数字式频率计设计

合集下载

课程设计数字频率计

课程设计数字频率计

课程设计数字频率计一、课程目标知识目标:1. 理解并掌握数字频率计的基本原理与功能,了解其在实际生活中的应用。

2. 学会使用特定软件或工具进行数字频率计的设计与仿真。

3. 掌握基本的计数、计时方法,并将其应用于数字频率计的搭建。

技能目标:1. 能够运用已学知识,设计并搭建一个简单的数字频率计,培养动手操作能力和问题解决能力。

2. 能够运用逻辑思维,分析并优化数字频率计的设计方案,提高创新意识和团队协作能力。

3. 能够熟练运用相关软件或工具进行数字频率计的仿真实验,提高计算机操作技能。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发学习热情,形成积极的学习态度。

2. 培养学生的团队合作精神,学会倾听、交流、分享,增强集体荣誉感。

3. 使学生认识到科技对社会发展的作用,提高社会责任感和使命感。

本课程针对初中年级学生,结合电子技术课程内容,以数字频率计为主题,旨在培养学生的动手操作能力、问题解决能力和创新意识。

在教学过程中,注重理论与实践相结合,让学生在实际操作中掌握知识,提高技能,同时注重情感态度价值观的培养,使学生在学习过程中形成积极向上的人生态度。

通过本课程的学习,学生能够达到上述课程目标,为后续相关知识的学习奠定基础。

二、教学内容1. 理论知识:- 数字频率计的基本原理与功能- 频率的定义及测量方法- 计数器、定时器的工作原理2. 实践操作:- 数字频率计的硬件组成与电路设计- 软件仿真工具的使用方法- 设计并搭建数字频率计的实验步骤3. 教学大纲:- 第一阶段:数字频率计基本原理学习(1课时)- 理解频率概念,掌握频率测量方法- 了解数字频率计的基本原理与功能- 第二阶段:硬件组成与电路设计(2课时)- 学习数字频率计的硬件组成- 掌握计数器、定时器的工作原理- 分析并设计数字频率计电路- 第三阶段:软件仿真与实验操作(2课时)- 学习并掌握软件仿真工具的使用方法- 设计实验方案,搭建数字频率计- 进行仿真实验,验证设计效果4. 教材关联:- 本教学内容与教材中“电子技术基础”、“数字电路设计与应用”等章节相关。

数字式频率计设计

数字式频率计设计

数字式频率计的设计摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得更为重要。

数字频率计是近代电子技术领域的重要测量工具之一,同时也是其他许多领域广泛应用的测量仪器。

数字频率计是在规定的基准时间内把测量的脉冲数记录下来,换算成频率并以数字形式显示出来。

数字频率计用于测量信号(方波,正弦波或其他周期信号)的频率,并用十进制数字显示,它具有精度高,测量速度快,读数直观,使用方便等优点。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点。

本次设计的数字频率计以555为核心,采用直接测频法测频,能够测量正弦波、三角波、锯齿波、矩形波等。

根据显示的频率范围,用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;根据输入信号的幅值要求,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路,通过这些整体要求,由显示部分,计数部分,逻辑控制部分,时基电路部分,构成简易的频率计的设计。

目录一.设计任务和要求 (3)1.设计任务 (3)2.设计要求 (3)二.系统设计 (4)1.系统要求 (4)2. 方案设计 (5)3.系统工作原理 (6)三.单元电路设计 (8)1.时基电路部分 (8)2.计数显示部分电路 (11)3.控制电路设计如下 (14)四.电路仿真分析 (15)五.元器件的选择及参数确定 (17)1.电路调试 (17)2系统功能及性能测试 (18)3.电路安装 (20)4.调试 (21)参考文献 (25)总结及体会 (26)附录 (28)一.设计任务和要求1.设计任务设计一个数字式频率计。

2.设计要求1、能够测量正弦波、三角波、锯齿波、矩形波等周期性信号的频率;2、能直接用十进制数字显示测得的频率;3、频率测量范围:1HZ—10KHZ且量程能自动切换;4、输入信号幅度范围为0.5—5V,要求仪器自动适应5、测量时间:t≼1.5s6、电源:220V/50HZ的工频交流电供电;(注:直流电源部分仅完成设计即可,不需制作,用实验室提供的稳压电源调试,但要求设计的直流电源能够满足电路要求)7、按照以上技术要求设计电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行仿真,用万用板焊接元器件,制作电路,完成调试、测试,撰写设计报告。

数字频率计的VHDL设计

数字频率计的VHDL设计

课程设计题目、内容、要求目录1 课程设计题目、内容与要求……………………………………1.1 设计内容……………………………………………………1.2 具体要求……………………………………………………2 系统设计…………………………………………………………2.1 设计思路……………………………………………………2.2 系统原理与设计说明3 系统实现…………………………………………………………4 系统仿真…………………………………………………………5 硬件验证(操作)说明…………………………………………6 总结……………………………………………………………7 参考书目………………………………………………………1 课程设计题目、内容与要求1.1课程设计的题目:数字频率计设计1.2课程设计内容:(1)设计一个能测量方波信号的频率计;(2)测量范围是0-999999Hz;(3)结果用十进制数显示。

2 系统设计2.1设计思路:2.1.1 数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。

本数字频率计采用自顶向下的设计思想,通过闸门提供的1s闸门时间对被测信号进行计数及测出的被测信号的频率,测出的频率再通过译码器译码后输出给显示器显示。

根据系统设计的要求,数字频率计的电路原理框图如下:数字频率计电路原理框图2.2 系统原理与设计说明系统各个模块的功能如下:2.2.1标准时钟发生电路模块借用实验板上标准时钟发生电路,为计数闸门控制电路提供一个标准8Hz信号。

2.2.2 计数器闸门控制电路模块计数器闸门控制电路就是产生三个控制信号,即计数器复位信号、4位十进制计数器允许计数信号、锁存信号。

2.2.3锁存电路模块锁存电路就是为了让LED数码管在信号来临之前保持计数值不变。

2.2.4计数器复位电路模块计数器复位电路是让频率计恢复到计数初始态。

2.2.5 LED数码管驱动电路模块LED数码管驱动电路就是为LED数码管提供驱动电压。

数字频率计课程设计

数字频率计课程设计

数字频率计课程设计引言数字频率计是一种用来测量波形信号频率的仪器。

在本次课程设计中,我们将设计并实现一个基于微控制器的数字频率计。

在设计过程中,我们将使用Arduino开发板以及相应的传感器和电路组件。

本文档将介绍该课程设计的目标、设计思路、实现步骤以及预期的结果。

目标本次课程设计的目标是通过设计一个数字频率计来实现以下功能: 1. 测量输入的波形信号的频率。

2. 将测量结果以数字形式在液晶显示屏上显示。

设计思路1.硬件设计:•使用Arduino开发板作为主控制器。

•使用一个脉冲传感器作为输入信号源。

•使用一个液晶显示屏来显示测量结果。

2.软件设计:•使用Arduino编程语言编写程序。

•通过读取脉冲传感器的信号来计算输入信号的频率。

•将计算得到的频率值通过串口传输给液晶显示屏。

实现步骤1.硬件连接:•将脉冲传感器的输出引脚连接到Arduino开发板的数字输入引脚。

•将液晶显示屏的控制引脚连接到Arduino开发板的对应输出引脚。

2.软件编程: ```c // 引入LiquidCrystal库 #include<LiquidCrystal.h>// 定义液晶显示屏的引脚 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);// 定义脉冲传感器的引脚 int pulsePin = 7;// 定义变量存储频率值 float frequency = 0;void setup() { // 初始化液晶显示屏 lcd.begin(16, 2);// 设置脉冲传感器引脚为输入状态 pinMode(pulsePin, INPUT);// 设置波特率为9600 Serial.begin(9600); }void loop() { // 定义变量存储脉冲计数值 int pulseCount = 0;// 计算脉冲计数值 while (pulseCount < 1000) { if (digitalRead(pulsePin) == HIGH) { pulseCount++; delayMicroseconds(100); } }// 计算频率值 frequency = pulseCount / 1000.0;// 在串口上发送频率值 Serial.println(frequency);// 清除液晶屏内容 lcd.clear();// 在液晶屏上显示频率值 lcd.setCursor(0, 0); lcd.print(。

数字频率计设计报告

数字频率计设计报告

数字频率计设计报告数字频率计是一种用于测量信号频率的仪器,广泛应用于电子领域。

本文将针对数字频率计的原理、工作方式以及应用进行详细介绍。

一、引言数字频率计是一种基于数字信号处理技术的测量仪器,它能够精确地测量信号的频率。

它广泛应用于通信、无线电、音频和视频等领域,对于各种信号的频率测量具有重要意义。

二、原理数字频率计的测量原理基于信号的周期性特征。

当一个信号通过数字频率计时,它会被转换成数字信号,并通过计数器进行计数。

通过计数器的计数结果和时间基准的参考值进行比较,就可以得到信号的频率。

三、工作方式数字频率计的工作方式通常分为两种:直接计数法和间接计数法。

1. 直接计数法:该方法直接对信号进行计数,通过计数器对信号的脉冲进行计数,并将计数结果进行处理得到频率值。

这种方法简单直接,但对于高频率信号的计数精度较低。

2. 间接计数法:该方法通过将信号的频率分频至低频范围内进行计数。

通过将高频信号分频后再进行计数,可以提高测量的精度。

四、应用数字频率计在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 通信领域:数字频率计在通信系统中被用于测量信号的载波频率,确保信号的稳定传输。

同时,数字频率计还可以用于频率偏移的测量,以评估通信系统的性能。

2. 无线电领域:数字频率计被用于测量无线电频率,对于射频信号的测量具有重要意义。

它可以用于无线电台站的调试和维护,以确保无线电信号的质量和稳定性。

3. 音频和视频领域:数字频率计在音频和视频设备的校准和测试中被广泛应用。

它可以测量音频和视频信号的频率,以确保音频和视频设备的正常工作。

4. 科学研究领域:数字频率计在科学研究中也起到了重要的作用。

比如,在天文学研究中,数字频率计可以用于测量天体的射电信号频率,从而研究宇宙的演化和结构。

五、总结数字频率计作为一种精确测量信号频率的仪器,在电子领域中有着广泛的应用。

本文从原理、工作方式和应用等方面对数字频率计进行了详细介绍。

数字频率计设计报告

数字频率计设计报告

数字频率计设计报告数字频率计设计报告一、设计目标本次设计的数字频率计旨在实现对输入信号的准确频率测量,同时具备操作简单、稳定性好、误差小等特点。

设计的主要目标是实现以下功能:1. 测量频率范围:1Hz至10MHz;2. 测量精度:±0.1%;3. 具有数据保持功能,可在断电情况下保存测量结果;4. 具有报警功能,可设置上下限;5. 使用微处理器进行控制和数据处理。

二、系统概述数字频率计系统主要由以下几个部分组成:1. 输入信号处理单元:用于将输入信号进行缓冲、滤波和整形,以便于微处理器进行准确处理;2. 计数器单元:用于对输入信号的周期进行计数,并通过微处理器进行处理,以得到准确的频率值;3. 数据存储单元:用于存储测量结果和设置参数;4. 人机交互单元:用于设置参数、显示测量结果和接收用户输入。

三、电路原理数字频率计的电路原理主要包括以下步骤:1. 输入信号处理:输入信号首先进入缓冲器进行缓冲,然后通过低通滤波器进行滤波,去除高频噪声。

滤波后的信号通过整形电路进行整形,以便于微处理器进行计数。

2. 计数器单元:整形后的信号输入到计数器,计数器对信号的周期进行计数。

计数器的精度直接影响测量结果的精度,因此需要选择高精度的计数器。

3. 数据存储单元:测量结果和设置参数通过微处理器进行处理后,存储在数据存储单元中。

数据存储单元一般采用EEPROM或者Flash 存储器。

4. 人机交互单元:人机交互单元包括显示屏和按键。

用户通过按键设置参数和查看测量结果。

显示屏用于显示测量结果和设置参数。

四、元器件选择根据系统设计和电路原理,以下是一些关键元器件的选择:1. 缓冲器:采用高性能的运算放大器,如OPA657;2. 低通滤波器:采用一阶无源低通滤波器,滤波器截止频率为10kHz;3. 整形电路:采用比较器,如LM393;4. 计数器:采用16位计数器,如TLC2543;5. 数据存储单元:采用EEPROM或Flash存储器,如24LC64;6. 显示屏:采用带ST7565驱动的段式液晶显示屏,如ST7565R。

数字频率计的设计实验报告

数字频率计的设计实验报告

数字频率计的设计实验报告实验名称:数字频率计的设计实验日期:2021年7月1日实验目的:设计并实现一个基于计数器的数字频率计,使用计数器测量输入信号的频率,并将结果显示在数码管上。

实验器材:FPGA开发板、数字频率计模块、计数器模块、数码管模块。

实验原理:1. 计数器模块设计一个计数器模块,用于计数示波器输入脉冲信号的时间。

计数器的计数时间可以根据需要进行调整。

2. 数字频率计模块设计一个数字频率计模块,用于将计数器的计数时间转换为输入信号的频率。

通过计算计数器的计数值来计算频率,并将结果显示在数码管上。

3. 数码管模块设计一个数码管模块,用于将数字频率计模块计算出的频率值转换为可以在数码管上显示的数码。

实验步骤:1. 搭建实验电路将FPGA开发板连接到计数器模块、数字频率计模块和数码管模块。

2. 编写Verilog代码根据上述原理,编写计数器模块、数字频率计模块和数码管模块的Verilog代码。

3. 编译代码并下载到FPGA开发板使用Xilinx Vivado软件将Verilog代码编译成比特流文件,并将比特流文件下载到FPGA开发板中。

4. 测试实验将示波器的输出信号连接到数字频率计的输入端,并将数字频率计连接到数码管。

通过计算数字频率计的输出,验证数字频率计的测量准确性。

实验结果:经过测试,数字频率计的测量准确度在实验误差范围内。

输入不同频率的信号时,数码管能够正确显示频率值。

实验总结:通过本次实验,成功设计并实现了一个基于计数器的数字频率计。

该实验不仅巩固了计数器、数码管等模块的设计知识,也提高了学生的Verilog编程能力。

在实验中,学生还学习了如何使用FPGA开发板进行数字电路实验,以及测试和验证数字电路的方法和技巧。

数字频率计课程设计报告

数字频率计课程设计报告

数字频率计课程设计报告一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握频率、周期等基本概念;2. 使学生掌握数字频率计的使用方法,能够正确操作仪器进行频率测量;3. 引导学生运用已学的数学知识,对测量数据进行处理,得出正确结论。

技能目标:1. 培养学生动手操作仪器的技能,提高实验操作能力;2. 培养学生运用数学知识解决实际问题的能力,提高数据分析处理技能;3. 培养学生团队协作能力,提高实验过程中的沟通与交流技巧。

情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情;2. 培养学生严谨的科学态度,养成实验过程中认真观察、准确记录的好习惯;3. 引导学生认识到物理知识在实际应用中的价值,提高学以致用的意识。

课程性质:本课程为物理实验课,结合数字频率计的原理与应用,培养学生的实践操作能力和数据分析能力。

学生特点:六年级学生具备一定的物理知识和数学基础,对实验操作充满好奇,具备初步的团队合作能力。

教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,引导学生主动参与实验过程,培养其动手能力和解决问题的能力。

通过课程目标的分解,使学生在实验过程中达到预期的学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 数字频率计基本原理:- 频率、周期的定义与关系;- 数字频率计的工作原理;- 数字频率计的测量方法。

2. 实验操作技能:- 数字频率计的操作步骤;- 实验过程中的注意事项;- 数据记录与处理方法。

3. 教学大纲:- 第一课时:介绍数字频率计的基本原理,让学生了解频率、周期的概念及其关系;- 第二课时:讲解数字频率计的工作原理,引导学生掌握其操作方法;- 第三课时:分组进行实验操作,让学生动手测量不同频率的信号;- 第四课时:对测量数据进行处理与分析,培养学生数据分析能力;- 第五课时:总结实验结果,讨论实验过程中遇到的问题及解决办法。

4. 教材章节:- 《物理》六年级下册:第六章《频率与波长》;- 《物理实验》六年级下册:实验八《数字频率计的使用》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字式频率计的设计摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得更为重要。

数字频率计是近代电子技术领域的重要测量工具之一,同时也是其他许多领域广泛应用的测量仪器。

数字频率计是在规定的基准时间内把测量的脉冲数记录下来,换算成频率并以数字形式显示出来。

数字频率计用于测量信号(方波,正弦波或其他周期信号)的频率,并用十进制数字显示,它具有精度高,测量速度快,读数直观,使用方便等优点。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点。

本次设计的数字频率计以555为核心,采用直接测频法测频,能够测量正弦波、三角波、锯齿波、矩形波等。

根据显示的频率范围,用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;根据输入信号的幅值要求,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路,通过这些整体要求,由显示部分,计数部分,逻辑控制部分,时基电路部分,构成简易的频率计的设计。

目录一.设计任务和要求 (3)1.设计任务 (3)2.设计要求 (3)二.系统设计 (4)1.系统要求 (4)2. 方案设计 (5)3.系统工作原理 (6)三.单元电路设计 (8)1.时基电路部分 (8)2.计数显示部分电路 (11)3.控制电路设计如下 (14)四.电路仿真分析 (15)五.元器件的选择及参数确定 (17)1.电路调试 (17)2系统功能及性能测试 (18)3.电路安装 (20)4.调试 (21)参考文献 (25)总结及体会 (26)附录 (28)一.设计任务和要求1.设计任务设计一个数字式频率计。

2.设计要求1、能够测量正弦波、三角波、锯齿波、矩形波等周期性信号的频率;2、能直接用十进制数字显示测得的频率;3、频率测量范围:1HZ—10KHZ且量程能自动切换;4、输入信号幅度范围为0.5—5V,要求仪器自动适应5、测量时间:t≼1.5s6、电源:220V/50HZ的工频交流电供电;(注:直流电源部分仅完成设计即可,不需制作,用实验室提供的稳压电源调试,但要求设计的直流电源能够满足电路要求)7、按照以上技术要求设计电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行仿真,用万用板焊接元器件,制作电路,完成调试、测试,撰写设计报告。

发挥部分:1、测量频率范围为0.1-10KHZ;2、输入信号幅度范围为0.1—100V,要求仪器自动适应;3、用数字频率计测量信号周期。

二.系统设计1.系统要求数字频率计的原理:频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。

其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。

式中f——频率。

N——电振动次数或脉冲数。

t——产生N次电振动或脉冲所需要的时间。

原理图如下所示:↑→↑→ →→↑ ↑↑↑∣↑被测信号2. 方案设计根据设计的要求,和数字式频率计的设计原理,信号之间的时序关系图,选择正确的方案。

首先,必须把各种被测信号通过放大整形电路,使其成为规矩波,这是计数的基础和前提。

其次,实现频率测量的另一必备环节是时基电路控制电路。

所谓时基控制电路,就是产生时间标准信号的电路装置,产生1s 的闸门时间,在1s 内统计脉冲数,即测得的频率。

时基电路可以有晶振组成,也可以由555定时器组成。

晶振产生较高的标准频率,经分频器后可获得各种时基脉冲(1ms ,10ms ,0.1s ,1s 等),时基信号的选择由开关S2控制。

被测频率的输入信号经放大整形后变成矩形脉冲加到主控门的输入端,如果被测信号为方波,放大整形可以不要,将被测信号直接加到主控门的输入端。

时基信号经控制电路产生闸门信号至主控门,只有在闸门信号采样期间内(时基信号的一个周期),输入信号才通过主控门。

若时基信号的周期为T ,进入计数器的输入脉冲数为N ,则被测信号的频率f =N / T ,改变时基信号的周期T ,即可得到不同的测频范围。

当主控门关闭时,计数器停止计数,显示器显示记录结果。

此时控制电路输出一个置零信号,经延时、整形电路的延时,当达到所调节的延时时间时,延时电路输出一个复位信号,使计数器和所有的触发器置0,为后续新的一次取样作好准备,即能锁住一次显示的时间,使保留到接受新的一次取样为止。

由于在理论学习中学习了555芯片,所以为了能更好的联系学习的理论知识,本次设计选用555做成标准时间信号发生器。

一般计数器则采用十位计数器,N进制的计数器也就是N分频器,其N进位信号也可作为N分频信号。

根据原理图,被测量信号经过放大与整形电路传入十进制计数器,变成其所要求的信号,此时数字频率计与被测信号的频率相同,时基控制电路提供标准时间基准信号,此时利用所获得的基准信号来触发控制电路,进而得到一定宽度的闸门信号,当1s信号传入时,闸门开通,被测量的脉冲信号通过闸门,其计数器开始计数,当1s信号结束时闸门关闭,停止计数。

根据公式得被测信号的频率f=N/T。

3.系统工作原理根据数字频率计的设计原理,和选择的方案,得出如下算法设计:频率是周期信号每秒钟内所含的周期数值。

可根据这一定义采用如图2-1所示的算法。

图2-2是根据算法构建的方框图。

输入电路:由于输入的信号可以是正弦波,三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。

周期测量:测量周期的原理框图测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。

方波信号中的脉冲宽度恰好为被测信号的1个周期。

将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。

计数器累计的结果可以换算出被测信号的周期。

用时间Tx来表示:Tx=NTs式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态时间分别为T1=0.7(Ra+Rb)C T2=0.7RbC重复周期为 T=T1+T2 。

三.单元电路设计1.时基电路部分时基电路部分电路如下:第一部分为555定时器组成的振荡器(即脉冲产生电路),要求其产生1000Hz的脉冲.振荡器的频率计算公式为:f=1.43/((R33+2*R32)*C),因此,我们可以计算出各个参数通过计算确定了R1取430欧姆,R3取500欧姆,电容取1uF.这样我们得到了比较稳定的脉冲。

在R1和R3之间接了一个10K的电位器便于在后面调节使得555能够产生非常接近1KHz的频率。

第二部分为分频电路,主要由4518组成(4518的管脚图,功能表及波形图详见附录),因为振荡器产生的是1000Hz的脉冲,也就是其周期是0.001s,而时基信号要求为0.01s、0.1s和1s。

4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。

计数器在脉动模式可级联,通过将Q³连接至下一计数器的EN输入端可实现级联,同时后者的CP输入保持低电平。

555定时计数器的接线图如下所示:本设计采取用555定时器组成的多谐振荡器如图3.2.1所示。

555定时器是一种模拟和数字功能相结合的中规模集成器件。

引出端符号:地GND ;触发 TRI ;输出 OUT ;复位 RST ;控制电压 CON ;门限(阈值) THR ;放点 DIS ;电源电压 VCC改变电阻和电容的值,可改变输出脉冲宽度,从而可以用于定时控制。

电路的脉冲宽度表达式为TW=1.1RC 。

取R2=1.5,R1=4.3Ω,根据1.1RC=2,则有C=10.1uf ,所以取10uf 。

74LS90是二,五,十进制异步计数器。

异步计数器如果设定初态,在每个脉冲的作用下是按顺序变化的(态序)。

二进制计数器的每一状态相当一最小项,当最后一个脉冲到来后,电路返回原状态。

接通电源后,电容被充电,当C v 上升到32CC V 时,使O v 为低电平,同时放电三极管T 导通,此时电容C 通过2R 和T 放电,C v 下降。

当C v 下降到3CC V 时,O v 翻转为高电平。

电容器C 放电所需的时间为C R C R t pL 227.02ln ≈=当放电结束时,T 截止,CC V 将通过1R 、2R 向电容C 充电,C v 由3CC V 上升到32CC V 所需的时间为 C R R C R R t pH )(7.02ln )(2121+≈+= 当C v 上升到32CC V 时,电路又翻转为低电平。

如此周而复始,于是在电路的输出端就得到一个周期性的矩形波。

其振荡频率为CR R t t f pH pL )2(43.1121+≈+= 由NE555的三脚产生脉冲使74LS160计数,但74LS160计数到9时TC 端产生进位脉冲开启计数器的计数功能,一秒之后计数器处于保持状态。

2.计数显示部分电路由共阴极数码管负责数字的显示,还有七段译码器4511,计数器74LS90构成,各芯片的资料如下所示。

由于在设计过程中,控制电路这部分比较难,要花时间在上面设计电路。

为了节约时间,我在课程设计的过程中就先连接后面的显示电路和计数电路。

首先是对数码管的显示进行了调测。

显示电路的调测由于在设计过程中,控制电路这部分比较难,要花时间在上面设计电路。

为了节约时间,我在课程设计的过程中就先连接后面的显示电路和计数电路。

首先是对数码管的显示进行了调测。

如图所示接好显示电路(这里就只给出一个数码管说明一下)。

然后将4511的5端接地。

然后给4511的对应端分别接高低电平,数码管就会显示对应的数字。

同样,还有两个数码管也按上图接好。

接好后的测试方法同上。

这样,显示电路也就搞好了。

其中有关于4511BD芯片的功能介绍如下:CD4511是BCD锁存/7段译码器/驱动器,常用的显示译码器件,MAX7219和他功能差不多。

CD4511引脚功能:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态是怎么样的,七段数码管都会处于消隐也就是不显示的状态。

相关文档
最新文档