北师大版八年级数学下册5.1《认识分式》知识点精讲
北师大版数学八年级下册5.1.1《认识分式》说课稿

北师大版数学八年级下册5.1.1《认识分式》说课稿一. 教材分析《认识分式》是北师大版数学八年级下册第五章的第一节,本节课的主要内容是让学生初步理解分式的概念,分式的性质和分式的运算。
分式是中学数学中的一个重要内容,它在实际生活中的应用非常广泛,如在物理学、化学、经济学等领域都有涉及。
二. 学情分析学生在学习本节课之前,已经掌握了实数的基本运算,对数学式子有一定的理解。
但是,对于分式这个新的数学概念,学生可能还存在一定的困难。
因此,在教学过程中,我们需要从学生的实际出发,引导学生逐步理解分式的概念,掌握分式的性质和运算。
三. 说教学目标1.知识与技能:让学生理解分式的概念,掌握分式的性质和运算。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养。
四. 说教学重难点1.教学重点:分式的概念,分式的性质和运算。
2.教学难点:分式的运算,分式方程的解法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法。
2.教学手段:利用多媒体课件,进行直观演示。
六. 说教学过程1.导入新课:通过生活中的实际问题,引入分式的概念。
2.自主学习:让学生自主探究分式的性质和运算。
3.合作交流:学生分组讨论,分享学习心得。
4.教师讲解:针对学生的疑问,进行讲解。
5.巩固练习:布置练习题,让学生巩固所学知识。
6.课堂小结:总结本节课的主要内容。
七. 说板书设计板书设计如下:八. 说教学评价本节课的评价主要从学生的学习态度、参与程度、知识掌握程度等方面进行。
教师应及时关注学生的学习情况,对学生的表现给予肯定和鼓励,提高学生的自信心。
九. 说教学反思本节课结束后,教师应认真反思自己的教学行为,看是否达到了教学目标,学生是否掌握了所学知识。
同时,教师还应关注学生的学习反馈,及时调整教学方法和策略,提高教学效果。
知识点儿整理:《认识分式》这一节主要涉及以下知识点:1.分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为0。
认识分式 课件 数学北师大版八年级下册

感悟新知
知1-讲
特别解读
1. 分式可看成是两个整式的商,分母是除式,分数线
相当于除号,分数线还具有括号作用和整体作用 •• •• •• ••
.
2.分式只看形式不看结果,如3aa2 是分式 .
感悟新知
知1-练
例1 [母题教材P109习题T1]下列各式中,哪些是分式?哪
些是整式?
4 m
,-2
x
2, 3 5+y
y m+n 9x+y x-y 2 x , m2-n2 , 45 xy2 , x2-2xy+y2 .
感悟新知
解题秘方:根据最简分式的定义识别.
解: m+n m 2-n2
m+n
m+n m-n
示成
AB的形式
.
如果B
中含有字母,那么称
A B
为分式,
其中 A称为分式的分子, B称为分式的分母 .
分式的“三要素”:(1)形如AB的式子; (2) A, B为整式;(3)分母B 中含有字母.
感悟新知
知1-讲
2. 分式与分数、整式的关系 (1)分式中分母含有字母.由于字母可以表示不同的数, 所以分式比分数更具有一般性.分数是分式中字母取 特定值时的特殊情况. (2)分式与整式的根本区别就是分式的分母中含有字母.
的最大公因数,再找相同字母的最低次幂,它们的
积就是公因式;
(2)当分子、分母中有多项式时,先把多项式分解因式,
再找公因式.
感悟新知
知5-讲
3. 最简分式 分子与分母没有公因式的分式,叫做最简 分式.
感悟新知
例7 约分:
-21a 3b5c
x-y
a 2-5a
(1) 56a2b10d ;(2) x-y3 ;(3) 25-a2 ,
北师大版八年级数学下册第五章分式与分式方程

八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。
例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。
(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。
检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。
北师大版八年级数学下册第五章分式与分式方程5.1认识分式第2课时分式的基本性质及约分(教案)

难点举例:对于分式$\frac{4x^2 + 4x}{2x^2 + 2x}$,学生应先分解为$\frac{4x(x + 1)}{2x(x + 1)}$,然后约去公因式$(x + 1)$和$2$,得到最简分式$\frac{2}{1}$。
2.教学难点
(1)分式基本性质的深度理解:学生需要理解为什么分式的分子、分母同乘(或除以)一个不等于0的整式,分式的值不变。这个性质背后的数学原理需要通过实例和图形进行直观演示,帮助学生深入理解。
难点举例:解释当分式$\frac{2x}{3y}$的分子分母同时乘以不同的整式(如2x和3y)时,分式的值仍然保持不变的原因。
(2)识别并约去复杂的公因式:在分式的约分过程中,学生可能会遇到难以识别的复杂公因式,尤其是当分子分母包含多项式时。教师需要指导学生如何分解多项式,找出公因式。
难点举例:面对分式$\frac{3x^3 - 6x^2}{9x^2 - 6x}$,学生需要学会先将分子和分母分解为$3x^2(x - 2)$和$3x(3x - 2)$,再约去公因式$3x$。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本性质、约分的技巧及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
北师大版数学八年级下册5.1《认识分式》说课稿

北师大版数学八年级下册5.1《认识分式》说课稿一. 教材分析北师大版数学八年级下册5.1《认识分式》是初中数学的重要内容,本节课的内容是让学生理解分式的概念,掌握分式的基本性质和运算法则。
通过学习,使学生能够运用分式解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、分数等基础知识,具备了一定的逻辑思维能力。
但是,对于分式的理解可能会存在一定的困难,因此,在教学过程中,要注重引导学生从实际问题中发现分式,理解分式的概念,掌握分式的基本性质和运算法则。
三. 说教学目标1.知识与技能目标:让学生理解分式的概念,掌握分式的基本性质和运算法则,能够运用分式解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考、合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的抽象思维能力,使学生感受到数学与生活的密切联系。
四. 说教学重难点1.教学重点:分式的概念,分式的基本性质和运算法则。
2.教学难点:分式的概念的理解,分式的运算法则的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过展示实际问题,引导学生发现分式,引出分式的概念。
2.自主学习:让学生通过阅读教材,理解分式的概念,掌握分式的基本性质和运算法则。
3.合作交流:分组讨论,让学生在合作中思考,在交流中解惑,共同解决问题。
4.教师讲解:针对学生自主学习和合作交流中存在的问题,进行讲解和解答。
5.巩固练习:设计具有针对性的练习题,让学生在练习中巩固所学知识。
6.总结提高:对本节课的内容进行总结,使学生形成知识体系。
七. 说板书设计板书设计要清晰、简洁,能够反映本节课的主要内容和知识点。
主要包括:分式的概念、分式的基本性质、分式的运算法则等。
八. 说教学评价教学评价主要从学生的知识掌握、能力培养、情感态度等方面进行。
北师大版八年级数学下册5.1《认识分式》知识点精讲

知识点总结教学设计一、教材分析本节课是北师大版八年级下册第五章《分式与分式方程》的内容,共两课时。
本设计是第一课时。
本节课是分式的起始课,是学生学习了整式、因式分解基础上进行的的,是下一步学习分式的性质、分式的运算以及分式方程的前提,所以分式的概念及分式在什么条件下有意义是本节课的重点和难点。
因为分式与分数类似,所以为了突破重点和难点,采用了类比的学习方法,让学生学会自主探索,合作交流,老师的讲和学生的学相结合。
分式是表示现实世界中一类量的数学模型,为了让学生体会这一点,在课题引入时从实际生活情景出发,让学生经历用字母表示实际问题中数量关系的过程。
二、学情分析学生的知识技能基础:学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的.在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系.学生的活动经验基础:在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.三、教学任务本节共分2个课时,这是第1课时,主要内容是了解分式的定义以及分式有意义、无意义、值为零的条件。
本节课的具体教学目标为:知识与技能:1、能用分式表示具体情境中的数量关系,体会分式是刻画现实世界中一类量的数学模型,进一步发展符号意识。
2、了解分式的概念,明确分式和整式的区别;3、会求分式的值,理解分式有意义、无意义及值为零的条件。
过程与方法:本节课通过“观察——类比——合作交流——概括、归纳——辩证”的途径,培养学生观察、分析及理解问题的能力,发展学生的数学抽象、数学建模思维,获得正确的学习方式。
情感态度价值观:感受数学知识源于生活,又服务于生活,体会数学学科的一些核心素养,如数学抽象、数学建模对研究问题时的引领作用,体会分式是表示现实世界中的一类量的数学模型。
教学重点:了解分式的概念,明确分式和整式的区别。
数学北师大版八(下)5.1 认识分式

议一议
上面问题中出现了代数式
2400 x
,
2400 x+30
,
35a+45பைடு நூலகம் a+b
和 b , 它们有什么共同特征?它们与整式有什么不
ax
同?
相同点 都具有分数的形式
不同点(观察分母) 分母中有字母
定义 一般地,如果A,B表示两个整式,并且B中 含有字母,那么式子 叫做分式. 分式 中,A叫做分子,B叫做分母.
即学即练
下列各式:-3a
2,x+2 2
,2 x x
,a+2b π+2
,3,x2+xy
中,哪
些是分式?哪些是整式?
知识点 2 分式的求值
即学即练
知识点 3 分式有无意义的条件
思考 分式有(无)意义与分子有关吗?
即学即练
知识点 4 分式的值为0的条件
即学即练
融合应用
自我提升
一、反思总结 1.你学到了什么知识和思想方法? 2.学到了哪些题型及其基本解法? 3.你还有哪些困惑?
二、检测拓展
5.1.1认识分式
学习目标
1、能用分式表示现实情景中的数量关系,体会分式 是表示现实世界中一类量的数学模型。 2、了解分式的概念,明确分式与整式的区别 3、会求分式的值 4、理解分式有意义、无意义、值为0的条件
复习巩固
情境引入
面对日益严重的土地沙化问题,某县决定在一定期限内固沙 造林2 400 hm2, 实际每月固沙造林的面积比原计划多30 hm2,结果 提前完成原计划的任务. 如果设原计划每月固沙造林x hm2,那么 (1)原计划完成造林任务需要多少个月? (2)实际完成造林任务用了多少个月?
知识点 1 分式的概念
做一做 (1)2010年上海世博会吸引了成千上万的参观者,某一时段内
北师大版八年级数学下册5.1.1认识分式

金戈铁骑整理制作
第五章分式
5.1.1认识分式(1)
1、什么叫做代数式?
用运算符号把数和表示数的字母连接而成 的式子叫做代数式。
2、什么叫做整式?
单项式和多项式统称为整式。
面对日益严重的土地沙漠化问题,某县决定 在一定期限内固沙造林2400hm2,实际每月 固沙造林的面积比原计划多30hm2,结果提
练一练:
1、要使分式有意义,则x的取值范围为() A
A.x≠1B.x>1C.x<1D.x≠-1
2、若分式的值为零,则x=
-2
3、当a=-2时,分式的值为
-5
4、当x时≠,±分1 式有意义。 5、当x时=±,分4 式无意义。
课堂小结:
今天你学到了什么?有什么样的收获?
课下作业: 课本P110第2、3题
万人
2、文林图书店库存一批图书,其中一种图书的原价是每册
a元,现每册降价x元销售,当这种图书的库存全部售出时,
其销售额为b元,降价销售开始时,文林书店这种图书的
库存量是多少?
册
3、春晖小学组织学生a人,老师b人参观博物馆,如果博 物馆的门票成人价为5元/人,学一价为2元/人,那么他们 买门票需付门票多少元?平均每人多少元?
前完成原计划的任务。如果设原计划每月固 沙造林xhm2. (1)原计划完成造林任务需在多少个月? (2)实际完成造林任务用子多少个月?
1、2010年上海世博会吸引了成千上万的参观者,某一时段 内的统计结果显示,前a天日均参观人数35万人,后b天日 均参观人数45万人,这(a+b)天日均参观人数为多少万 人?
(2a+5b)元
元
观察上面所列的代数式:
(1)他们都是整式吗? 不是 (2)他们有什么共同特征?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结
教学设计
一、教材分析
本节课是北师大版八年级下册第五章《分式与分式方程》的内容,共两课时。
本设计是第一课时。
本节课是分式的起始课,是学生学习了整式、因式分解基础上进行的的,是下一步学习分式的性质、分式的运算以及分式方程的前提,所以分式的概念及分式在什么条件下有意义是本节课的重点和难点。
因为分式与分数类似,所以为了突破重点和难点,采用了类比的学习方法,让学生学会自主探索,合作交流,老师的讲和学生的学相结合。
分式是表示现实世界中一类量的数学模型,为了让学生体会这一点,在课题引入时从实际生活情景出发,让学生经历用字母表示实际问题中数量关系的过程。
二、学情分析
学生的知识技能基础:学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的.在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系.
学生的活动经验基础:在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.
三、教学任务
本节共分2个课时,这是第1课时,主要内容是了解分式的定义以及分式有意义、无意义、值为零的条件。
本节课的具体教学目标为:
知识与技能:
1、能用分式表示具体情境中的数量关系,体会分式是刻画现实世界中一类量的数学模型,进一步发展符号意识。
2、了解分式的概念,明确分式和整式的区别;
3、会求分式的值,理解分式有意义、无意义及值为零的条件。
过程与方法:
本节课通过“观察——类比——合作交流——概括、归纳——辩证”的途径,培养学生观察、分析及理解问题的能力,发展学生的数学抽象、数学建模思维,获得正确的学习方式。
情感态度价值观:
感受数学知识源于生活,又服务于生活,体会数学学科的一些核心素养,如数学抽象、数学建模对研究问题时的引领作用,体会分式是表示现实世界中的一类量的数学模型。
教学重点:
了解分式的概念,明确分式和整式的区别。
教学难点:
1、能用分式表示具体情境中的数量关系,体会分式是刻画现实世界中一类量的数学模型。
2、理解分式有意义、无意义及值为零的条件。
四、教学准备 PPT
六、板书设计图文导学。