高数第一章知识点总结

合集下载

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章1.集合的概念:集合是由确定的、互不相同的对象组成的一个整体。

集合中的对象称为元素,用大写字母A、B等表示集合,用小写字母a、b等表示元素。

集合中的元素无序,不重复。

2.集合的运算:(1)并集:表示由属于任一集合的元素组成的新集合,记作A∪B。

(2)交集:表示同时属于所有集合的元素组成的新集合,记作A∩B。

(3)差集:表示属于一个集合但不属于另一个集合的元素组成的新集合,记作A-B。

(4)互斥:两个集合的交集为空集,即A∩B=∅。

(5)补集:表示全集中不属于一些集合的所有元素的集合,记作A'。

3.集合之间的关系:(1)包含关系:若集合A的所有元素都属于集合B,则称集合A包含于集合B,记作A⊆B。

(2)相等关系:若集合A和集合B的元素完全相同,则称集合A等于集合B,记作A=B。

(3)真包含关系:若集合A包含于集合B,并且集合A不等于集合B,则称集合A真包含于集合B,记作A⊂B。

4.映射的概念:(1)映射:设有两个非空集合A和B,如果存在一种对应关系,使得A 中的每个元素对应B中的唯一元素,则称这种对应关系为映射。

(2)函数:映射的另一种称呼,表示自变量和因变量之间的关系。

通常用f(x)表示函数,其中x为自变量,f(x)为相应的因变量。

5.映射的性质:(1)定义域和值域:映射的定义域是指所有自变量的集合,值域是指所有因变量的集合。

(2)单射:每个自变量只对应唯一的因变量。

(3)满射:每个因变量都有对应的自变量。

(4)一一对应:既是单射又是满射的映射。

(5)复合映射:将两个映射结合起来形成一个新的映射,称为复合映射。

总结:本章主要阐述了集合的基本概念、集合的运算、集合之间的关系和映射的概念及其性质。

理解这些基本概念对于后续学习高等数学的内容具有重要的指导意义,也为我们建立起了抽象数学思维的基础。

在学习中,我们需要牢记集合的运算规则和映射的性质,灵活运用,为数学的进一步学习打下坚实的基础。

高数重要知识点

高数重要知识点

高等数学上册重要知识点 第一章 函数与极限一。

函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x ) = 0[)(x g ],称g(x)是比f (x)低阶的无穷小.(2)l ≠ 0,称f (x )与g (x )是同阶无穷小.(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n nn nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x(3))()(lim 0x F x f x x ''→存在(或为无穷大)这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

高数第一章 知识点总结

高数第一章 知识点总结

式中有多个参数,需进一步从所给极限中挖掘信息,获得额外关系式。特别地,
① 分段函数在分段点的极限: lim f (x) = A ⇔ lim f (x) = A = lim f (x) ;
x → x0
x → x0−
x → x0+
② 设 lim f (x) = A ≠ 0 ,则 lim g(x) = ∞ ⇔ lim f (x) = ∞ ,且两者是同阶无穷大; g(x)

f
(
x)
在点
x0
有定义,但
lim
x→ x0
f
(x) 不存在;

f
(
x)
在点
x0
有定义,
lim
x→ x0
f (x) 存在,但 lim x → x0
f (x) ≠
f (x0 ) ;
4. 间断点的类型:
① 第一类间断点,左右极限都存在(包括:可去和跳跃间断点);
② 第二类间断点,左右极限至少一个不存在(包括:无穷、震荡和其他间断点);
aϕ(x) −1 ~ ϕ(x) ln a , (1+ ϕ(x))α −1 ~ αϕ(x)
此外
ϕ(x) − sinϕ(x) ~ ϕ3(x) , tanϕ(x) −ϕ(x) ~ ϕ3(x) , tanϕ(x) − sinϕ(x) ~ ϕ3(x) ,
6
3
2
arcsinϕ(x) −ϕ(x) ~ ϕ3(x) ,ϕ(x) − arctanϕ(x) ~ ϕ3(x)
往年考题: (12-13) 已知 lim a cos x + bx = 5 ,试确定待定常数 a 和 b 的值。
x→π sin x
6. 函数的连续性(间断点)

高数笔记大一上知识点汇总

高数笔记大一上知识点汇总

高数笔记大一上知识点汇总[第一章:数列与极限]1. 数列的概念数列是按照一定规律排列的一系列数的集合。

数列中的每个数称为该数列的项。

2. 数列的分类- 等差数列:数列中每两项之间的差值都相等。

- 等比数列:数列中每两项之间的比值都相等。

- 递推数列:数列中的每一项都能由前面的项通过某种规律推算得到。

3. 数列的通项公式在某些规律的数列中,我们可以找到一种公式来表示该数列的第n项,这个公式被称为数列的通项公式。

4. 数列的前n项和数列的前n项和表示数列从第一项到第n项的求和结果。

对于等差数列、等比数列和递推数列,都有相应的求和公式。

5. 极限的概念极限是数列或函数在某一点或无穷远处的趋势或趋近值。

6. 数列的极限- 数列的收敛:当数列的项越来越接近某个确定的数时,可以说该数列收敛于该数。

- 数列的发散:当数列的项没有接近某个确定的数的情况下,可以说该数列发散。

7. 极限的性质与运算法则- 极限唯一性:数列的极限只能有一个。

- 有界性:收敛的数列是有界的,即数列中的所有项都在某个范围内。

- 收敛数列的极限运算法则:对于两个收敛数列的和、差、积、商,其极限仍可通过相应的运算得到。

[第二章:导数与微分]1. 函数的极限函数的极限表示当自变量趋近于某个值时,函数值的趋势或趋近值。

2. 导数的定义导数表示函数在某一点处的变化率或斜率。

可以通过导数来刻画函数曲线在某一点的切线的斜率。

3. 导数的运算法则- 常数倍法则:导数与常数倍之间有简单的线性关系。

- 和差法则:导数的和的导数等于各个导数之和。

- 乘积法则:导数的乘积等于前一个导数乘以后一个函数的值再加上后一个导数乘以前一个函数的值。

- 商法则:导数的商等于分子的导数乘以分母的值减去分母的导数乘以分子的值,再除以分母的平方。

4. 高阶导数函数的导数也可以求导,得到的导函数称为原函数的高阶导数。

5. 隐函数与参数方程的求导对于隐函数和参数方程,我们可以使用求导法则来求取导数。

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有|x n -a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为a x n n =∞→lim 或xn →a (n →∞).(2)函数极限的定义设函数f (x )在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X )使得当x 满足不等式0<|x -x 0|<δ 时,(或当x X >时)恒有 |f (x )-A |<ε ,那么常数A 就叫做函数f (x )当0x x →(或x →∞)时的极限, 记为A x f x x =→)(lim 0或f (x )→A (当x →x 0).(或lim ()x f x A →∞=)类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作00lim ()(lim ())x x x x f x A f x A -+→→==或显然有0lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?==如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f xA ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限记作lim ()(lim ())x x f x A f x A →-∞→+∞==或显然有lim ()lim ()lim ())x x x f x A f x f x A →∞→-∞→+∞=?==2、极限的性质(1)唯一性若a x n n =∞→lim ,lim n n x b →∞=,则a b =若0()lim ()x x x f x A →∞→=0()lim ()x x x f x B →∞→=,则A B =(2)有界性(i )若a x n n =∞→lim ,则0M ?>使得对,n N+∈恒有n x M ≤(ii )若0lim ()x x f x A →=,则0M ?>当0:0x x x δ<-<时,有()f x M ≤(iii )若lim ()x f x A →∞=,则0,0M X ?>>当x X >时,有()f x M ≤(3)局部保号性(i )若a x n n =∞→lim 且0(0)a a ><或则N N +?∈,当n N >时,恒有0(0)n n x x ><或(ii )若0lim ()x x f xA →=,且0(0)A A ><或,则0δ?>当0:0x x x δ<-<时,有()0(()0)f x f x ><或3、极限存在的准则(i )夹逼准则给定数列{},{},{}n n n x y z若①0,n N +∈当0n n >时有n n n y x z ≤≤ ②lim lim n n n n y z a →∞→∞==,则lim n n x a →∞=给定函数(),(),()f x g x h x ,若①当00(,)x U x r ∈(或x X >)时,有()()()g x f x h x ≤≤ ②00()()lim ()lim ()x x x x x x g x h x A →∞→∞→→==,则0()lim ()x x x f x A →∞→=(ii )单调有界准则给定数列{}n x ,若①对n N +?∈有11()n n n n x x x x ++≤≥或②()M m ?使对n N +?∈有()n n x M x m ≤≥或则lim n n x →∞存在若()f x 在点0x 的左侧邻域(或右侧邻域)单调有界,则0lim ()x x f x -→(或0lim ()x x f x +→)存在4、极限的运算法则(1)若0()lim ()x x x f x A →∞→=,0()lim ()x x x g x B →∞→=则(i)0()lim [()()]x x x f x g x A B →∞→±=±(ii)0()lim [()()]x x x f x g x A B →∞→?=? (iii)0()()lim()x x x f x Ag x B→∞→=?(0B ≠)(2)设(i )00()lim ()x x u g x g x u →==且(ii )当0 0(,)x U x δ∈时0()g x u ≠(iii )0lim ()u u f u A →=则0lim [()]lim ()x x u u f g x f u A →→== 5、两个重要极限(1)0sin lim1x xx →=()0sin ()lim1()u x u x u x →=sin lim0x x x ∞→=,1lim sin 1x x x →∞=,01 lim sin 0x x x→=(2)1lim 1xx e x →∞?+= )()(1lim 1;()x u u x e u x →∞??+= ??1lim(1)xx x e→+=()()01()lim 1();v x x v v x e →+=6、无穷小量与无穷大量的概念(1)若0()lim ()0x x x x α→∞→=,即对0,0,εδ?>?>当0:0x x x δ<-<(或x X >)时有()x αε<,则称当0()()x x x x α→→∞或,无穷小量(2)若0()lim ()x x x f x →∞→=∞即对0,0(0),M X δ?>?>>或当0:0x x x δ<-<(或x X >)时有()f x M >则称当0()()x x x f x →→∞或,无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)00()()lim ()()(),lim()0x x x x x x f x A f x A x x αα→∞→∞→→=?=+=其中(2)00()()1lim ()0()0lim ()x x x x x x f x f x f x →∞→∞→→=≠?=∞()(3)00()()1lim ()lim0()x x x x x x g x g x →∞→∞→→=∞?= (4)0()lim ()0,x x x f x M →∞→=∞?>且当0:0x x x δ<-<(或x X >)时有()g x M ≤,则0()lim [()()]x x x f x g x →∞→+=∞(5)0()lim ()00,x x x f x M →∞→=?>且当0:0x x x δ<-<(或x X >)时有()g x M ≤,则0()lim [()()]0x x x f x g x →∞→?=(6)0()lim ()0(1,2,,)k x x x f x k n →∞→== 则01()lim()0,nkx k x x fx →∞=→=∑01()lim()0,nkx k x x fx →∞=→=∏8、无穷小量的比较000()()()lim ()0,lim ()0,lim ()0→∞→∞→∞→→→===x x x x x x x x x f x g x x α若(1)0()()lim 0,()x x x f x C g x →∞→=≠,则称当0()x x x →→∞或时,()f x 与()g x 是同阶无穷小。

高数第一章知识点总结笔记

高数第一章知识点总结笔记

高数第一章知识点总结笔记高数第一章主要包括函数与极限的基本概念,函数的性质,函数的图像与性质,函数的运算,以及极限的性质和运算法则等内容。

1.函数的定义和表示方法:- 函数的定义:函数是一个具有自变量和因变量的关系,对于每一个自变量,都唯一对应一个因变量。

- 函数的表示方法:通常用函数关系式、函数图、表格和文字描述等方式来表示函数。

2. 函数的性质:- 定义域和值域:函数的自变量的取值范围称为函数的定义域,因变量的取值范围称为函数的值域。

- 奇偶性:若对于定义域内的每一个x,都有f(-x) = f(x),则函数为偶函数;若对于定义域内的每一个x,都有f(-x) = -f(x),则函数为奇函数;若不满足以上两个条件,则称函数为既不是奇函数也不是偶函数。

- 增减性:在定义域中,若有x1 < x2,有f(x1) < f(x2),则函数在这个区间内是增函数;若有x1 < x2,有f(x1) > f(x2),则函数在这个区间内是减函数。

3. 函数的图像与性质:- 概念:函数的图像是函数在平面直角坐标系中的表示,函数的图像反映了函数的性质和规律。

- 图像的平移、翻折、伸缩、可导性和连续性等。

4. 函数的运算:- 四则运算:包括加法、减法、乘法和除法。

- 复合函数:将一个函数的自变量用另一个函数表示出来,形成复合函数。

- 反函数:若两个函数f(x)和g(x)满足f(g(x)) = x和g(f(x)) = x,则称g(x)为f(x)的反函数。

5. 极限的定义和性质:- 极限的定义:设函数f(x)在x0的某一邻域内有定义,如果对于任意给定的正数ε,总存在一个正数δ,使得当0 < |x - x0| < δ时,都有|f(x) - A| < ε成立,则称A为函数f(x)当x趋于x0时的极限,记作lim f(x) = A(x→x0)。

- 极限的性质:唯一性、局部有界性、保号性、夹逼准则、迫敛和夹蔽准则等。

高数重要知识点汇总

高数重要知识点汇总

高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。

(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数第一章知识点总结希望同学们在准备考研数学高数的复习过程中能够适当结合真题与模拟题,下面是xx精心收集的,希望能对你有所帮助。

篇一:高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

具体说来,大家需要重点掌握的知识点有几以下几点:1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

最后凯程考研名师预祝大家都能取得好成绩。

凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。

总之,考研是一场“时间战”,谁懂得抓紧时间,利用好时间,谁就是最后的胜利者。

1.制定详细周密的学习计划。

这里所说的计划,不仅仅包括总的复习计划,还应该包括月计划、周计划,甚至是日计划。

努力做到这一点是十分困难的,但却是非常必要的。

我们要把学习计划精确到每一天,这样才能利用好每一天的时间。

当然,总复习计划是从备考的第一天就应该指定的;月计划可以在每一轮复习开始之前,制定未来三个月的学习计划。

以此类推,具体到周计划就是要在每个月的月初安排一月四周的学习进程。

那么,具体到每一天,可以在每周的星期一安排好周一到周五的学习内容,或者是在每一天晚上做好第二天的学习计划。

并且,要在每一天睡觉之前检查一下是否完成当日的学习任务,时时刻刻督促自己按时完成计划。

方法一:规划进度。

分别制定总计划、月计划、周计划、日计划学习时间表,并把它们贴在最显眼的地方,时刻提醒自己按计划进行。

方法二:互相监督。

和身边的同学一起安排计划复习,互相监督,共同进步。

方法三:定期考核。

定期对自己复习情况进行考察,灵活运用笔试、背诵等多种形式。

2.分配好各门课程的复习时间。

一天的时间是有限的,同学们应该按照一定的规律安排每天的学习,使时间得到最佳利用。

一般来说上午的头脑清醒、状态良好,有利于背诵记忆。

除去午休时间,下午的时间相对会少一些,并且下午人的精神状态会相对低落。

晚上相对安静的外部环境和较好的大脑记忆状态,将更有利于知识的理解和记忆。

据科学证明,晚上特别是九点左右是一个人记忆力最好的时刻,演员们往往利用这段时间来记忆台词。

因此,只要掌握了一天当中每个时段的自然规律,再结合个人的生活学习习惯分配好时间,就能让每一分每一秒都得到最佳利用。

方法一:按习惯分配。

根据个人生活学习习惯,把专业课和公共课分别安排在一天的不同时段。

比如:把英语复习安排在上午,练习听力、培养语感,做英语试题;把政治安排在下午,政治的掌握相对来说利用的时间较少;把专业课安排在晚上,利用最佳时间来理解和记忆。

方法二:按学习进度分配。

考生可以根据个人成绩安排学习,把复习时间向比较欠缺的科目上倾斜,有计划地重点复习某一课程。

方法三:交叉分配。

在各门课程学习之间可以相互穿插别的科目的学习,因为长时间接受一种知识信息,容易使大脑产生疲劳。

另外,也可以把一周每一天的同一时段安排不同的学习内容。

篇二:历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学:高数重要知识点总结考研日一天天近了,要求各位考研生必须要高效率进行考研复习,在扎实基础知识的基础上,注重总结答题思路及方法。

为帮助各位考研生复习的更加全面,凯程考研xx对高数部分中的重要考点进行了整理,如下:1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法打有准备之战,胜算才能更大。

希望各20XX考研生抓紧时间复习,在考研中取得好成绩。

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!凯程考研:凯程考研成立于20XX年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

特别说明:凯程学员经验谈视频在凯程有公布,同学们和家长可以查看。

扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。

如何选择考研辅导班:在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。

判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。

还要深入了解教师的学术背景、资料著述成就、辅导成就等。

凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。

而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下20XX五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。

在凯程的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。

对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

最好的办法是直接和凯程老师详细沟通一下就清楚了。

凯程考研历年战绩辉煌,成就显著!在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下国内最高学府清华大学五道口金融学院金融硕士29人,占五道口金融学院录取总人数的约50%,五道口金融学院历年状元均出自凯程.例如,20XX年状元武玄宇,20XX年状元李少华,20XX年状元马佳伟,20XX年状元陈玉倩;考入北大经院、人大、中财、外经贸、复旦、上财、上交、社科院、中科院金融硕士的同学更是喜报连连,总计达到150人以上,此外,还有考入北大清华人大法硕的张博等10人,北大法学考研王少棠,北大法学经济法状元王yuheng等5人成功考入北大法学院,另外有数10人考入人大贸大政法公安大学等名校法学院。

北师大教育学和全日制教育硕士辅导班学员考入15人,创造了历年最高成绩。

会计硕士保录班考取30多人,中传郑家威勇夺中传新闻传播硕士状元,王园璐勇夺中传全日制艺术硕士状元,(他们的经验谈视频在凯程有公布,随时可以查看播放。

)对于如此优异的成绩,凯程辅导班班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

相关文档
最新文档