高数上复习题1-6章
高数上册第一章到第六章

习题4—2
2(1)(3)(6)(9)(12)(15)(18)(21)(24)(26)(30)(33)(36)(37)(44)
第三节分部积分法
习题4—3
(1)(2)(3)(4)(6)(11)(16)(17)(20)(24)
第四节有理函数的积分(数一、数二)
习题4—4
1,3,8,11,14,17,21,22
第五节函数的微分
四、微分在近似计算中的应用(不要求)
习题2—5
2,3(1)(4),4(1)(3)(5)(7)
总复习二
1,2,3,6,7,8(1)(3)(5),9,11,12(数一、数二),13(数一、数二)
第三章微分中值定理与导数的应用
第一节微分中值定理
习题3—1
5,6,7,8,9,10,11,12,14,15
第五节积分表的使用(不要求)
总复习四
1,2,5,8,10,15,16,19,21,23,33,35,38
第五章定积分
第一节定积分的概念与性质
三、定积分的近似计算(不要求)
习题5—1
2,3(3)(4),7,11,12
第二节微积分基本公式
习题5—2
2,3,4,5,6(2)(6)(8)(12),8,9,10,12,13
第三节定积分的换元法和分部积分法
习题5—3
1(9)(15)(21)(24),2,5,6,7(7)(10)(13)
第四节反常积分
习题5—4
1(2)(5)(7),2
第五节反常积分的审敛法 函数(不要求)
总复习五
1,2(1)(2)(3),3,4,5,6,8,10(1)(4)(8),11,12,14
第六章定积分的应用
高等数学I(1)复习题

一、填空题1.函数)(x f 在点0x 处极限)(lim 0x f x x →存在是)(x f 在点0x 处连续的_____条件.2.)(x f 在点0x 处连续是函数)(x f 在点0x 处可导的______条件. 3.)(x f 在点0x 处可导是函数)(x f 在点0x 处连续的______条件.4.x =3是函数22)3()3sin()(--=x x x f 的_______(可去、跳跃、无穷)间断点.5.x =3是函数2)3()3sin()(--=x x x f 的_______(可去、跳跃、无穷)间断点. 6.x =2是函数)2()2tan()(--=x x x f 的_______(可去、跳跃、无穷)间断点.二计算下列极限 1.30sin sin tan limx x x x -→. 2.20)1(sin tan lim --→x x e x x x . 3.)1ln(sin tan lim 20x x xx x +-→. 4.)1(ln sin tan lim 20x x x x x +-→5.232)11(lim n n n +∞→ 6.nn n 3)111(lim ++∞→ 7.n n n 5)11(lim +∞→ 8.242)11(lim n n n -∞→ 9.13)111(lim -∞→--n n n 10.23)11(lim -∞→-n n n第二章练习题1.7sec sin ln 2-+=x x x x y ,求y ' 2.⎰++=21cos ln sin xdx x x x x y 求y '.3.方程y xe y=+1确定函数)(x y y =,求=x dxdy.4.方程0sin cos 52=-++y y y x 确定函数)(x y y =,求dx dy .5.方程0sin 21=+-y y xe y确定函数)(x y y =,求dy dx dy 及.一、利用罗比达法则求极限 1.30sin limx x x x -→ 2.30sin tan limx xx x -→3.)1(ln sin tan lim 20x x x x x +-→ 4.20)(arcsin 1sin lim x x e x x --→5.)3ln()1ln(lim 2x x x +++∞→ 6.)3ln()1ln(lim 7x x x +++∞→二、求函数251 +=-xy 的凹凸区间和拐点。
高数第1-6章

释 疑 解 难(第一章)一、证明:若0lim ≠=∞→A a n n ,则当n 充分大时,有2A a n >。
证:因为0lim ≠=∞→A a n n ,所以对2A =ε,N ∃,当N n >,2A A a n <-,即22A A a A A n +<<-若0>A ,则2A a n >若0<A ,则2Aa n <都有2A a n >。
二、函数x x y cos =在),(+∞-∞内是否有界?又当+∞→x 时,这个函数是否为无穷大,为什么? 解:⑴ 无界。
M ∀,取πn x 20=,M n >,则M n n n x y >==πππ22cos 2)(0。
⑵ 当+∞→x 时,函数x x y cos =不是无穷大。
因为不论X 取得多么大,取X n >有X n x >+=220ππ,使M x y <=0)(0。
三、设)(x f 在]1,0[上连续,)1()0(f f =,证明:]43,0[0∈∃x ,使)41()(00+=x f x f 。
证:令)41()()(+-=x f x f x F因为)(x f 在]1,0[上连续,所以)(x F 在]43,0[上连续。
)41()0()0(f f F -=)21()41()41(f f F -= )43()21()21(f f F -= )0()43()1()43()43(f f f f F -=-= 则0)43()21()41()0(=+++F F F F⑴ 若)0(F 、)41(F 、)21(F 、)43(F 全等于0,则取]43,0[410∈=x 即可;⑵若)0(F 、)41(F 、)21(F 、)43(F 不全为0,这四个函数值中就一定有正有负,在取得正、负函数值之间,]43,0[0∈∃x ,使0)(0=x F ,即)41()(00+=x f x f 。
四、求极限xx x x e cos 1120)sin 1(lim -→+。
高等数学(上)复习题

高等数学〔上〕复习题第一章 函数与极限一、单项选择题1.函数y=5-x +ln(x -1)的定义域是( )A. (0,5)B. (1,5)C. (1,5)D. (1,+∞) 2.函数f(x)=21xx -的定义域是〔 〕A.〔-∞,+∞〕B.〔0,1〕C.〔-1,0〕D.〔-1,1〕3.函数45)(2+-=x x x f 的定义域为 〔 〕A. (]1,∞-B. [)+∞,4C. (][)+∞⋃∞-,41,D. ()()+∞⋃∞-,41, 4.函数y=x 1-+arccos21x +的定义域是( ) A. x<1 B.-3≤x ≤1C. (-3,1)D.{x|x<1}∩{x|-3≤x ≤1}5.函数y=2x xln -的定义域是〔 〕A. (-∞,0)B. (2,+∞)C. (0,2)D. (-∞,0) ∪ (2,+∞)6.以下函数中为奇函数的是〔 〕A.y=cos 3xB.y=x 2+sinxC.y=ln(x 2+x 4) D.y=1e 1e x x +-7.函数f(x)=1+xsin2x 是〔 〕 A.奇函数B.偶函数C.有界函数D.非奇非偶函数8.函数y=2a a xx -+(a>0,a ≠1)是〔 〕A.奇函数 B.非奇非偶函数 C.偶函数 D.奇偶性取决于a 的取值9.当x →0时,以下无穷小量与x 为等价无穷小的是〔 〕A. sin 2xB. ln(1+2x)C. xsin x 1D.x 1x 1--+10.当0x →时,2x+x 2sinx1是x 的〔 〕 A.等价无穷小 C.高阶无穷小11.设函数)(x f y =在0x 处可导,)()(00x f h x f y -+=∆,则当0→h 时,必有 A.dy 是h 的等价无穷小; B.dy 是h 的高阶无穷小;C.dy y -∆是比h 高阶的无穷小;D.)(x f dy y -∆是h 的同阶无穷小;12.设2)(,1)(2x x g ex f x =-=-,则当0→x 时〔 〕A.)(x f 是)(x g 的高阶无穷小 B.)(x f 是)(x g 的低阶无穷小C.)(x f 是)(x g 的等价无穷小 D.)(x f 与)(x g 是同阶但非等价无穷小 13.以下极限正确的选项是( )A.11sinlim =∞→x x x B.11sin lim 0=→x x x ;C.1sin lim =∞→x x x ;D.12sin lim 0=→xx x ; 14.=⎪⎭⎫ ⎝⎛-+∞→2xx x 11lim 〔 〕 2B.21e -2 D.21e-15.nn 211(lim +∞→〕=〔 〕 A. 0 B. 1 C.不存在 D. 2 16.=+∞→xx x)21(lim 〔 〕 A. e -2 B. e -1 C. e 2 D.e 17.xx x 21sin3lim ⋅∞→=( ) A.∞ B. 0 C. 23 D.32 18.=→2xtan3xlim 0x 〔 〕A.∞B.23C.019.=-ππ→xxsin lim x ( ).B.∞C.-1D.-∞20.=-+-→xx x x x 32112lim 〔 〕 A.21B. 0C. 1D. ∞21.limsin2xxx →∞等于( )A. 0B. 1C.12D. 223.xmxx sin lim0→ (m 为常数) 等于 ( )A.0B. 1C.m1D. m 24. hx )h x (lim 320h -+→ =( )。
高数(同济)第五版习题答案1-6

习题1-61. 计算下列极限:(1)xx x ωsin lim 0→; 解 ωωωωω==→→x x xx x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x . (4)x x x cot lim 0→; 解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→x x x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n =⋅=∞→∞→22sin lim 2sin 2lim . 2. 计算下列极限:(1)x x x 10)1(lim -→;解 {}11)(10)1()(1010)](1[lim )](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x . (2)x x x 10)21(lim +→; 解 []22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 []222)11(lim )1(lim e xx x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 解4. 利用极限存在准则证明: (1)111lim =+∞→nn ; 证明 因为nn 11111+<+<, 而 11lim =∞→n 且1)11(lim =+∞→n n , 由极限存在准则I, 111lim =+∞→nn . (2)()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 ()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+, 222++, ⋅ ⋅ ⋅ 的极限存在; 证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n nn n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增. 因为数列{x n }单调增加有上界, 所以此数列是有极限的.(4)11lim 0=+→n x x ; 证明 当|x |≤1时, 则有1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n ,从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 00=+=-→→x x x x , 根据夹逼准则, 有11lim 0=+→n x x . (5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-xx x . 又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→x x x .。
高数极限1-6

∴ ( 2)成立.
f ( x ) A A + α A Bα − Aβ − = Q B α − A β → 0. − = g ( x ) B B + β B B( B + β )
又 Q β → 0, B ≠ 0, ∃ δ > 0, 当0 < x − x 0 < δ时,
1 1 B β < , ∴ B+β ≥ B − β > B − B = B 2 2 2
一、极限运算法则: 极限运算法则
定理1 在同一过程中,有限个无穷小的代数和仍是 定理 在同一过程中 有限个无穷小的代数和仍是 无穷小. 无穷小 注意 无穷多个无穷小的代数和未必是无穷小. 无穷多个无穷小的代数和未必是无穷小.
1 是无穷小, 例如, n → ∞时, 是无穷小, n
1 但 n个 之 和 为 1 不 是 无 穷 小 . n
u →a
则复合函数 f [φ ( x)] 当 x → x0 时的极限也存在,且
x → x0
lim f [φ ( x)] = lim f (u ) = A.
u →a
意义: 意义:x → 源自0lim f [ϕ ( x )]
令u = ϕ(x)
a = limϕ(x)
x→x0
lim f ( u)
u→a →
二、求极限方法举例
xm − xn 7、 lim m x →1 x + xn − 2
练习题答案
-5; 一、1、-5; 5、 5、0; 二、1、2; 1 5、 5、 ; 2 2、 2、3; 6、 6、0; 2、 2、 2 x ; 6、 6、0; 3、 3、2;
1 7、 7、 ; 2 3、-1; 3、-1; m−n 7、 7、 . m+n 1 4、 4、 ; 5 3 30 8、 8、( ) . 2 4、-2; 4、-2 ;
高等数学复习练习题附答案

第一章自测题一、填空题(每题 3 分,共 18 分)sin x tan x1. lim.x 0 ln 12x32.3x1x. lim2x 1x x23.已知 lim 2x2ax b3,此中为 a,b 常数,则a, b.x1x14.若 f x sin 2x x e2 ax 1, x0 在,上连续,则 a.a,x05.曲线 f ( x)x1的水平渐近线是,铅直渐近线是.x24x 316.曲线y2x 1 e x的斜渐近线方程为.二、单项选择题(每题 3 分,共 18 分)1.“对随意给定的0,1,总存在整数 N ,当 n N 时,恒有 x n a 2 ”是数列 x n收敛于 a 的.A. 充足条件但非必需条件B.必需条件但非充足条件C. 充足必需条件D.既非充足也非必需条件2x,x022.设 g x x ,x 0则 g f x.x2,x , f x0x,x02 x2 , x 0B.2 x2 , x 0C.2 x2 , x 0D.2 x2 , x 0A.2 x, x 0 2 x, x 0 2 x, x 02 x, x 03.以下各式中正确的选项是.1xA.lim1e x 0x1xC. lim1ex x1xB.lim1ex 0x1x D.lim1e-1x x4.设x0 时,e tan x1 与x n是等价无量小,则正整数n.A. 1B. 2C. 3D. 4优选文库1 e5. 曲线 ye1x 2x 2.A. 没有渐近线B.仅有水平渐近线C. 仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.以下函数在给定区间上无界的是.A.1sin x, x(0,1]B.1sin x, x(0, )xxC.11 x(0,1] D.1 x(0, )sin,x sin ,xxx三、求以下极限(每题5 分,共 35 分)1. lim x 2x 2x 24x1 312. limx e 2 xxx 013. lim 12n 3n nnx 2sin14. limxx2x 2 15. 设函数 f xa xa 0, a 1 ,求 lim12 ln f 1 f 2 L f n .nn优选文库12 e x sin x6. lim4xx 01 e x7. lim1cosx x 01cos x四、确立以下极限中含有的参数(每题5 分,共 10 分)1. limax 22x b 2x 1x2x22. lim xax 2 bx 2 1xa xb x五、议论函数 f ( x)x , x在 x 0 处的连续性, 若(a 0,b 0, a 1,b 1)0,x不连续,指出该中断点的种类. (此题 6 分)优选文库sin t 六、设 f ( x)limt x sin xxsin tsin x,求 f ( x) 的中断点并判断种类.(此题7分)七、设 f ( x) 在 [0,1]上连续,且 f (0) f (1).证明:必定存在一点0,1,使得2f ( ) f1. (此题6分)2第二章自测题一、填空题(每题 3 分,共 18 分)1.设2.设4.设5.设f (x) 在 x0可导,且 f ( x0 ) 0, f ( x0 )f1cos x2,则 f ( x). 3.xy f (e sin x ) ,此中 f ( x) 可导,则 dyy1.arccos x ,则 y21,则 lim hf1.x0h hx.1dx dx2.6. 曲线xy 1 x sin y 在点1 ,的切线方程为.二、单项选择题(每题 3 分,共 15 分)1. 以下函数中,在x0 处可导的是.2.设 y f (x) 在 x0处可导,且 f ( x0 )2,则lim f ( x02Vx) f ( x0Vx).VxV x0A. 6B.6C.1D.1 663.设函数 f ( x) 在区间 (,) 内有定义,若当 x(,) 时恒有 | f ( x) |x2,则 x0 是f ( x) 的.A. 中断点B.连续而不行导的点C. 可导的点,且 f (0)0D.可导的点,且 f (0)04.sin x, x00处 f ( x) 的导数.设 f ( x)x,则在 xx2 ,0A. 0B.1C.2D.不存在5.设函数 f (u) 可导, y f (x2 ) 当自变量 x 在x 1 处获得增量 Vx时,相应的函数增量 Vy 的线性主部为,则 f(1).A. 1B.C.1D.三、解答题(共67 分)1.求以下函数的导数(每题 4 分,共16 分)(1) y ln e x 1 e2 x(2) y x 111 xa a x(3)y x a a x a a(4)y (sin x)cos x2. 求以下函数的微分(每题 4 分,共 12 分)(1) y x ln x sin x2cot21(2)y e x(3) y x21x 1x3. 求以下函数的二阶导数(每题 5 分,共 10 分)(1)y cos2x ln x1 x(2)y1 x4. 设 f ( x)e x , x 1在 x 1可导,试求 a 与 b . (此题 6分)ax b, x15. 设 f ( x)sin x , x 0 ,求 f ' ( x) . (此题 6 分)ln(1 x), x 026. 设函数 yy( x) 由方程 lnxxy 2 1所确立,求 dy . (此题 6 分)y7. 设 yx a ln tan tcost2y(x) 由参数方程2,求 dy , d y 2 . (此题 6 分)y a sin tdx dxx1 tt 38. 求曲线在 t1处的切线方程和法线方程 . (此题 5 分)3y 1 2t 22t第三章 自测题一、填空题(每题 3 分,共 15 分)3若 a0, b0 均为常数,则 lim a x b x x1..2x02.lim11.x2x tan xx 03.lim arctan x x.3x 0ln(1 2x )4.曲线 y e x2的凹区间,凸区间为.5.若 f ( x)xe x,则 f ( n ) ( x) 在点 x处获得极小值 .二、单项选择题(每题 3 分,共 12 分)1.设 a,b 为方程 f ( x)0 的两根, f ( x) 在 [ a,b] 上连续, (a, b) 内可导,则 f (x)0 在(a,b) 内.A. 只有一个实根B.起码有一个实根C. 没有实根D.起码有两个实根2.设 f (x) 在 x0处连续,在x0的某去心邻域内可导,且x x0时, ( x x0 ) f ( x)0 ,则f ( x0 ) 是.A. 极小值B.极大值C. x0为f ( x)的驻点D.x0不是 f ( x) 的极值点3.设 f (x) 拥有二阶连续导数,且f(0)0 , lim f( x) 1 ,则.x 0| x |A. f (0)是 f (x) 的极大值B. f (0)是 f (x) 的极小值C.(0, f (0))是曲线的拐点D.f(0) 不是 f (x) 的极值, (0, f (0))不是曲线的拐点4.设 f (x) 连续,且 f(0)0 ,则0,使.A. f ( x)在(0, )内单一增添 .B. f ( x) 在 (,0) 内单一减少.C.x(0,) ,有 f (x) f (0)D.x (,0) ,有 f ( x) f (0) .三、解答题 ( 共 73 分)1. 已知函数f ( x)在[0,1]上连续,(0,1)内可导,且f (1)0 ,优选文库证明在 (0,1) 内起码存在一点f ( )使得 f ( ). (此题 6 分)tan2. 证明以下不等式(每题 9 分,共 18 分)(1)当 0a b 时,b alnbb a .ba a(2)当 0 x时,2x sin x x .23. 求以下函数的极限(每题8 分,共 24 分)( 1) lim e x e x2xx 0xsin x优选文库12( 2)lim(cos x)sin xx 01( 3)lim(1 x) x exx 04. 求以下函数的极值(每题 6 分,共 12 分)12( 1)f ( x) x3(1 x)3x2x , x0( 2)f ( x)x 1 , x05. 求y2x. (此题 6 分)的极值点、单一区间、凹凸区间和拐点ln x16. 证明方程x ln x0 只有一个实根.(此题7分)e第一章自测题一、填空题(每题 3 分,共 18 分)1. 2.3.4.5.水平渐近线是,铅直渐近线是6.二、单项选择题(每题 3 分,共 18分)1. C2. D3. D4. A5. D 6. C三、求以下极限(每题 5 分,共 35分)解: 1.. 2.. 3.,又. 4.. 5.. 6.,,因此,原式.7..四、确立以下极限中含有的参数(每题 5 分,共 10 分)解: 1.据题意设,则,令,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为六、解:,而,故,的间断点,,故为的第一类(可去)中断点,均为的第二类中断点.七、证明:设,明显在而,,,故由零点定理知:必定存在一点,使,即优选文库第二章自测题一、填空题(每题 3 分,共 18 分)1. 2.3. 4.5.6.或二、单项选择题(每题 3 分,共 15 分)1. D2. A3. C4. D5. D三、解答题(共67 分)解: 1.(1).(2).(3).(4)两边取对数得,两边求导数得,.2. 求以下函数的微分(每题 4 分,共 12 分)(1).(2).(3).优选文库3. 求以下函数的二阶导数(每题 5 分,共 10 分)(1).(2),.4.首先在处连续,故,故,。
高数各章练习题上册

)
)
(B) f ( x) − g ( x) 在 x0 点处间断 (D) f ( x) + g ( x) 在 x0 点处可能连续。 )
(2)设数列 xn 与 yn 满足 lim xn yn = 0 ,则下列断言正确的是( (A)若 xn 发散,则 yn 必发散。 (C)若 xn 有界,则 yn 必为无穷小。 (3)已知 lim
三、 完成下列各题: 1、设 f ( x) 在 [0,1] 上连续。且 0 < f ( x) < 1 ,则必存在 ξ ∈ (0,1) 使 f (ξ ) = ξ 。
(ln x) x / ,求 y x ln x ⎧ ax + b, x > 1 3、确定 a, b 使 f ( x ) = ⎨ ⎩ 0 , x ≤1
2 3
7.若 f ( x ) 在[a,b]上连续、在(a,b)内可导,则 f ( x ) 在[a,b]上单调减小的充分(非必要) 条件是__________________________________. 8. 若 f ( x ) 在[a,b]上连续、 在(a,b)内二阶可导且_______________________________, 则
五、若 lim
x→2
x 2 + ax + b = 2, x2 − x − 2
求 a , b 的值
六、设 x1 = 1 , xn = 1 + 七、设 f ( x) = lim
xn −1 ,证明 lim xn 存在,并求 lim xn n →∞ n →∞ 1 + xn −1
n →∞
1− x ,讨论 f ( x) 在其定义域内的连续性,若有间断点,指出其类型。 1 + x2n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数上
第一章 复习题
1. 计算下列极限: (1)2)1( 321lim n
n n -+⋅⋅⋅+++∞→;
(2)35)3)(2)(1(lim n
n n n n +++∞→;
(3))1311(lim 3
1x x x ---→;
(4)x
x x 1sin lim 20→;
(5)x
x x arctan lim ∞→.
(6)145lim
1---→x x x x ;
(7))(lim 22x x x x x --++∞→.
(8)x
x x sin ln lim 0→;
(9)2)11(lim x
x x +∞→;
(10))1(lim 2x x x x -++∞
→;
(11)1)1
232(lim +∞→++x x x x ;
(12)30sin tan lim x
x x x -
→;
2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:
(1)23122+--=x x x y , x =1, x =2;
(2)x x
y tan =, x =k , 2
π
π+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);
3. 设函数⎩⎨⎧≥+<=0
)(x x a x e x f x
应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?
4. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b .
5. 证明()11 2111lim 222=++⋅⋅⋅++++∞
→n
n n n n .
6. 已知f (x )=⎩
⎨⎧≥<0 0 sin x x x x , 求f '(x ) .
第二章 复习题
1. 求下列函数的导数:
(1) y =ln(1+x 2);
(2) y =sin 2x ;
(3)22x a y -=;
(4)x
x y ln 1ln 1+-=; (5)x
x y 2sin =; (6)x y arcsin
=; (7))ln(22x a x y ++
=;
(8)x x y +-=11arcsin
.
(9)x x y -+=11arctan ;
(10)x x x y tan ln cos 2
tan ln ⋅-=;
(11))1ln(2x x e e y ++
=;
2. 求下列函数的n 阶导数的一般表达式:
(1) y =(sinx)^n
(2) y =x e x .
3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dx
y d
.
4.
求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d :
5. 求下列函数的微分:
(1)21arcsin x y -=;
(3) y =tan 2(1+2x 2);
(3)2211arctan x
x
y +-=;
6. 讨论函数
⎪⎩⎪⎨⎧=≠=0
00 1sin )(x x x x x f 在x =0处的连续性与可导性.
第三章 复习题
1.设F(x)=(x-1) 2f(x),其中f(x)在[1,2]上具有二阶导数且f(2)=2,证明:至少存在一点ξ∈(1,2),使得F ”(ξ)=0.
2.设b>a>0,证明:(b-a)/(1+b 2) <arctan b –arctan a<(b-a)/(1+a 2).
3. 用洛必达法则求下列极限: (1)x e e x x x sin lim 0-→-;
(2)22)2(sin ln lim x x x -→ππ;
(3)x x x x cos sec )1ln(lim 20-+→;
4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;
5.判定曲线y=x arctan x的凹凸性:
6.求下列函数图形的拐点及凹或凸的区间: (1)y=xe-x (2) y=ln(x2+1);
7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使
f (ξ)+ξf '(ξ)=0.
第四、五、六章 复习题
1. 求下列不定积分:
(1)⎰dx e x x 3;
(2)⎰+++dx x x x 1
133224;
(3)⎰dt t t sin
;
(4)⎰
-+dx e e x x 1;
(5)⎰
--dx x x 2491;
(6)⎰
-+dx x x )
2)(1(1;.
(8)⎰
-dx x x 92;
(9) ⎰-xdx e x cos ;
(10)⎰dx x 2)(arcsin ;
(11)⎰xdx e x 2sin .
(12)dx x x )1(12+⎰
;
2. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=x a dt t f a x x F )(1)(.
证明在(a , b )内有F '(x )≤0.
3. 计算下列定积分:
(1)⎰-πθθ03)sin 1(d ; (2)dx x ⎰-2
022;
4. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的
图形的面积.
5.计算曲线y=sin x(0≤x≤π)和x轴所围成的图形绕y轴旋转所得旋转体的体积.
.。