,要善于借助一个中间数作桥梁是解决问题的关键.专题3 二次根式的运算5.(2019秋•皇姑区校级月考)计算:(1)(2)―÷(3)(1―――1)2.(4―11)―20180――2|.思路引领:(1)直接化简二次根式进而合并即可;(2)直接利用二次根式的混合运算法则进而得出答案;(3)直接利用二次根式的混合运算法则计算进而得出答案;(4)直接利用负整数指数幂的性质以及零指数幂的性质分别化简进而得出答案.解:(1)原式=+=(2)原式=(=﹣1;(3)原式=+―(12+1﹣=――=﹣―(4)原式=3――1﹣2=总结提升:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.专题4 二次根式的求值6.(2022秋•宁德期中)已知:x =y =(1)填空:|x ﹣y |= ;(2)求代数式x 2+y 2﹣2xy 的值.思路引领:(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x ﹣y )2,再分别求出x ﹣y 和xy 的值,进而可得答案.解:(1)|x ﹣y |=||=+=故答案为:(2)x 2+y 2﹣5xy =(x ﹣y )2,∵x ﹣y =∴(x ﹣y )2﹣3xy =2=8.即代数式x 2+y 2﹣2xy 的值为8.总结提升:本题考查二次根式的化简求值,熟练掌握运算法则是解答本题的关键.7.(2020春•川汇区期末)计算题:已知x +1x x ―1x 的值.思路引领:根据平方差公式计算;∵x +1x∴(x +1x)22,∴x 2+2+1x 2=5,∴x 2﹣2+1x 2=5﹣4,∴(x ―1x)2=1,∴x―1x=±1.总结提升:本题考查的是分式的化简求值、二次根式的乘法,熟记平方差公式、完全平方公式是解题的关键.8.(2017秋•昌江区校级期末)已知正数m、n满足m4n=3,求值:思路引领:由m4n=3得出2﹣2﹣3=0,―13,代入计算即可.解:∵m4n=3,2+(2﹣23=0,2﹣2+3=0,1)+―3)=0,―1+=3,∴原式=3232012=12015.总结提升:本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.类型四中考真题:精选2022中考真题过关1.(2022•内蒙古)实数a1+|a﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0=|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:=|a|是解题的关键.2.(2022•安顺)估计(A.4和5之间B.5和6之间C.6和7之间D.7和8之间思路引领:直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:原式=2∵34,∴5<2+6,故选:B.总结提升:此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.3.(2022•x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2思路引领:根据二次根式有意义的条件:被开方数是非负数即可得出答案.解:∵3x﹣6≥0,∴x≥2,故选:D.总结提升:本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.4.(2022•广州)代数式1有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x+1>0,解得:x>﹣1.故选:B.总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v=8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.7.(2022•荆州)若3―a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3―a、b的值,代入所求式子计算即可.解:∵12,∴1<3―2,∵若3―a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(2―2,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n 越大,2时,300n=4,∴n =75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|― .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.11.(2022•济宁)已知a =2+b =2―a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a =2b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2―=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.12.(2022•河池)计算:|﹣3﹣1―(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=―13―1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.13.(2022•泰州)(1×(2)按要求填空:小王计算2x x 24―1x 2的过程如下:解:2x x 24―1x 2=2x (x 2)(x 2)―1x 2⋯⋯第一步=2x (x 2)(x 2)―x 2(x 2)(x 2)⋯⋯第二步=2x x2(x2)(x2)⋯⋯第三步=x2(x2)(x2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .思路引领:(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.解:(1)原式===(2)2xx24―1x2=2x(x2)(x2)―1x2=2x(x2)(x2)―x2(x2)(x2)=2x(x2) (x2)(x2)=2x x2 (x2)(x2)=x2(x2)(x2)=1x2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x2.故答案为:因式分解,三,1x2.总结提升:此题考查了二次根式的混合运算,因式分解﹣运用公式法,以及分式的加减法,熟练掌握运算法则是解本题的关键.。
(完整word版)二次根式易错题难题

1、当a时,有意义
2、计算:
3、计算:
4、计算:(a>0,b〉0,c〉0)
5、计算:==
6、
7、
则
2006个3 2006个4
8、
9、观察以下各式:
利用以上规律计算:
10、已知
一、选择题
11、若 有意义,则( )
A、B、C、D、
12、化简的结果是( )
A、0 B、2a-4 C、4 D、4-2a
13、能使等式成立的条件是( )
A、x≥0 B、x≥3 C、x〉3 D、x〉3或x〈0
14、下列各式中,是最简二次根式的是( )ቤተ መጻሕፍቲ ባይዱ
A、 B、 C、 D、
15、已知,那么的值是( )
A、1 B、-1 C、±1 D、4
16、如果,则a和b的关系是()
A、a≤bB、a〈bC、a≥bD、a>b
17、已知xy>0,化简二次根式的正确结果为()
27、①已知;②已知x=
求x2—4x—6的值
28、已知Rt△ABC中,∠ACB=90°,AC=2 cm,
BC= cm,求AB上的高CD长度
29、计算:
30、已知,求①;②的值
A、B、C、D、
18、如图,Rt△AMC中,∠C=90°,
∠AMC=30°,AM∥BN,MN=2cm,
BC=1cm,则AC的长度为()
A、2 cmB、3cm
C、3.2cmD、
19、下列说法正确的个数是()
①2的平方根是;②是同类二次根式;③
互为倒数;④
A、1 B、2 C、3 D、4
20、下列四个算式,其中一定成立的是()
①;②;③
④
专题01 二次根式重难点题型分类(解析版)八年级数学下册重难点题型分类高分必刷题(人教版)

专题01二次根式重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《二次根式》这一章的四类重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含四类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一二次根式的双重非负性第一层非负性:被开方数0≥1.(2022春·a 的取值范围是()A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2【详解】解:由题意得,a 10,a 2+≥≠,解得,a ≥-1且a ≠2,故答案为:C.2.(2019·1有意义时,x 应满足的条件是______.3.(青竹湖)函数x x y 2-=中,自变量x 的取值范围是.【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(2022秋·山东济南)若a ,b 都是实数,b ﹣2,则a b的值为_____.5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是.【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11,①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6.(2022春·21a -,那么()A .12a <B .12a ≤C .12a >D .12a ≥7.(2018·广东广州)如图,数轴上点A 表示的数为a ,化简:a=_____.8.(2021·湖南娄底)2,5,m )A .210m -B .102m -C .10D .49.(2020·四川攀枝花)实数a 、b +-().A .2-B .0C .2a -D .2b10.(2021春·山东淄博)已知实数a ,b ,c 在数轴上的位置如图所示,化简:||a【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.则原式()a a c c a b a b =-++---=-.11.(2021春·全国)探究题:=_,=,=,=,=,=,根据计算结果,回答:(1a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:①若x<2=;=;(3)若a,b,c题型二二次根式的乘除12.(2021春·=____.14.(2022春·=____._____.15.(2022春·16.(2023春·()B C D.A19.(2021秋·八年级课时练习)计算:-⋅;(1(-,(2(15)(20.(2022秋·八年级课时练习)计算:21.(2021秋·上海虹口)计算:(1(;(2)0,0)a b ÷>>题型三最简二次根式22.(2022春·天津)下列二次根式中,最简二次根式是()A .2个B .3个C .4个D .5个不是最简二次根式,不符合题意,综上,是最简二次根式的有24.(2022秋·a的值是()A.2B.3C.4D.5m=__________.25.(2020秋·题型四二次根式的混合运算26.(2021春·全国)计算:(1)1|3|-+---(2)27.(2021春·新疆乌鲁木齐)计算:28.(2021春·全国)(1)﹣529.(2022秋·陕西西安)已知a =2b =2(1)a 2﹣3ab +b 2;(2)(a +1)(b +1).30.(2021秋·上海)已知3x =+求:2267x x x x ++++的值.31.(雅实)已知a =b =,求值:(1)a b +;(2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b ab ab ab++-==(2)原式=(a b)2ab +=⨯=32.(广益)先化简,再求值:322222222a b a b a ab a ab b a b +-÷++-,其中2a =-2b =+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学
姓名
1、
2、
3、
4、
5、
1、
3、
5、
6、
7、
8、
年级
特尔教育一对一个性化辅导讲义
任课教师:
性别
二次根式易错题及重难点题练习
、选择题
计算
A. 使式子
授课时间:2014年9月日(星期)
总课时
2008 2009
.7 2 2 . 7 2、2,正确的结果是(
2 ...2 7 B. ,7 2、、2 C.1 D.
x(x 5)
2有意义的未知数x有()个.
0 B . 1 C . 2 D .无数
-2
x 1成立的条件是
■ 7 2「2
B. x A -1 C . -1 w x w 1
已知实数a在数轴上的位置如图所示,则化简
A. 1
B. 1
C. 1 2a
D. 2a 如图,数轴上A, B两点表示的数分别为
表示的数为(
A. 2 3
C. 2 3
二、填空题
(2 .5)2
计算:327 4 1 .3
2、
4、
|
1
a |、a2的结果为(
a
---- 1i ------- >
1 0 1
1和•、3,点B关于点A的对称点为C,贝惊C所
、、252
242
v a2x 2abx b2x =
丄中根号外面的因式移到根号内的结果是
a
a j字1化简二次根式号后的结果是
若J m —1- 有意义,则m的取值范围是
m 1
9、 x 2
2X 1有意义,则x 的取值范围是
10、 当 x < 0 时,
11 .比较大小:—
18 0的两个根是等腰三角形的底和腰,则这个三角形的周长为
14、在小明大学同学毕业五周年的聚会上,每两个人都握了一次手,所有人共握手 人参加这次聚会,则可列出方程 三.计算题 1、
4、若最简根式
3a b
4a 3b 与根式 2ab 2 b 3 6b 2是同类二次根式,求 a 、b 的值.
5、若 |1995-a | +、、a 2000 =a ,求 a-19952
的值.
6、已知 a=、3-1,求 a 3+2a 2
-a 的值
7、已知x 2
3x 1
0,求 x 2
E 2的值。
化简1 X
v x 2
的结果是
12 .方程 X 2 9x 13. a — a 1
的有理化因式是
105次,设有X
3m 2 3n 2 亠
2a 2
如图:A ,B , C 三点表示的数分别为 a , b , c 。
C AO B
利用图形化简: a b l
-3
(a>0)
8.已知
9 X 9 X
,且x 为偶数,求(
V x 6 JX ~6
的
值.
1
___ +••• + 9.计算(2.5 + 1) (—1
— + + —— ■ <2 忑 U 3
V 3
10.当 x= 1-、2 时,求
元二次方程综合问题 1•、已知X
i
、x
2是一元
).
、99 .100
.次方程4kx 2
(1)是否存在实数k ,使
在,请说明理由。
(2分)
X 1
X 2 (2)求使
X
2
X 1
4kx (2x i X 2)(X 1
2x_x 2
X 2
X x 2
a
l +—1
2 2
a ■,- x k 1
0的两个实数根。
2x 2)
3
2成立?若存在, —的值 2
a
求出 k
的值;若不存
2
的值为整数的实数 k 的整数值。
解析:(1)由k 丰0和0 k v 0
k 1
T X i X 2
1, X i X 2
------
4k
••• (2X 1 X 2)( X -I
2X 2 ) 2(X 1
,9出,
• k 一,而 k v 0 5
•••不存在。
(2) X i
x
2
X 2 X i
X 2)2
9X 1X 2
k 9 4k
2
= (X i X 2)2
X 1X 2
数,k 1只能取土 1、土 •••存在整数k 的值为—2、 练习:已知关于x 的方程(k 1)x 2 (1) 若方程有两个不相等的实数根, (2) 当方程有两个相等的实数根时, 正整数).
2、土 —
3、
2kx 求
4
4
,要使
k 1
的值为整数,而k 为整
4,又 k v 0 —5 k 3
0.
k 的取值范围; 求关于y 的方程y 2 (a
4k )y a 1
0的整数根(a 为
2、应用题
1、如图所示,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的道
路,使其中两条与 AB平行,另一条与 AD平行,其余部分种草.若使每一块草坪的面积为144 m2, 求道路的宽度.
解得a 1 2.7 a2 2.8
当a 2.7 时3 a 0.3
当a 2.8 时3 a 0.2
(3)因此应将每千克小型西瓜的售价降低0.2或0.3元
练习题
1、某商场将进货价为 30元的台灯以40元出售,平均每月能售出 600个,调查表明,这种台灯的售
价每上涨 1元,其销量就减少10个,为了实现平均每月10000元的销售利润,且物价部门规定售价不得超过 60元,那么这种台灯的售价应定位多少元?这时应进台灯多少个?
2、某商店以2400元购进某种盒装茶叶,第一个月每盒按进价提高20%作为售价,售出50
盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶,在整个买卖过程中盈利350元,求每盒茶叶的进价。
3、某商店以16元的价格进了一批钢笔,若以20元售出,每周可以卖出 200支,而每上涨
一元,就少卖出10支,若商店希望从该笔中每周得到利润达1350元,求该种钢笔应上涨多少元?
此时能售出多少支笔?
5•生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了 182 件,这个小组共有多少名同学?
6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?
7•参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?
教学组长签字:。