数字频率计的设计
数字频率计的设计

数字频率计的设计与制作一设计要求1系统结构要求数字频率计的整体结构要求如图所示。
图中被测信号为外部信号,送入测量电路进行处理、测量。
2技术指标要求:2.1被测信号波形:正弦波、三角波和矩形波。
2.2 测量频率范围:1Hz~999Hz2.3测量精度为2Hz。
2.4显示方式:三位十进制显示。
2.5时基电路由555震荡电路产生。
2.6当被测信号的频率超出测量范围时,报警.二整体方案设计一数字频率计的基本原理数字频率计是一种用十进制数字显示频率的数字测量仪器,它的基本功能是测量正弦波信号,方波信号和尖脉冲信号以及其他各种单位时间内变化的物理量,它的用途十分广泛。
本设计主要由多谐振荡器、整形电路、闸门电路、计数器和数字显示几个模块组成。
数字频率计的主要功能是测量周期信号的频率。
频率是单位时间( 1S )内信号发生周期变化的次数。
如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
二总方案设计数字频率计整体方案结构方框图输入电路:由于输入的信号可以是正弦波,三角波。
而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。
计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。
在计数的时候数码管不显示数字。
当计数完成后,此时要使数码管显示计数完成后的数字。
控制电路:控制电路里面要产生计数清零信号和锁存控制信号。
电子技术课程设计(数字频率计的设计)

一课程设计题目:数字频率计的设计二、功能要求(1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。
(2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ(3)周期范围:1ms~1s。
(4)用3个发光二极管表示单位,分别对应3个高档位。
三频率计设计原理框图正弦波数字频率计原理框图1测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。
改闸门信号控制闸门电路的导通与开断。
让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。
测量频率的误差与闸门信号的精度直接相关。
被测信号频率测量算法对应的方框图四、各部分电路及仿真1 整形电路部分整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。
整形电路可以直接用555定时器构成施密特触发。
本次设计采用555定时器,适当连接若干个电阻就可以构成触发器图1-1 整形电路将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到显示电路闸门产生输入电路闸门计数电路施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。
但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。
2 时基电路时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。
设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。
简单数字频率计的设计与制作

简单数字频率计的设计与制作1结构设计与方案选择1.1设计要求(1)要求用直接测量法测量输入信号的频率(2)输入信号的频率为1~9999HZ1.2设计原理及方案数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波和尖脉冲信号的频率,而且还可以测量它们的周期。
所谓频率就是在单位时间(1s)内周期信号的变化次数。
若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T(1-1)据此,设计方案框图如图1所示:图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为测信号的频率fX1s,则们控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。
秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间内的累计= N Hz。
数,所以被测频率fX被测信号f经整形电路变成计数器所要求的脉冲信号○1,其频率与被测信X号的频率相同。
时基电路提供标准时间基准信号○2,其高电平持续时间t1=1 秒,当l秒信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到l秒信号结束时闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率f=NHz,如图2(a)所示,即为数字频率计的组成框图。
图2(a)数字频率计的组成框图图2(b)数字频率计的工作时序波形逻辑控制单元的作用有两个:其一,产生清零脉冲④,使计数器每次从零开始计数;其二,产生所存信号⑤,是显示器上的数字稳定不变。
这些信号之间的时序关系如图2(b)所示数字频率计由脉冲形成电路、时基电路、闸门电路、计数锁存和清零电路、译码显示电路组成。
1.3数字频率计的主要技术指标1.3.1 频率准确度:一般用相对误差来表示,本文设计的频率准确度并没有要求。
多功能数字频率计的设计

目录一:摘要二:方案设计与论证三:系统设计原理框图及分析说明四:软件设计技术细节五:硬件原理说明六:测试方法及对结果的分析七:综合设计实验总结八:附录一:摘要频率,即单位时间内物理量变化的次数。
如交流电50Hz意味着在1秒钟内电压规律变化50次。
根据频率的这一定义,容易想到,可以用一个标准时基信号作为“闸门”,当闸门打开(高电平)时计数器对输入脉冲信号计数,所得结果就表明了在闸门打开的时间内输入信号变化的次数。
频率计是常用的测量设备,以频率的数字化测量为基础。
建立和发展起来的各种数字化测量仪器正在取代各种传统的模拟的电工测试仪器和仪表。
数字频率计是用于测量输入信号频率并将测量结果用十进制数显示的测量仪器。
它采用数字电路的设计方法,在一定的测量精度和准确度的要求下实现对方波、脉冲波、正弦信号等频率的测量。
二:方案设计与论证:1:设计的基本要求:测量范围信号:方波、脉冲波幅度:0.5 V ~5V频率:1Hz~1MHz2:设计方法的分析:数字频率计电路模块的设计从测量的角度有以下方法:1)传统方式的频率/周期测量有以下四种实现方法:(1)直接测量法直接测量法是把频率信号经脉冲形成电路后加闸门的一个输入端,只有在闸门开通时间T(以秒计)内,计数脉冲被送到十进制计数器进行计数。
设计数器的值为N,由频率定义可以计算得到被测信号频率为f = N/T经分析,此种测量在低频段的相对测量误差较大。
增大T可以提高测量精度,但在低频段仍不能满足任务要求。
(2)组合法直接测量周期法在低频段精度高。
组合法是指在低频时采用直接测量周期法测量信号的周期,然后换算成频率。
这种方法在一定程度上可以祢补方法(1)的不足,电路实现较为复杂。
(3)倍频法直接测量法在高频段有者很高的精度。
可以把频率测量范围分成多个频段,使用倍频技术,根据频段设置倍频系数将经整形的低频信号进行倍频后再进行测量,高频段则进行直接测量。
(4)直接周期测量法用被测信号经放大整形后形成的方波信号直接控制计门控电路,使主门开放时间等于信号周期,时标为Ts的脉冲在主门开放时间进入计数器。
数字频率计设计VHDL

实验十八数字频率计实验目的在MagicSOPC 实验箱上实现8位十进制频率计的设计。
被测信号从CLOCK0(数字信号时钟源)输入,经过检测后测得的频率值用数码管1~8显示。
实验器材1、SOPC实验箱2、计算机(装有Quartus II 7.0软件)实验预习1、了解数字频率计设计原理各主要模块的设计方法。
2、提前预习,编写好主模块的VHDL程序。
实验原理频率即信号1s内振动次数,因此测定信号的频率必须有一个脉宽为1秒的输入信号作为计数允许的信号;1 秒计数结束后,计数值锁入锁存器,并为下一测频计数周期作准备的计数器清零。
数字频率计框图如图18.1所示。
由控制、计数、锁存、译码显示四部分组成。
工作原理为:控制信号产生电路对系统时钟分频后产生0.5Hz的门控信号gate,锁存允许信号LE,清零信号MR。
当gate为高电平时,计数器对被测信号cin进行计数;1s后gate变为低电平,计数器停止计数;当gate为低电平、LE上升沿这两个条件同时满足时,锁存电路将32位计数结果锁存送译码显示电路;当gate为低电平、MR上升沿这两个条件同时满足时,计数器清零,为下一次计数做准备。
各信号之间的时序关系见图18.2所示。
图18.1 数字频率计框图1、控制信号产生电路:根据选定的输入时钟信号设定分频系数,要求输出0.5Hz门控信号gate、1Hz锁存允许信号LE和1Hz清零信号MR。
这几个信号控制整个系统的工作,非常关键,要求先锁存后清零,否则计数结果可能丢失,参考时序图18.2所示。
2、计数模块:定义十进制计数器元件,有cp(时钟输入)、MR(清零输入,上升沿有效)、gate(门控信号)三个个输入引脚,Q0~Q3、co(进位)5个输出引脚。
功能定义为gate为高电平时在cp上升沿计数;gate为低MR为高时清零。
利用元件调用的方法组成8位十进制计数器3、锁存电路:设计一32位锁存器,定义gate(门控信号)、LE(锁存允许,上升沿有效)d0~d31共34个输入引脚;Q0~Q31共32个输出引脚。
数字式频率计设计

数字式频率计的设计摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得更为重要。
数字频率计是近代电子技术领域的重要测量工具之一,同时也是其他许多领域广泛应用的测量仪器。
数字频率计是在规定的基准时间内把测量的脉冲数记录下来,换算成频率并以数字形式显示出来。
数字频率计用于测量信号(方波,正弦波或其他周期信号)的频率,并用十进制数字显示,它具有精度高,测量速度快,读数直观,使用方便等优点。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点。
本次设计的数字频率计以555为核心,采用直接测频法测频,能够测量正弦波、三角波、锯齿波、矩形波等。
根据显示的频率范围,用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;根据输入信号的幅值要求,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路,通过这些整体要求,由显示部分,计数部分,逻辑控制部分,时基电路部分,构成简易的频率计的设计。
目录一.设计任务和要求 (3)1.设计任务 (3)2.设计要求 (3)二.系统设计 (4)1.系统要求 (4)2. 方案设计 (5)3.系统工作原理 (6)三.单元电路设计 (8)1.时基电路部分 (8)2.计数显示部分电路 (11)3.控制电路设计如下 (14)四.电路仿真分析 (15)五.元器件的选择及参数确定 (17)1.电路调试 (17)2系统功能及性能测试 (18)3.电路安装 (20)4.调试 (21)参考文献 (25)总结及体会 (26)附录 (28)一.设计任务和要求1.设计任务设计一个数字式频率计。
2.设计要求1、能够测量正弦波、三角波、锯齿波、矩形波等周期性信号的频率;2、能直接用十进制数字显示测得的频率;3、频率测量范围:1HZ—10KHZ且量程能自动切换;4、输入信号幅度范围为0.5—5V,要求仪器自动适应5、测量时间:t≼1.5s6、电源:220V/50HZ的工频交流电供电;(注:直流电源部分仅完成设计即可,不需制作,用实验室提供的稳压电源调试,但要求设计的直流电源能够满足电路要求)7、按照以上技术要求设计电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行仿真,用万用板焊接元器件,制作电路,完成调试、测试,撰写设计报告。
频率计设计全过程

频率计设计全过程一、前言本文以AT89C51单片机为控制器件的频率测量方法,并用汇编语言进行设计,采用单片机智能控制,结合外围电子电路,得以高低频率的测量。
根据频率计的特点,可广泛应用于各种测试场所。
二、系统概述本文设计了一种基于单片机的简易数字频率计。
(一)系统设计任务设计一简易数字频率计,其基本要求是: (1)被测信号可以是正弦波、三角波、方波。
(2)频率测量范围为0.1HZ-10MHZ信号。
(3)频率测量准确度:公式。
(4)显示方式为六位十进制数显示。
(5)使用PROTEUS软件进行仿真。
(二)系统组成频率计由单片机AT89C51、信号预处理电路、测量数据显示电路和系统软件所组成,其中信号预处理电路包含待测信号放大、波形变换、波形整形和分频电路。
系统软件包括测量初始化模块、显示模块、信号频率测量模块、量程自动转换模块、信号周期测量模块、信号定时器中断服务模块、二进制数到BcD码转换模块。
(三)系统原理频率的定义是:单位时间(1S)内周期信号的变化次数。
若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T。
本频率计的设计以AT89C51单片机为核心,利用它内部的定时/计数器完成待测信号频率、周期的测量。
单片机AT89C51内部具有2个16位定时/计数器,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功能。
在构成为定时器时每个机器周期加1(使用12MHZ时钟时,每IUS加1),这样以机器周期为基准可以用来测量时间间隔。
在构成计数器时,在相应的外部引脚发生从1到0的跳变时计数器加1,这样在计数闸门的控制下可以用来测量待测信号的频率,外部输入每个机器周期被采样一次,这样检测一次从1到0的跳变至少需要2个机器周期(24个振荡周期),所以最大计数速率为时钟频率的1/24(使用12MHZ时钟时,最大计数速率为500KHZ)。
定时/计数器的工作由相应的运行控制位TR控制,当TR置1,定时/计数器开始计数;当TR清0,停止计数。
数字频率计的VHDL设计

课程设计题目、内容、要求目录1 课程设计题目、内容与要求……………………………………1.1 设计内容……………………………………………………1.2 具体要求……………………………………………………2 系统设计…………………………………………………………2.1 设计思路……………………………………………………2.2 系统原理与设计说明3 系统实现…………………………………………………………4 系统仿真…………………………………………………………5 硬件验证(操作)说明…………………………………………6 总结……………………………………………………………7 参考书目………………………………………………………1 课程设计题目、内容与要求1.1课程设计的题目:数字频率计设计1.2课程设计内容:(1)设计一个能测量方波信号的频率计;(2)测量范围是0-999999Hz;(3)结果用十进制数显示。
2 系统设计2.1设计思路:2.1.1 数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。
本数字频率计采用自顶向下的设计思想,通过闸门提供的1s闸门时间对被测信号进行计数及测出的被测信号的频率,测出的频率再通过译码器译码后输出给显示器显示。
根据系统设计的要求,数字频率计的电路原理框图如下:数字频率计电路原理框图2.2 系统原理与设计说明系统各个模块的功能如下:2.2.1标准时钟发生电路模块借用实验板上标准时钟发生电路,为计数闸门控制电路提供一个标准8Hz信号。
2.2.2 计数器闸门控制电路模块计数器闸门控制电路就是产生三个控制信号,即计数器复位信号、4位十进制计数器允许计数信号、锁存信号。
2.2.3锁存电路模块锁存电路就是为了让LED数码管在信号来临之前保持计数值不变。
2.2.4计数器复位电路模块计数器复位电路是让频率计恢复到计数初始态。
2.2.5 LED数码管驱动电路模块LED数码管驱动电路就是为LED数码管提供驱动电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长安大学电子技术课程设计数字频率计的设计专业:班级:姓名指导教师:日期:目录引言第一章系统概述一、设计方案的选择1、计数法2、计时法二、整体框图及原理第二章单元电路设计一、放大电路设计二、闸门电路设计三、时基电路设计四、控制电路设计五、报警电路设计六、整体电路图七、整机元件清单第三章设计小结一、设计任务完成情况二、问题及改进三、心得体会鸣谢附录引言题目:数字频率计的设计初始条件:本设计可以使用在数模电理论课上学过或没学过的集成器件和必要的门电路构建简易频率计,用数码管显示频率计数值。
要求完成的主要任务:①设计一个频率计。
要求用4位7段数码管显示待测频率,并用发光二极管表示单位。
②测量频率的范围:100hz—100khz。
③测量信号类型:正弦波和方波。
④具有超量程报警功能。
摘要:本次课程设是基于TTL系列芯片的简易数字频率计,数字频率计应用所学的数字电路和模拟电路的知识进行设计。
在设计过程中,所有电路仿真均基于Multisim仿真软件。
本课程设计介绍了简易频率计的设计方案及其基本原理,并着重介绍了频率计各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。
设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于测试设计是否符合任务要求。
三是是对本次课程设计的总结。
关键字:频率计、TTL芯片、时基电路、逻辑控制、分频、计数、报警第一章系统概述一、设计方案的选择信号的频率就是信号在单位时间内所产生的脉冲个数,其表达式为f=N/T,其中f为被测信号的频率,N为计数器所累计的脉冲个数,T为产生N个脉冲所需的时间。
计数器所记录的结果,就是被测信号的频率。
如在1s内记录1000个脉冲,则被测信号的频率为1000HZ。
测量频率的基本方法有两种:计数法和计时法,或称测频法和测周期法。
1、计数法计数法是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为T,计数器得到的计数值为N1,则被测频率为f=N1/T。
改变时间T,则可改变测量频率范围。
设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N1=N+1,N1的相对误差为δN1=(N1-N)/N=1/N。
由N1的相对误差可知,N的数值愈大,相对误差愈小,成反比关系。
因此,在f以确定的条件下,为减少N的相对误差,可通过增大T的方法来降低测量误差。
当T为某确定值时(通常取1s),则有f1=N1,而f=N,故有f1的相对误差:δf1=(f1-f)/f=1/f从上式可知f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。
因此测频法适合用于对高频信号的测量,频率越高,测量精度也越高。
2、计时法计时法又称为测周期法,测周期法使用被测信号来控制闸门的开闭,而将标准时基脉冲通过闸门加到计数器,闸门在外信号的一个周期内打开,这样计数器得到的计数值就是标准时基脉冲外信号的周期值,然后求周期值的倒数,就得到所测频率值。
首先把被测信号通过二分频,获得一个高电平时间是一个信号周期T的方波信号;然后用一个一直周期T1的高频方波信号作为计数脉冲,在一个信号周期T的时间内对T1信号进行计数,如图(1-1-2)图 1-1-2 计时法测量原理若在T时间内的计数值为N2,则有:T2=N2*T1 f2=1/T2=1/(N2*T1)=f1/N2N2的绝对误差为N2=N+1N2的相对误差为δN2=(N2-N)/N=1/NT2的相对误差为δT2=(T2-T)/T=(N2*T1-T)/T=f/f1从T2的相对误差可以看出,周期测量的误差与信号频率成正比,而与高频标准计数信号的频率成反比。
当f1为常数时,被测信号频率越低,误差越小,测量精度也就越高。
根据本设计要求的性能与技术指标,首先需要确定能满足这些指标的频率测量方法。
由上述频率测量原理与方法的讨论可知,计时法适合于对低频信号的测量,而计数法则适合于对较高频信号的测量。
但由于用计时法所获得的信号周期数据,还需要求倒数运算才能得到信号频率,而求倒数运算用中小规模数字集成电路较难实现,因此,计时法不适合本实验要求。
测频法的测量误差与信号频率成反比,信号频率越低,测量误差就越大,信号频率越高,其误差就越小。
但用测频法所获得的测量数据,在闸门时间为一秒时,不需要进行任何换算,计数器所计数据就是信号频率。
因此,本实验所用的频率测量方法是测频法。
二、整体框图及原理输入电路:由于输入的信号可以是正弦波,方波,三角波。
而后面的闸门或计数电路要求被测信号为方波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成方波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
(如仿真图 2-1-5)当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。
(如仿真图 2-1-4)频率测量:被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。
时基信号由石英晶体多谐振荡器电路产生,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。
被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。
计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。
在计数的时候数码管不显示数字。
当计数完成后,此时要使数码管显示计数完成后的数字。
控制电路:控制电路需要控制几个模块。
包括计数电路,锁存电路,和译码显示电路。
通过产生控制信号控制所要控制的模块,同时会产生清零信号和锁存信号,使显示器显示的测量结果稳定。
第二章单元电路设计一、放大整形电路对信号的放大功能由三极管构成放大电路来实现,对信号整形的功能由施密特触发器来实现。
施密特触发器电路是一种特殊的数字器件,一般的数字电路器件当输入起过一定的阈值,其输出一种状态,当输入小于这个阈值时,转变为另一个状态,而施密特触发器不是单一的阈值,而是两个阈值,一个是高电平的阈值,输入从低电平向高电平变化时,仅当大于这个阈值时才为高电平,而从高电平向低电平变化时即使小于这个阈值,其仍看成为高电平,输出状态不这;低电平阈值具有相同的特点。
方案一:放大整形电路由三极管与与非门组成。
三极管构成的放大器将输入频率为fx 的周期信号如正弦波、三角波、等进行放大。
将电源电压设为5V,当输入信号幅值比较大时,会出现线性失真,将放大后的波形幅度控制在5V以内。
与非门构成施密特触发器对放大器的输出信号进行整形,使之成为矩形脉冲。
方案二:放大部分同方案一,整形部分是由555构成的施密特整形电路。
方案对比:用与非门构成的施密特触发器因为阈值电压易受受温度、电源电压及干扰的影响,稳定性较差。
而555定时器的比较器灵敏度高,输出驱动电路大,并且且555定时器构成的施密特触发器结构简单,而且抗干扰能力比用与非门构成的施密特触发器要强,因此选用方案二。
555构成的施密特触发器将555定时器的u I6和u I2输入端连在一起作信号的输入端,即可组成施密特触发器。
如图(2-1-1)所示。
为了滤除高频干扰,提高比较器参考电压的稳定性,通常将5脚通过0.01μF电容接地。
如果输入信号电压是一个三角波,当u I从0逐渐增大时,若u I˂ U CC/3时,比较器C1输出高电平,C2输出低电平,使基本RS触发器置1,则输出u0=1;若u I增加到u I≥2U CC/3时,比较器C1输出低电平,C2输出高电平,使基本RS触发器置0,则输出u0=0。
当u I高电平逐渐下降到U CC/3˂u I˂2U CC/3 时,比较器C1和C2输出均为1,基本RS触发器保持原状态,进而使u0=0不变。
若u I继续减小到u I≤U CC/3时,比较器C2输出0,基本RS触发器置1,输出u0也随之跳为高电平1。
如此连续变化,在输出端就得到一个矩形波,其工作波形如图(2-2-2)所示。
从工作波形上可以看出:上限阈值电压UT+=2U CC/3,下限阈值电压UT- =U CC/3,回差电压△U=UT+ -UT- =U CC/3。
如果在5脚u IC上加控制电压,则可改变的△U值。
回差电压△U越大,回路的抗干扰能力越强。
各引脚名称:1、GND 地2、TRI 触发端3、OUT 输出端4、RST 复位端5、CON 外接控制电压端6、THR 阈值端7、DIS 放电端8、VCC 电源端图 2-2-1 555构成的施密特触发器图 2-2-2 工作波形放大整形电路图,如图(2-1-3)图 2-1-3 放大整形电路图仿真图:图 2-1-4图 2-1-5二、闸门电路通过74153数据选择器来选择所要的10分频、100分频和1000分频。
74153的CBA接拨盘开关来对选频进行控制。
当CBA输入001时74153输出的方波的频率是1Hz;当CBA输入010时74153输出的方波的频率是10Hz;当CBA输入011时74153输出的方波的频率是100Hz;74LS90是二-五-十进制计数器。
该芯片无需额外的元器件就可实现十进制计数,计数器依次从个位开始计数,向上为发出进位信号而是高位开始计数。
二、时基电路由两部分组成,第一部分为由石英晶体组成的多谐振荡器电路;第二部分为分频电路。
1、石英晶体多谐振荡器电路石英晶体一种具有较高频率稳定性的选频器件,广泛用于通信、定时等频率要求高的场合,石英晶体的谐振频率由石英晶体的晶体方向和外形尺寸决定,具有极高的稳定性。
由于频率计数器是一种需要频率稳定性高的器件,故此方案选用石英晶体多谐振荡器。
如图(2-3-1)所示100HZ—9999HZ 闸门时间 10ms;1KHZ—100KHZ 闸门时间 1ms取c=10uf(1F(法)=10^3mF(毫法)=10^6uF(微法)=10^9nF(纳法)=10^12pF(皮法)所以:1uF(微法)=10^3nF(纳法)=10^6pF(皮法)最基本的关系)图 2-3-1矩形周期的振荡周期为 T≈1.4RfC 当取Rf=1kΩ,C=100pF~100μF时,则该电路的振荡频率则在几赫到几兆赫的频率范围内变化。
在此选C=10nf的电容及固有频率为10kHZ的石英晶体。
2、分频电路振荡器产生10khz的脉冲,闸门时间为1s 0.1s 1ms 10ms选用4518x4作为分频电路。
4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。