2015届九年级上学期期末竞赛数学试题(人教版含答案)

合集下载

2015届江西省朝宗实验学校九年级上第一次段考数学试卷及答案

2015届江西省朝宗实验学校九年级上第一次段考数学试卷及答案

江西省朝宗实验学校2015届上学期九年级第一次段考数学试卷一、选择题(本大题共6小题,每小题3分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 已知yx 23=,那么下列式子成立的是( ) A. y x 23=B. 6=xyC.32=y x D.32=x y 2. 为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是( )A.21 B.41 C.61 D.81 3. 用配方法解方程452=-x x ,应把方程的两边同时( ) A. 加上25 B. 加上425 C. 减去25 D. 减去425 4. 已知函数y =kx +b 的图象如图所示,则一元二次方程x 2+x +k -1=0根的存在情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法确定5. 如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D '处。

若AB =3,AD =4,则ED 的长为( )A.23B. 3C. 1D.34 6. 如图,在△ABC 中,AB =AC =a ,BC =b (a>b )。

在△ABC 内依次作∠CBD =∠A ,∠DCE=∠CBD ,∠EDF =∠DCE ,则EF 等于( )A. 23abB. 23baC. 34abD. 34ba二、填空题:(本大题共8小题,每小题3分,共24分)7. 在一个不透明的口袋中有3个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在15%左右,则口袋中的白球大约有_________个。

8. 如图所示,菱形ABCD 的边长为4,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B =60°,则EF 长为________。

9. 已知21,x x 是方程0222=--x x 的两个实数根,则2121x x x x ++=_________。

天津一中2015届九年级(上)第二次月考数学试题(含答案)

天津一中2015届九年级(上)第二次月考数学试题(含答案)

本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.试卷满分120分.考试时间100分钟.第Ⅰ卷(选择题 共36分)注意事项:1.答第I 卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填写在“答题卡”上,然后再将准考证号、考试科目用2B 铅笔填涂在“答题卡”相应的信息点上.2.答案答在本张试卷上无效.每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一.选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧AmB 上的一点, 则APB ∠的度数是( )A .︒30B .︒45C .︒60D .不能确定第2题图 第5题图 第6题图3.一元二次方程0542=+-x x 的根的情况是( )4.已知函数xy 1=的图象在第一象限的一支曲线上有一点),(c a A ,点)1,(+c b B 在该函数图象的另外一支上,则关于一元二次方程02=++c bx ax 的两根1x 、2x 判断正确的是( )于点D ,则BAD ∠的度数是( )A .80°B .85°C .90°D .95°6.已知二次函数c bx ax y ++=2(a ,b ,c 是常数,且0≠a )的图象如图所示,则一次函数a b cx y 2+=与反比例函数xaby =在同一坐标系内的大致图象是( ) A .B .C .….. D .7.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .15)5.04)(3(=-+x xB .15)5.04)(3(=++x xC .15)5.03)(4(=-+x x D .15)5.04)(1(=-+x x8.二次函数c bx ax y ++=2(a ,b ,c 是常数,且0≠a )中的x 与y 的部分对应值如下表:下列结论: (1)0<ac ;(2)当x >1时,y 的值随x 值的增大而减小. (3)3是方程0)1(2=+-+c x b ax 的一个根;(4)当31<<-x 时,0)1(2>+-+c x b ax .其中正确的个数为( ) A .4个B . 3个C . 2个D . 1个9. 若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( )A .12 B .34 C .13 D .1410.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( ) A .212+πB .12+πC .1+πD .21+π11. 如图,扇形AOB 的半径为1,︒=∠90AOB ,以AB 为直径画半圆.则图中阴影部分的面积为( ) A .14π B .π12- C .12 D .1142π+12.二次函数2y ax bx c =++ (0≠a )的图象如图,给出下列四个结论: ①042<-b ac ;②b c a 24<+;③023<+c b ;④)1()(-≠>++n a b b an n ,其中正确结论的个数是( ) A .4个B . 3个C .2个D . 1个OAB第11题图第II 卷(非选择题 共84分)二.填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸上.13.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m ,再由乙猜甲刚才所选的数字,记为n .若m 、n 满足1m n -≤,则称甲、乙两人“心有灵犀”.则甲、乙两人“心有灵犀”的概率是 .14.如图,在平面直角坐标系xOy 中,已知点)4,3(A ,将OA 绕坐标原点O 逆时针旋转90°至′OA ,则点A ′的坐标是 .16.如图的一座拱桥,当水面宽AB 为m 12时,桥洞顶部离水面m 4,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是46)(x 91-y 2+-=,则选取点B 为坐标原点时的抛物线解析式是 .17.如图,平行于x 轴的直线AC 分别交抛物线21x y =)0(≥x 与322x y =)0(≥x 于B 、C 两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,交2y 于点E ,则=ABDE_______. 18.如图,有一张纸片,是由边长为a 的正方形ABCD 、斜边长为2b 的等腰直角三角形FAE 组成的(b <a ),AFE ∠=90°,且边BD EFAAD 和AE 在同一条直线上.要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为 ;(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要 说明剪拼的过程: . 三.解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(本小题8分)在下列网格图中,每个小正方形的边长均为1个单位.在ABC Rt ∆中,︒=∠90C ,4,3==BC AC .(1)试在图中做出ABC ∆以A 为旋转中心,沿顺时针方向旋转90°后的图形111C B A ∆; (2)若点B 的坐标为)5,3(-,试在图中画出直角坐标系,并写出A 、C 两点的坐标; (3)根据(2)的坐标系作出与△ABC 关于原点对称的图形222C B A ∆,并写出2B 、2C 两点的坐标.20.(本小题8分)已知关于x 的一元二次方程0)(2)(2=-+++c a bx x c a ,其中a 、b 、c 分别为ABC ∆三边的长.(1)如果1-=x 是方程的根,试判断ABC ∆的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断ABC ∆的形状,并说明理由; (3)如果ABC ∆是等边三角形,试求这个一元二次方程的根.21.(本小题10分)小明和小刚做纸牌游戏,如图,两组相同的纸牌,每组两张,牌 面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各抽取一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.22.(本小题10分)如图,AB 为O ⊙的直径,点C 为O ⊙上一点,若CAM BAC ∠=∠,过点C 作直线l 垂直于射线AM ,垂足为点D .(1)试判断CD 与O ⊙的位置关系,并说明理由;(2)若直线l 与AB 的延长线相交于点E ,O ⊙的半径为3,并且30CAB °∠=.求CE 的长.(第22题图)A23. (本小题10分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x 的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.24. (本小题10分)如图1,在平面直角坐标系中,O 为坐标原点,P 是反比例函数xy 12=)0(>x 图象上任意一点,以P 为圆心,PO 为半径的圆与坐标轴分别交于点A 、B . (1)求证:线段AB 为⊙P 的直径; (2)求AOB ∆的面积; (3)如图2,Q 是反比例函数xy 12=)0(>x 图象上异于点P 的另一点,以Q 为圆心,QO 为半径画圆与坐标轴分别交于点C 、D .求证:OA BO OC DO ⋅=⋅.25.(本小题10分)如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知10,8==AD AO . (1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O ,F ,且直线366-=x y 是该抛物线的切线,求抛物线的解析式;参考答案二.填空题 13.5814.(﹣4,3) 15.256. 16. 46)(x 91-y 2++= 17.33-18.(Ⅱ)如图,①在BA 上截取BG b =;②画出两条裁剪线CG 、FG ;③以点C 为旋转中心,把△CBG 顺时针旋转90°到△CDH 的 位置,以点F 为旋转中心,把△FAG 逆时针旋转 90°到△FEH 的位置.此时,得到的四边形FGCH 即为所求.三、解答题BCD E FGHA ① ②①②22.(1)解:直线CD与⊙O相切. ………………1分理由如下:连接OC.∵OA=OC∴∠BAC=∠OCA∵∠BAC=∠CAM ∴∠OCA=∠CAM∴OC ∥AM ……3分 ∵CD ⊥AM ∴OC ⊥CD ∴直线CD 与O ⊙相切. …………………………5分 (2)解:∵30CAB °∠= ∴∠COE =2∠CAB =60︒ ∴在Rt △COE 中,OC =3,CE=OC·tan 60︒=(3)证明:若点Q 为反比例函数y =(x >0)图象上异于点P 的另一点,参照(2),同理可得:S △COD =DO •CO =24,则有:S △COD =S △AOB =24,即BO •OA =DO •CO , ∴DO •OC =BO •OA .(第20题答案图)A25.解:(1)由折叠的性质得到:△ADE≌△AFE,则AF=AD.又∵AD=10,AO=8,∴,∴F(6,0);(2)依题意可设过点O、F的抛物线解析式为y=a(x﹣0)(x﹣6),即y=ax(x﹣6)(a≠0).依题意知,抛物线与直线y=6x﹣36相切,∴,∴ax2﹣(6a+6)x+36=0 有两个相等的实数根,∴△=(6a+6)2﹣4a×36=0,解得a=1,∴抛物线的解析式为y=x2﹣6x;。

辽宁庄河二中2015届人教版九年级上第一次月考数学试卷及答案

辽宁庄河二中2015届人教版九年级上第一次月考数学试卷及答案

庄河市第二初级中学2015届九年级上学期第一次月考数学试题一.选择题(每题3分,共计24分)1.方程:①13122=-xx ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方 程是 ( )A .①和② B .②和③ C .③和④ D .①和③2.一元二次方程x 2-4=0的解是( )A .x=2B .x=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-4.3.方程x 2_3x-2=0的根的情况是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .方程没有实数根D .方程的根的情况无法确定 4,抛物线y =(x -2)2+3的对称轴是( )A.直线x =-3B.直线x =3C.直线x =-2D.直线x =25.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A)23(1)2y x =-- (B)23(1)2y x =+-(C )23(1)2y x =++ (D )23(1)2y x =-+ 6,在同一坐标系中,抛物线y =4x 2,y =14x 2,y =-14x 2的共同特点是( ) A.关于y 轴对称,开口向上 B.关于y 轴对称,y 随x 的增大而增大 C.关于y 轴对称,y 随x 的增大而减小 D.关于y 轴对称,顶点是原点7. 若关于x 的一元二次方程014)1(22=-+++a x x a 的常数项为0,则a 的值等于 ( )A.1或-1 B .2 C .1 D .08.已知二次函数y=ax 2+bx+c (a ≠0)的图像如图所示,在下列四个结论中:二、填空题(每题3分,共计24分)9.方程x(x-2)=0的根是__________10.如果x=2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 11.关于x 的一元二次方程0-22=-k x x 没有实数根,则k 的取值范围是 12.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 13.抛物线622--=x x y 的对称轴是直线_______________.14.边长为2的正方形,如果边长增加x ,则新正方形面积S 与x 之间的函数关系是 .15.若二次函数y =2x 2经过平移后顶点的坐标为(-2, 3),则平移后的解析式为 _______ 16.如图7,点A ,B 的坐标分别为(1,4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-, 则点D 的横坐标最大值为 .三.解答题 (共计36分,17题16分,18、19题各10分)17.解方程: (1)1)2x (2=- (2)01x 4x 22=--18.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用22m ),现在已备足可以砌50m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300m 2.19.已知二次函数y = -2x 2+8x -6,完成下列各题:(1)将函数关系式用配方法化为2()y a x h k =++的形式,并写出它的顶点坐标、对称轴.(2)它的图像与x 轴交于A,B 两点,顶点为C,求S △ABC.yxODCB (4,4)A (1,4)22m21. 如图,直线y=x+m 和抛物线y=x 2+bx+c 都经过点A(1,0),B(3,2). (1)求m 的值和抛物线的解析式.(2)求不等式x 2+bx+c>x+m 的解集.(直接写出答案)22.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.五.解答题(共计36分,23、24、25题各12分)23.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从点A 出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.(1)求点P 从点A 运动到点D 所需的时间.(2)设点P 运动时间为t(s),①当t=5时,求出点P 的坐标.②若△OAP 的面积为S,试求出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围.y xB A25.如图,二次函数2212+-=x y 与x 轴交于A ﹑B 两点,与y 轴交于C 点,点P 从A 点出(A)xy CDB0FA EC DB FEDCB A发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动。

山东省济南市章丘市辛寨乡辛锐中学2015届九年级数学上学期期末竞赛试题

山东省济南市章丘市辛寨乡辛锐中学2015届九年级数学上学期期末竞赛试题

山东省济南市章丘市辛寨乡辛锐中学2015届九年级数学上学期期末竞赛试题(时间:120分钟 满分:120分)一、选择题(每题3分,共45分)1.如图所示几何体的主(正)视图是( )A .B .C .D .2.一个口袋中装有 4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出 1个球是白球的概率是( ) A 21 B 31 C 41 D 513.抛物线42-=x y 的顶点坐标是( )A (2,0)B (-2,0)C (1,-3)D (0,-4)4.若x 1,x 2是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .65.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是( )A .8米B .4.5米C .8厘米D .4.5厘米6.顺次连结一个四边形各边中点所得的四边形必定是( )。

A 、平行四边形 B 、矩形 C 、菱形 D 、正方形.7. 如图,Rt△ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40° B.30° C.20° D.10°8. 如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3, 则sinB的值是( )A. 2 3B. 3 2C. 3 4D. 4 39.已知线段AB=1,C 是线段AB 的黄金分割点,则AC 的长度为( ) A.215- B .253- C .215-或253- D .以上都不对10.如图,在菱形ABCD 中,∠ABC =60°.AC =4.则BD 的长为( )(A )38 (B )34 (C )32 (D )8 11. 如图,AB ∥CD ,BO :OC= 1:4,点E 、F 分别是OC , OD 的中点,则EF :AB 的值为( )CABD(第8题图)第7题图A 'B DAC FOABCDEA 、1B 、2C 、3D 、412.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+a B .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a13.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y14.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++15.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( )A. ①②③④B. ①②④ C . ①③④ D . ②④ 二、填空题(每空3分,共18分) 16. 已知点A (2,m )在函数xy 2=的图象上,那么m=_________。

人教版数学九年级上册 24.2---24.4练习题含答案

人教版数学九年级上册  24.2---24.4练习题含答案

24.2点和圆、直线和圆的位置关系一.选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70°B.45°C.30°D.20°2.等边△ABC的三个顶点都在⊙O上,点P是圆上不与A、B、C重合的点,∠BPC的度数是()A.60°B.120°C.60°或120°D.无法确定3.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°4.如图,AB,AC,BD是⊙O的切线,切点分别是P,C,D.若AC=5,BD=3,则AB 的长是()A.2B.4C.6D.85.如图,P A,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交P A,PB 于点E,F,若P A=4,则△PEF的周长是()A.4B.8C.10D.126.如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4﹣2C.2D.4﹣47.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F,若AE=5,AC=4,则BE的长为()A.B.C.D.8.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A、B,DE切⊙O 于E,交AM于D,交BN于C.设AD=x,BC=y,则y与x的函数图象是()A.xy=16B.y=2x C.y=2x2D.xy=810.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,过点O作OD⊥AC交⊙O于点D,连接CD,若∠P=30°,AP=12,则CD的长为()A.2B.3C.2D.4二.填空题11.如图,在平面直角坐标系xoy中,A(8,0),⊙O半径为3,B为⊙O上任意一点,P 是AB的中点,则OP的最小值是.12.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是.13.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.14.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.15.如图,在直角坐标系中,一直线l经过点M(,1)与x轴、y轴分别交于A、B两点,且MA=MB,可求得△ABO的内切圆⊙O1的半径r1=﹣1;若⊙O2与⊙O1、l、y 轴分别相切,⊙O3与⊙O2、l、y轴分别相切,…,按此规律,则⊙O2014的半径r2014=.三.解答题16.如图,BC是半⊙O的直径,A是⊙O上一点,过点A的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求P A的长度.17.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.18.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.19.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.参考答案与试题解析一.选择题1.【解答】解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=30°,∴∠BOC=60°,∴∠C=30°.故选:C.2.【解答】解:如图,∵△ABC为等边三角形,∴∠A=60°,∴∠BPC=∠A=60°,∵∠A+∠P′=180°,∴∠P′=180°﹣60°=120°,∴当P点在上时,∠BPC=120°.故选:C.3.【解答】解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.4.【解答】解:∵AB,AC,BD是⊙O的切线,切点分别是P,C,D.∴AP=AC,BD=BP,∴AB=AP+BP=AC+BD,∵AC=5,BD=3,∴AB=5+3=8.故选:D.5.【解答】解:∵P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,P A=PB=4,∴△PEF的周长=PE+EF+PF=P A+PB=8.故选:B.6.【解答】解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC﹣OD=4﹣2.故选:B.7.【解答】解:连接OD,如图,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠ACB=90°,∴OD∥AC,∴△BOD∽△BAC,∴=,即=,∴BE =.故选:B .8.【解答】解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PF A =PGA =90°,∴S △PBC =BCPE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4,∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13,∴由切线长定理可知:S △APG =S 四边形AFPG =, ∴=×AGPG ,∴AG =, 由切线长定理可知:CE =CF ,BE =BG ,∴△ABC 的周长为AC +AB +CE +BE=AC +AB +CF +BG=AF +AG=2AG=13,故选:C .9.【解答】解:作DF ⊥BN 交BC 于F ,∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=8,∵BC=y,∴FC=BC﹣BF=y﹣x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=x,CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,DC2=DF2+CF2,∴(x+y)2=64+(x﹣y)2,∴xy=16故选:A.10.【解答】解:∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∵∠P=30°,∴OP=2OC,∠POC=90°﹣∠P=60°,∵AP=12,即OA+OP=12,∴3OC=12,解得OC=4,∴∠AOC=120°,∵OD⊥AC,∴=,∴∠AOD=∠COD=60°,而OD=OC,∴△OCD为等边三角形,∴CD=OC=4.故选:D.二.填空题(共5小题)11.【解答】解:根据题意,当P在⊙O内,且OP+P A=OA时,OP有最小值,如图,∵A(8,0),⊙O半径为3,∴OA=8,OB=3,∴AB=8+3=11,∵P是AB的中点,∴AP=5,5,∴OP=OA﹣AP=8﹣5.5=2.5,∴OP的最小值是2.5,故答案为2.5.12.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.13.【解答】解:如图1所示,S=r(AB+BC+AC)=r×42=21r,△ABC过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,=BC×AD=×7×12=42,∴S△ABC∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π22=4π(cm2),故答案为:4πcm2.14.【解答】解:由题意知OB=10连接OC ,作直角△ABO 斜边中线OE ,连接ED ,则DE =OC =2,AE =OB =5. 因为AD <DE +AE ,所以当DE 、AE 共线时AD =AE +DE 最大为7cm .故答案为:7.15.【解答】解:连接OO 1、AO 1、BO 1,作O 1 D ⊥OB 于D ,O 1 E ⊥AB 于E ,O 1 F ⊥OA 于F ,如图所示:则O 1 D =O 1 E =O 1 F =r 1,∵M 是AB 的中点,∴B (0,2),A (2,0),则S △OO 1B =×OB ×r 1=r 1,S △AO 1O =×AO ×r 1=r 1S △AO 1B =×AB ×r 1=××r 1=2r 1S △AOB =×2×2=2;∵S △AOB =S △OO 1B +S △AO 1O +S △AO 1B =(3+)r 1=2, ∴r 1==﹣1;同理得:r 2=,r 3=…∴r n =,依此类推可得:⊙O 2014的半径r 2014=;故答案为:.三.解答题(共4小题)16.【解答】(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠F AO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠P AE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠P AE=∠AEB,∠P=∠P,∴△APB∽△CP A,∴,即P A2=PBPC,∴,解得P A=.17.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,而∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,DE是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.18.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.19.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=4024.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5B.6C.7D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC 全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC 是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A →B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.24.4弧长和扇形面积一.选择题1.圆锥的母线长为9,底面圆的直径为8,则圆锥的侧面积为()A.18πB.36πC.54πD.72π2.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过长度()cm A.πB.πC.πD.π3.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为()A.πB.2C.3D.44.已知扇形的圆心角为120°,半径为5cm,则此扇形的弧长为()A.πcm B.πcm C.πcm D.πcm5.一个扇形的圆心角为120°,半径为,则这个扇形的面积是()A.B.4πC.2πD.π6.如图所示,分别以n边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm27.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,若AC=10,∠BAC=30°,则图中阴影部分的面积为()A.5πB.7.5πC.D.π8.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,形成树叶形(阴影)图案,则树叶形图案的面积为()A.B.π﹣2C.2π﹣2D.2π﹣49.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为()A.πB.πC.πD.π10.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.二.填空题11.圆锥的底面半径为5,母线长为7,则圆锥的侧面积为.12.圆锥的高为3cm,底面半径为2cm,则圆锥的侧面积是cm2.13.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=cm.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为.15.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.三.解答题16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB、AC于M、N两点,求图中阴影部分的面积.(保留π)17.已知:如图,C为半圆O上一点,AC=CE,过点C作直径AB的垂线CP,弦AE分别交PC、CB于点D、F.(1)求证:AD=CD;(2)若DF=,∠CAE=30°,求阴影部分的面积.18.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).参考答案与试题解析一.选择题1.【解答】解:∵底面圆的直径为8,∴底面圆的半径为4,∴圆锥的侧面积=×4×2π×9=36π.故选:B.2.【解答】解:分针40分钟转过的度数为:360°×=240°,分针针端转过长度==cm,故选:B.3.【解答】解:设圆锥的底面半径为r,根据题意得2πr3=6π,解得r=2,即圆锥的底面半径为2.故选:B.4.【解答】解:l==π(cm).故选:B.5.【解答】解:由扇形面积公式得:,故选:A.6.【解答】解:∵n边形的外角和为360°,半径为2cm,==4πcm2,∴S阴影故选:C.7.【解答】解:∵AC是直径,∴∠ABC=90°,∵∠BAC=30°,AC=10,∴BC=AC=5,AB=BC=5,∠ACB=60°,∵OC=OB,∴△OBC 是等边三角形,∴∠BOC =∠AOD =60°,∵S △AOD =S △DOC =S △BOC =S △AOB ,∴S 阴=2S 扇形OAD=2×= 故选:C .8.【解答】解:观察图形可知:S 树叶形图案=2S 扇形﹣S 正方形=2×﹣22=2π﹣4故选:D .9.【解答】解:如图,连接ED ,作AM ⊥EC 于M ,BN ⊥CD 于N .∵BC =2AC ,∴设AC =x ,BC =2x ,∵∠C =90°,∴x 2+(2x )2=5,∴x =1,2x =2,AC =1,BC =2,∵∠AMC =∠BNC =∠ACB =90°,∴∠ACM +∠CAM =90°,∠ACM +∠BCN =90°,∴∠BCN =∠CAM ,∵∠CBN +∠BCN =90°,∴∠CAM +∠CBN =90°,∵AE =AC ,AM ⊥EC ,BC =BD ,BN ⊥CD ,∴∠CAE =2∠CAM ,∠CBD =2∠CBN ,∴∠CAE +∠CBD =180°, ∵的长度恰好是的倍,设∠CBD =m ,∠CAE =n ,∴=×,∴4m =5n ,∵m +n =180°,∴m =100°,n =80°,∴S 阴=+=,故选:B .10.【解答】解:∵∠ACB =90°,OA =OB =1,∴AC =BC =, ∴△ABC 是等腰直角三角形,∴AB =2OA =2,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB =2,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形BAA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形BCC ′,=S 扇形ABA ′﹣S 扇形CBC ′, =﹣, =﹣=.故选:D .二.填空题(共5小题)11.【解答】解:根据题意得,圆锥的侧面积=×2π×5×7=35π. 故答案为35π.12.【解答】解:∵圆锥的底面半径为2cm ,高为3cm , ∴圆锥的母线长为cm ,∴圆锥的侧面积为π×2×=2π(cm ).故答案为:2π.13.【解答】解:∵圆锥的母线长是10cm,侧面积是50πcm2,∴圆锥的侧面展开扇形的弧长为:l===10π(cm),∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===5(cm),故答案为:5.14.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S==10π扇形OBC∴图中阴影部分的面积=10π,故答案为10π.15.【解答】解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=2,∵∠ABC=30°,AD⊥BC于点D,∴AD==,BD=AB=,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB =OC ,∴∠OCB =∠OBC =75°,∴∠BOC =30°,∴∠AOC =60°,CM =OC ==1,∴S 阴影=S △ABD +S △AOB ﹣S 扇形OAB +(S 扇形OBC ﹣S △BOC )=S △ABD +S △AOB ﹣S 扇形OAC ﹣S △BOC =+×﹣﹣ =1+﹣π.故答案为1+﹣π.三.解答题(共4小题)16.【解答】解:连接AD ,在△ABC 中,AB =AC ,∠A =120°,BC =2,⊙A 与BC 相切于点D ,则AD ⊥BC ,,,∴∠B =30°,,∴S △ABC ﹣S 扇形AMN =.17.【解答】(1)证明:∵AC=CE,∴弧AC=弧CE,∴∠CAE=∠B.∵CP⊥AB,∴∠CPB=90°∴∠B+∠BCP=90°.∵AB是直径,∴∠ACB=90°.∴∠ACP+∠BCP=90°.∴∠B=∠ACP.∴∠CAE=∠ACP.(2)解:连接OC,∵∠CAE=30°,∴∠ACD=30°,∠COA=60°.∴∠CDF=60°.∵AB是直径,∴∠ACB=90°.∴∠BCP=60°.∴∠BCP=∠DCF=∠CFD=60°.∴AD=CD=DF=.∴DP=AD sin30°=.∴CP=CD+DP=2.(5分)∴S阴影=S扇形﹣S△AOC=﹣=.(6分)18.【解答】解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴BO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接O1E ∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE ﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S阴影=4S1=2π﹣4.19.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.。

北京市房山区2015届九年级上期末考试数学试题及答案

北京市房山区2015届九年级上期末考试数学试题及答案

房山区2014—2015学年度第一学期终结性检测试题九年级数学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中有且只有一个..是符合题意的.请将正确选项前的字母填在下表中相应1. 抛物线()225=--+y x 的顶点坐标是 A .()2,5-B .()2,5C .()25,--D .()52,- 2.如图,⊙O 是△ABC 的外接圆,若AB=OA=OB ,则∠C 等于A .30°B .40°C .60°D .80° 3.在 Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于A . 34B .43C .35D .454. 已知点P (-3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为A.xy 3=B.5yx =- C. 6y x =D.6y x =-5.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积的比为 A .1:2 B . 2:1 C . 1:4 D . 4:16. 如图,弦AB ⊥ OC ,垂足为点C ,连接OA,若OC =2,AB =4,则OA 等于 A ....7. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为A . 10mB . 12mC . 15mD .40m8. 如图,⊙O 的半径为2,点P 是半径OA 上的一个动点,过点P 作直线MN 且∠APN =60°,过点A 的切线AB 交MN 于点B . 设OP =x ,△P AB 的面积为 y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,且 DE ∥BC , 若AD =5,DB =3,DE =4,则BC 等于 .10.如图,⊙O 的半径为2,4=OA ,AB 切⊙O 于B ,弦BC OA ∥连结AC , 则图中阴影部分的面积为 .11. 如图,⊙O 的直径CD 过弦AB 的中点E ,∠BCD =15°,⊙O 的半径为10,则AB = .12. 抛物线()()2211-11n y x x n n n n +=+++(其中n是正整数)与x 轴交于A n 、B n 两点,若以A n B n 表示这两点间的距离,则A B _________=11; A B A B __________+=1122; n n A B A B A B A B ____________.+++⋅⋅⋅+=112233(用含n 的代数式表示) 二、解答题(本题共30分,每小题5分) 13.计算: 0111)2cos30()8--︒-+解:A E D xDC B ADC14.如图,C 为线段BD 上一点,AC CE ⊥,AB BD ⊥,ED BD ⊥.求证:AB BC CDDE=.解:15.已知二次函数12)3(2++-=x x k y 的图象与x 轴有交点,求k 的取值范围. 解:16. 如图,在ABC ∆中,90C ︒∠=,52sin =A ,D 为AC 上一点,45BDC ︒∠=,6=DC ,求AD 的长. 解:17. 小红想要测量校园内一座教学楼CD 的高度. 她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米)参考数据:41.12≈,73.13≈,24.25≈解:EDCB ABAβαG F E CB18. 如图,直线y =3x 与双曲线ky x=的两个交点分别为A (1 , m )和B . (1)直接写出点B 坐标,并求出双曲线ky x=的表达式; (2)若点P 为双曲线ky x=上的点(点P 不与A 、B 重合),且满足PO=OB ,直接写出点P 坐标. 解:四、解答题(本题共20分,每小题5分)19. 抛物线2y x bx c =++与x 轴分别交于点A (-1,0)和点B ,与y 轴的交点C 坐标为(0,-3). (1)求抛物线的表达式;(2)点D 为抛物线对称轴上的一个动点,若DA +DC 的值最小,求点D 的坐标. 解:20. 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD ⊥AB 交外圆于点C .测得CD =10cm ,AB =60cm ,求这个车轮的外圆半径长.解:21.如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长. 解:22. 阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:()()()0210.ab ba ab bb ⎧⎪⎪⎨⎪-⎪⎩=->;定义运算“: ※”求为※※<的值.小明是这样解决问题的:由新定义可知a =1,b =-2,又b <0,所以1※(-2)= 12.请你参考小明的解题思路,回答下列问题: (1) 计算:2※3= ;(2) 若5※m =56,则m = .(3) 函数y =2※x (x ≠0)的图象大致是( )五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. 直线y =﹣3x +3与x 轴交于点A , 与y 轴交于点B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,与x 轴的另一交点为C . (1)求a ,k 的值;(2)若点M 、N 分别为抛物线及其对称轴上的点, 且以A ,C ,M ,N 为顶点的四边形为平行四边形,请直接写出点M的坐标.y x O yxO A B C D DAB24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF . (1)若∠POC =60°,AC =12,求劣弧PC 的长;(结果保留π) (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线. 解:25. 已知抛物线2154(3)22my x m x -=--+. (1) 求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2) 若A 2(3,2)n n -+、B 2(1,2)n n -++是抛物线上的两个不同点,求抛物线的表达式和n 的值; (3) 若反比例函数(0,0)ky k x x=>>的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足2<0x <3,求k 的取值范围.解:F房山区2014—2015学年度第一学期终结性检测试题九年级数学参考答案和评分参考二、填空题(每题4分)9. 325 10. 23π 11. 10 12. 12231n ;;n +(前两空每1分,最后一空2分) 三、解答题 13. 解:原式=1-2×32-8+2 3 …………………………4分 = 3 -7 ………………………………………5分 14. 证明:∵90B ∠=,∴90A ACB ∠+∠=.∵C 为线段BD 上一点,且AC CE ⊥,∴90ACB ECD ∠+∠=. ∴A ECD ∠=∠ . …………………………………………………………………2分∵B D ∠=∠=90, …………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分∴AB BC CDDE=.………………………………………………………………………5分15. 由题意可知:30k -≠⎧⎨∆⎩≥ ……………………2分即()232430k k ≠⎧⎪⎨--⎪⎩≥…………………………3分解得34k k ≠⎧⎨⎩≤……………………………………4分∴ k 的取值范围是:k ≤4且k≠3……………5分16. 解:在BDC ∆中,090=∠C , 045=∠BDC ,6=DC∴tan 451BCDC︒== ∴6BC = …………………………………1分EDB A在ABC ∆中,52sin =A ,∴25BC AB =,……2分 ∴15AB =……………………………………3分∴AC ==…………………4分∴6AD =……………………………5分17. ∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.18.(1)点B 坐标为(-1,-3)……………………………………1分∵直线y=3x 过点A(1,m ) ∴m=3×1=3∴A(1,3) ……………………………………………………2分 将A(1,3)代入y=kx中,得 k =xy =1×3=3∴y=3x …………………………………………………………3分(2) P 1(-3,-1), P 2(3,1)………………………………………………5分四、解答题19. 解:(1) 将A(-1,0)和C(0,-3)代入抛物线2y x bx c =++ 中得: 103b c c -+=⎧⎨=-⎩ , 解得:23b c =-⎧⎨=-⎩ (1)∴抛物线的解析式为223y x x =-- (2)由223y x x =--=()()()21413x x x --=+-知抛物线的对称轴为直线x =1,点B (3,0) 连接BC ,交对称轴x =1于点D 可求得直线BC :y =x -3 当x =1时,y =-2∴点D (1,-2)……………………………………………5分 20. 如图,设点O 为外圆的圆心,连接OA 和OC ,……1分∵CD=10cm ,AB=60cm ,∴设半径为r ,则OD=r ﹣10,…………………………2分根据题意得:r 2=(r ﹣10)2+302,…………………3分 解得:r=50,…………………………………………5分 ∴这个车轮的外圆半径长为50.21. (1)证明:∵CE AB ⊥,∴ 90CEB ∠=.∵ CD 平分ECB ∠, BC =BD , ∴ 12∠=∠, 2D ∠=∠.∴ 1D ∠=∠. …………………………1分 ∴ CE ∥BD .∴ 90DBA CEB ∠=∠=.∵ AB 是⊙O 的直径,∴ BD 是⊙O 的切线. ………………………………………………………2分 (2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠=. ∵CE AB ⊥, 可得 2CE AE EB =⋅.∴ .162==AECE EB ………………………………………………………3分 在Rt △CEB 中,∠CEB =90︒, 由勾股定理得20.BC = ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△B FD. ………………………………………………………5分 ∴ BFEFBD EC =. ∴121620BFBF-=. ∴ BF =10. ………………………………………………………………………6分22. 解:(1)23…………………1分 (2) ±6 ……………………3分 (3)D ………………………5分五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. (1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B . ……………………………………2分 又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B ∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-. ……………………………4分 (2)()()()1230,3,4,3,2,1M M M - …………………………………7分 24. (1)解:∵AC =12,∴CO =6, ∴==2π;(2)证明:∵PE ⊥AC ,OD ⊥AB ,∠PEA =90°,∠ADO =90° 在△ADO 和△PEO 中,,∴△POE ≌△AOD (AAS ), ∴OD =EO ;(3)证明:如图,连接AP ,PC ,∵OA =OP , ∴∠OAP =∠OP A , 由(1)得OD =EO , ∴∠ODE =∠OED , 又∵∠AOP =∠EOD , ∴∠OP A =∠ODE , ∴AP ∥DF , ∵AC 是直径, ∴∠APC =90°, ∴∠PQE =90° ∴PC ⊥EF , 又∵DP ∥BF , ∴∠ODE =∠EFC , ∵∠OED =∠CEF , ∴∠CEF =∠EFC , ∴CE =CF ,∴PC 为EF 的中垂线,∴∠EPQ =∠QPF ,∵△CEP ∽△CAP∴∠EPQ =∠E AP ,∴∠QPF =∠EAP ,∴∠QPF =∠OP A ,∵∠OP A +∠OPC =90°,∴∠QPF +∠OPC =90°, ∴OP ⊥PF ,∴PF 是⊙O 的切线.25.(1)证明:令2154(3)022m x m x ---+=. 得[]2154(3)422m m -∆=---⨯⨯224m m =-+2(1)3m =-+. 不论m 为任何实数,都有(m -1)2+3>0,即△>0. ……………1分∴不论m 为任何实数,抛物线与x 轴总有两个交点. ……………… 2分(2)解:抛物线2154(3)22m y x m x -=--+的对称轴为 ∵抛物线上两个不同点A 2(3,2)n n -+、B 2(1,2)n n -++的纵坐标相同,∴点A和点B 关于抛物线的对称轴对称,则(3)(1)312n n m -+-+-==-. ∴2m =. ……………………………………………………… 3分 ∴抛物线的解析式为21322y x x =+-. ………………… 4分 ∵A 2(3,2)n n -+在抛物线21322y x x =+-上, ∴2213(3)(3)222n n n -+--=+. 化简,得2440n n ++=.∴ 2n =-. ……………………………………………… 5分(3) 当2<x <3时, 对于21322y x x =+-,y 随着x 的增大而增大, 对于(0,0)k y k x x=>>,y 随着x 的增大而减小. 所以当02x =时,由反比例函数图象在二次函数图象上方,(3) 3.122m x m --=-=-⨯得2k >2132222⨯+-, 解得k >5. …………………………………6分 当03x =时,由二次函数图象在反比例函数图象上方, 得2133322⨯+->3k , 解得k <18. ……………………………………7分 所以k 的取值范围为5<k <18. ……………………………8分。

北京市石景山区2015届九年级(上)期末考试数学试题(含答案)

石景山区2014—2015学年度第一学期期末考试试卷初三数学考 生 须 知1.本试卷共8页.全卷共五道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、学校、姓名和准考证号. 4.考试结束后,将试卷和答题纸一并交回.第Ⅰ卷(共32分)一、选择题(本题共8道小题,每小题4分,共32分)在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上.1.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,则sin A 的值是A .34B .43 C .54 D .53 2.如图,A ,B ,C 都是⊙O 上的点,若∠ABC =110°,则∠AOC 的度数为A .70°B .110°C .135°D .140°3.如图,平行四边形ABCD 中,E 为DC 的中点,AC 与BE 交于点F .则 △EFC 与△BFA 的面积比为 A .2:1B . 1∶2C .1∶4D .1∶84.将抛物线22x y =向右平移1个单位后,得到的抛物线的表达式是A .()212+=x yB .()212-=x yC .122-=x yD .122+=x y5.将762++=x x y 化为()k h x a y +-=2的形式,h ,k 的值分别为A .3,2-B .3-,2-C .3,16-D .3-,16-6.如图,为测学校旗杆的高度,在距旗杆10米的A 处,测得旗杆顶部B 的 仰角为α,则旗杆的高度BC 为A .αtan 10B .αtan 10C . αsin 10D .αsin 10第1题 第2题 第3题FE DC BAOCABCBAB7.已知:二次函数2y ax bx c =++的图象如图所示,下列说法中正确的是A .0>++c b aB .0>abC .02=+a bD .当0y >时,13x -<<8.如图,正方形ABCD 的边长为a ,动点P 从点A 出发,沿折线A →B →D →C 的路径运动,到达点C 时运动停止.设点P 运动的路程长为x ,AP 长为y ,则y 关于x 的函数图象大致是( )A BC D第Ⅱ卷(共88分)二、填空题(本题共4道小题,每小题4分,共16分)9.一个扇形的圆心角为120°,半径为3,则这个扇形的弧长为 .(结果保留π)10.写出一个反比例函数()0ky k x=≠,使它的图象在各自象限内,y 的值随x 值 的增大而减小,这个函数的表达式为 .11. 如图,△ABC 中,AB =8,AC =6,点D 在AC 上且AD =2,如果要在AB 上找一点E ,使△ADE 与△ABC 相似,那么AE = .12.二次函数23x y =的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3,…, B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3,…,C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3,…,四边形A n-1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3…=∠A n-1B n A n =120°.则A 1的坐标为 ; 菱形A n-1B n A n C n 的边长为 .A CD BPDA BCa x yO ()21a +()22a +2aaxyO a2aa ()21a +()22a+2axyOa()21a +()22a+a a()21a +()22a +2ax yO a三、解答题(本题共6道小题,每小题5分,共30分) 13.计算:︒+︒⋅︒-45sin 260cos 30tan 8.14.已知:二次函数()k x k x y 32322-++-=(1)若二次函数的图象过点()0,3A ,求此二次函数图象的对称轴; (2)若二次函数的图象与x 轴只有一个交点,求此时k 的值.15.如图,⊙O 与割线AC 交于点B ,C ,割线AD 过圆心O ,且∠DAC =30°.若⊙O 的半径OB=5,AD =13,求弦BC 的长.ODCBA16. 已知:如图,在△ABC 中,2=BC ,3=∆ABC S ,︒=∠135ABC ,求AC 和AB 的长.17.一次函数 22y x =+与反比例函数 (0)ky k x=≠的图象都过点()1,A m ,22y x =+的图象与x 轴交于点B .(1)求点B 坐标及反比例函数的表达式;(2)()0,2C -是y 轴上一点,若四边形ABCD 是平行四边形,直接写出点D 的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.BC A18. 已知:如图,△ABD 中,BD AC ⊥于C ,23=CD BC ,E 是AB 的中点,2tan =D ,1=CE ,求ECB ∠sin 和AD 的长.四、解答题(本题共4道小题,每小题5分,共20分)19.甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局. (1)请用画树状图的方法,列出所有可能出现的结果; (2)试用概率说明游戏是否公平.E A DCB黄色红色绿色20.体育测试时,九年级一名男生,双手扔实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处A 点距离地面的高度为2m ,当球运行的水平距离为6m 时,达到最大高度5m 的B 处(如图),问该男生把实心球扔出多远?(结果保留根号)21.已知:如图,R t △AOB 中,︒=∠90O ,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连接AC 交OB 于点P . (1)求证:BP =BC ; (2)若31sin =∠PAO ,且PC =7, 求⊙O 的半径.ABCPBOAC22.阅读下面材料:小乔遇到了这样一个问题:如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为CB ,CA 边上的点,且AE=BC ,BD=CE ,BE 与AD 的交点为P ,求∠APE 的度数;小乔发现题目中的条件分散,想通过平移变换将分散条件集中,如图2,过点B 作BF//AD 且BF=AD ,连接EF ,AF ,从而构造出△AEF 与△CBE 全等,经过推理和计算能够使问题得到解决(如图2).请回答:APE ∠的度数为___________________. 参考小乔同学思考问题的方法,解决问题:如图3,AB 为⊙O 的直径,点C 在⊙O 上,D 、E 分别为CB ,CA 上的点,且BC AE 21=,CE BD 21=,BE 与AD 交于点P ,在图3中画出符合题意的图形,并求出sin APE ∠的值.图1 图2PDEA B CF PD EA BC图3BOAC五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知二次函数()2(4)425y t x t x --=+-在0x =与5x =的函数值相等. (1)求二次函数的解析式;(2)若二次函数的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点 C ,一次函数y kx b =+经过B ,C 两点,求一次函数的表达式;(3)在(2)的条件下,过动点()m D ,0作直线l //x 轴,其中2->m .将二次函数图象在直线l下方的部分沿直线l 向上翻折,其余部分保持不变,得到一个新图象M .若直线y kx b =+与新图象M 恰有两个公共点,请直接写出m 的取值范围.24.如图1,在Rt △ABC 中,∠ACB=90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C . (1)求∠ADE 的度数;(2) 如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(︒<<︒600α),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2 , DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PMQN的值; (3)若图1中∠B =()︒<<︒9060ββ,(2)中的其余条件不变,判断PMQN的值是否为定值,如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.图1FEGDBAC图2E 1F 1F 2E 2QMNPDBAC25.如图1,平面直角坐标系xOy 中,点()0,4-D ,8OC =,若抛物线213y x =平移后经过C ,D 两点,得到图1中的抛物线W .(1)求抛物线W 的表达式及抛物线W 与x 轴另一个交点A 的坐标;(2)如图2,以OA ,OC 为边作矩形OABC ,连结OB ,若矩形OABC 从O 点出发沿射线OB方向匀速运动,速度为每秒1个单位得到矩形''''O A B C ,求当点'O 落在抛物线W 上时矩形的运动时间;(3)在(2)的条件下,如图3,矩形从O 点出发的同时,点P 从'A 出发沿矩形的边C B B A ''→''以每秒25个单位的速度匀速运动,当点P 到达'C 时,矩形和点P 同时停止运动,设运动时间为t 秒.①请用含t 的代数式表示点P 的坐标;②已知:点P 在边''A B 上运动时所经过的路径是一条线段,求点P 在边''A B 上运动多少秒时,点D 到CP 的距离最大.草稿纸草稿纸yxDCAO yxC'B'A'D B C A O O'yx PC'B'A'BDCAOO'yxC'B'A'D B C A O O'图1 图2 图3 备用图ABCDOE石景山区2014-2015学年度第一学期期末考试试卷初三数学参考答案阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)题 号 1 2 3 4 5 6 7 8 答 案CDCBBACA二、填空题(本题共4道小题,每小题4分,共16分) 9.π2; 10.只要0>k 即可; 11.38或23; 12.()32,01A ;n 2. 三、解答题(本题共6道小题,每小题5分,共30分) 13.解:︒+︒⋅︒-45sin 260cos 30tan 8.=222213322⨯+⨯-……………………………4分 =6323-. ……………………………5分14.解:(1)将()0,3A 代入二次函数表达式,求得2=k ………………1分将2=k 代入得二次函数表达式为:6822-+-=x x y ……2分配方得:()2222+--=x y∴二次函数图象的对称轴为2=x …………3分 (2)由题意得:0=∆ …………………………………4分求得32=k . ……………………………………………………………5分 15.解:过点O 作BC OE ⊥于点E ……1分∵AD 过圆心O ,AD =13,⊙O 的半径是5, ∴ AO =8 ………2分 ∵∠DAC =30°∴OE =4 ………3分 ∵OB =5, ∴ 勾股得BE =3………4分∴BC =2BE =6 ………5分16.解:过点A 作BC AD ⊥,交CB 的延长线于点D ………1分在△ABC 中,3=∆ABC S ,2=BC32==∴∆BCS AD ABC………2分 135=∠ABC 45=∠∴ABD∴232==AD AB ……… 3分DC B A3==AD BD ……… 4分在Rt △ADC 中,5=CD ,3422=+=CD AD AC …5分17.解:(1)由题意: 令0y =,则1x =-∴()1,0B - ……………1分∵A 在直线22y x =+上∴()1,4A …………………2分∵()1,4A 在反比例函数 (0)ky k x=≠图象上 ∴4k =∴反比例函数的解析式为:4y x= ……………3分(2)∵四边形ABCD 是平行四边形 ∴()2,2D …………4分 ∴()2,2D 在反比例函数4y x=的图象上 ……5分 18. 解:∵BD AC ⊥,∴︒=∠=∠90ACD ACB ∵E 是AB 的中点,1=CE∴22==CE AB ……… 1分∵23=CD BC ∴设x BC 3=,x CD 2= 在R t △ACD 中,2tan =D ∴2=CDAC,x AC 4= ………2分 在R t △ACB 中由勾股定理x AB 5=,∴54sin sin ===∠AB AC B ECB ………3分 由2=AB ,得52=x ………4分∴5545222==+=x CD AC AD ……5分四、解答题(本题共4道小题,每小题5分,共20分) 19.解:(1)……………….1分(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),EA DCB 开始红黄绿红黄绿红黄绿绿黄红(黄,绿),(绿,红),(绿,黄),(绿,绿) ………2分 (2)()31==93P 甲获胜………………..3分 ()2=9P 乙获胜………………………4分P P >(甲获胜)(乙获胜)∴游戏不公平………………..5分20.解:(说明:根据建系方法的不同,对应给分)以地面所在直线为x 轴,过点A 与地面的垂线作为y 轴建立平面直角坐标系如图所示. …………………1分则()0,2A ,()6,5B设抛物线解析式为()()2650y a x a =-+≠, ∵()0,2A 在抛物线上∴ 代入得:112a =-∴()216512y x =--+ …………….3分令0y =∴15261-=x (舍),26215x =+……………. 4分 ∴1526+=OC答:该同学把实心球扔出1526+m. ……………… 5分21.(1)证明:连接OC ………………1分BC 是⊙O 切线90OCB ∴∠=︒90OCA BCA ∴∠+∠=︒OC OA =OCA OAC ∴∠=∠90O ∠=︒90OAC APO ∴∠+∠=︒ APO BPC ∠=∠90OAC BPC ∴∠+∠=︒ BPC BCA ∴∠=∠BC BP ∴= ………………2分(2) 延长AO 交⊙O 于点E ,连接CE 在Rt AOP ∆中1sin 3PAO ∠=∴ 设,3OP x AP x ==∴ 则22AO x = ………3分 PBOACyxA BCOAO OE =, 22OE x ∴= 42AE x ∴=1sin 3PAO ∠=13CE AE ∴= 223AC AE ∴= 3722342x x +∴=………4分 解得:x=362AO ∴= ……………5分22.解:(1) ∠APE =45° ………1分(2) 过点B 作FB//AD 且FB=AD ,连结EF 和AF ∴四边形AFBD 是平行四边形,APE FBE ∠=∠,DB AF = ………2分∵AB 是⊙O 直径,∴∠C =90° ∴FAE BCE ∠=∠=90° ∵2CE BD =,2BC AE =, ∴2CE AF =,∴2CE BCAF EA== ∴△AEF ∽△CBE ……3分∴12EF BE =,∠1=∠3,又∵∠2+∠3=90° ∴∠1+∠2=90°,即∠FEB =90° ……4分 在Rt △BEF 中,∠FEB =90°∴1tan 2EF FBE BE ∠==又∵APE FBE ∠=∠∴5sin 5APE ∠=……5分 五、解答题(本题共3道小题,23、24每小题各7分,25题8分,共22分) 23.(1)由题意得 ()2(4)525544t t -⋅--⋅+=.……………………1分 解得 5t =.∴ 二次函数的解析式为:254y x x =-+.…………………2分(2)令0y =,解得4x =或1x = ……………………3分EPBO AC321F A O PD ECB∴()1,0A , ()4,0B ,令0x =,则4y =∴()0,4C将B 、C 代入y kx b =+,解得1k =-,4b =一次函数的解析式为:4y x =-+ ……………………4分(3)212-<<-m 或04m << ……………………7分24.解:(1)∵∠ACB=90°,D 为AB 的中点∴CD =DB ∴∠DCB =∠B ∵∠B =60°∴∠DCB =∠B=∠CDB =60° ∴∠CDA=120°∵∠EDC =90°∴∠ADE =30° ………………2分 (2)∵∠C =90°,∠MDN =90° ∴∠DMC +∠CND=180°∵∠DMC +∠PMD=180°, ∴∠CND =∠PMD 同理∠CPD =∠DQN∴△PMD ∽△QND ………4分 过点D 分别做DG ⊥AC 于G , DH ⊥BC 于H 可知DG , DH 分别为△PMD 和△QND 的高∴PM DGQN DH =…………………5分 ∵DG ⊥AC 于G , DH ⊥BC 于H ∴DG ∥BC又∵D 为AC 中点 ∴G 为AC 中点 ∵∠C =90°,∴四边形CGDH 为矩形有CG =DH =AG Rt △AGD 中,31=AG DG E 1F 1F 2E 2H G QMNPD B ACFEGDBAC即33=QN PM ……………………6分 (3) 是定值,值为)90tan(β-︒………7分25.解:(1)依题意得: )0,4(-D ,()0,8C -∴抛物线W 的解析式为:212833y x x =-- ………………………1分 另一交点为(6,0) ………………………………………2分(2)解法一:依题意:在运动过程中,经过t 秒后,点'O 的坐标为:34,55t t ⎛⎫- ⎪⎝⎭………………………3分 将'O 代入212833y x x =-- 舍去负值得:203t =经过203秒'O 落在抛物线W 上 …………………………………………4分解法二:射线'OB 解析式为:43y x =-∴24312833y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩解得:4163x y =⎧⎪⎨=-⎪⎩∴16'4,3O ⎛⎫-⎪⎝⎭……………………………3分 ∴221620'433OO ⎛⎫=+= ⎪⎝⎭∴经过203秒'O 落在抛物线W 上 …………………………………4分 (3)① 设(),P x y(I)当020t ≤≤时,即点P 在''A B 边上,2'5A P t =,34'6,55A t t ⎛⎫+- ⎪⎝⎭ ∴365x t =+,65y t =- ……………………………5分(II)当2035t <≤时,即点P 在''B C 边上(不包含'B 点),2'85B P t =- ,34'6,855B t t ⎛⎫+-- ⎪⎝⎭ ,∴1145x t =+,485y t =-- ……………………6分 综上所述: ∴当020t ≤≤时,366,55P t t ⎛⎫+- ⎪⎝⎭当2035t <≤时,1414,855P t t ⎛⎫+--⎪⎝⎭②当点P 在''A B 运动时,020t ≤≤,点P 所经过的路径所在函数解析式为:212y x =-+ 又∵直线DC 解析式为:28y x =--∴DC ∥AP ∴△DCP 面积为定值 ……………7分 ∴CP 取得最小值时,点D 到CP 的距离最大, 如图,当CP ⊥AP 时,CP 取得最小值 过点P 作PM ⊥y 轴于点M ,∴∠PMC =90° ∵366,55P t t ⎛⎫+- ⎪⎝⎭∴685CM t =-,365PM t =+ ∵∠DCO +∠PCM =90°, ∠CPM +∠PCM =90° ∴CPM DCO ∠=∠ ∴1tan tan 2CPM DCO ∠=∠= 在Rt △PMC 中,∠PMC =90°∴2PM CM = ∴103t =检验:100203≤≤ ∴经过103秒时,点D 到CP 的距离最大 ………………8分yxMPDCAOyx PC'B'A'DBCAOO'。

人教版 九年级上册数学 24.2 ---24.4随堂练含答案)

人教版九年级数学24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B在⊙A内,则实数a的取值范围是()A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是()A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是()A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE=.12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A 上,点________在⊙A外.13. (2019•河池)如图,PA、PB是O的切线,A、B为切点,∠OAB=38°,则∠P=__________ .14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C[解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO =BO=CO=DO.设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO=22<1,AC=2>1,∴点O在⊙A内,点B,D在⊙A上,点C在⊙A外.13. 【答案】76【解析】∵PA PB 、是O 的切线,∴PA PB PA OA =⊥,, ∴90PAB PBA OAP ∠=∠∠=︒,,∴90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒, ∴180525276P ∠=︒-︒-︒=︒,故答案为:76.14.【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵B C 与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135°[解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD =12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.19. 【答案】解:(1)∵∠C=90°,AC=8,AB=10,∴在Rt△ABC中,由勾股定理,得BC=6,∴△BAP的面积S=12AP·BC=12×2×6=6.(2)连接OD,OE,OA.设⊙O的半径为r,则S△BAP=12AB·r+12AP·r=6r,∴6r=6,解得r=1.故⊙O的半径是1.24.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5 B.6 C.7 D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.人教版九年级数学24.4 弧长和扇形面积一、选择题(本大题共10道小题)1. 2019·湖州已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是()A.60π cm2 B.65π cm2C.120π cm2 D.130π cm22. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2π B.4πC.12π D.24π3. 如图,用一张半径为24 cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计).如果圆锥形帽子的底面圆半径为10 cm,那么这张扇形纸板的面积是()A.240π cm2B.480π cm2C.1200π cm2D.2400π cm24. 在半径为6 cm的圆中,长为2π cm的弧所对的圆周角的度数为()A.30°B.45°C.60°D.90°5. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是()A .30 cm 2B .60π cm 2C .30π cm 2D .48π cm 26. 如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为( )A .288°B .144°C .216°D .120°7. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4cm ,则该圆锥的底面周长是( ) A . 3π cm B . 4π cm C . 5π cm D . 6π cm8. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶99. 如图,一根5 m 长的绳子,一端拴在围墙墙脚的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域的面积是( )图A.1712π m2 B.176π m2 C.254π m2D.7712π m210. 已知一个圆心角为270°的扇形工件,未搬动前如图所示,A ,B 两点触地放置,搬动时,先将扇形以B 为圆心,作如图所示的无滑动旋转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,扇形工件所在圆的直径为6 m ,则圆心O 所经过的路线长是(结果用含π的式子表示)( )A .6π mB .8π mC .10π mD .12π m二、填空题(本大题共8道小题)11. 将母线长为6 cm ,底面半径为2 cm 的圆锥的侧面展开,得到如图所示的扇形OAB ,则图中阴影部分的面积为________ cm2.12. 如图所示,有一直径是2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则: (1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.13. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.14. 如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置.若AB=16 cm,则图中阴影部分的面积为________.15. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.16. 如图,在圆柱体内挖去一个与它不等高的圆锥,锥顶O到AD的距离为1,∠OCD=30°,OC=4,则挖去圆锥后剩余部分的表面积是________.17.如图在边长为3的正方形ABCD中,以点A为圆心,2为半径作圆弧EF,以点D为圆心,3为半径作圆弧AC.若图阴影部分的面积分别为S1,S2,则S1-S2=_____ ___.18. 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形的边长为 6 cm,则该莱洛三角形的周长为________ cm.三、解答题(本大题共4道小题)19. 如图,C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).链接听P50例2归纳总结20. 如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°,(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21. 如图,点A,B,C,D均在圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求此圆的半径;(2)求图中阴影部分的面积.22. 如图,△ABC是正三角形,曲线CDEFG…叫做“正三角形的渐开线”,曲线的各部分为圆弧.(1)图已经有4段圆弧,请接着画出第5段圆弧GH.(2)设△ABC的边长为a,则第1段弧的长是________,第5段弧的长是________,前5段弧长的和(即曲线CDEFGH的长)是________.(3)类似地,有“正方形的渐开线”“正五边形的渐开线”……边长为a的正方形的渐开线的前5段弧长的和是________.(4)猜想:①边长为a的正n边形的前5段弧长的和是________;②边长为a的正n边形的前m段弧长的和是________.人教版九年级数学24.4 弧长和扇形面积课时训练-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] ∵r=5 cm,l=13 cm,∴S圆锥侧=πrl=π×5×13=65π(cm2).故选B.2. 【答案】C[解析] 根据扇形的面积公式,S=120×π×62360=12π.故选C.3. 【答案】A[解析] ∵扇形的弧长l =2·π·10=20π(cm),∴扇形的面积S =12lR =12×20π×24=240π(cm 2).4. 【答案】A [解析] 设长为2π cm 的弧所对的圆心角的度数为n°,则nπR180=2π,解得n =60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.5. 【答案】B6. 【答案】A[解析] 设所需扇形铁皮的圆心角为n °,圆锥底面圆的半径为4x ,则母线长为5x ,所以底面圆周长为2π×4x =8πx ,所以n180×π×5x =8πx ,解得n =288.7.【答案】D 【解析】如解图,由题意可知,OA =4 cm ,AB =5cm ,在Rt △AOB 中,利用勾股定理可求得OB =3 cm ,∴该圆锥的底面周长是6π cm.8. 【答案】D9. 【答案】D[解析] 如图,大扇形的圆心角是90°,半径是5 m ,∴其面积为90π×25360=25π4(m2);小扇形的圆心角是180°-120°=60°,半径是1 m ,则其面积为60π360=π6(m2),∴小羊A 在草地上的最大活动区域的面积为25π4+π6=7712π(m2).10. 【答案】A[解析] 如图,∠AOB =360°-270°=90°,则∠ABO =45°,则∠OBC =45°,点O 旋转的长度是2×45π×3180=32π(m),点O 移动的距离是270π×3180=92π(m),则圆心O 所经过的路线长是32π+92π=6π(m).二、填空题(本大题共8道小题)11. 【答案】(12π-93) [解析] 由题意知,扇形OAB 的弧长=圆锥的底面周长=2×2π=4π(cm),∴扇形的圆心角n =4π×180÷6π=120,即∠AOB =120°. 如图,过点C 作OC ⊥AB 于点C.∵OA =OB ,∠AOB =120°,∴∠OAB =∠OBA =30, ∴OC =12OA =3 cm , ∴AC =3 3 cm ,∴AB =2AC =2×3 3=6 3(cm), ∴S 阴影=S 扇形OAB -S △OAB =120π×62360-12×3×6 3=(12π-9 3)cm2.12. 【答案】(1)1(2)14 [解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r米.根据题意,得2πr=90·π·1 180,解得r=1 4.13. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S扇形OAB-S△OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.14. 【答案】32π cm2[解析] 由旋转的性质得∠BAB′=45°,四边形AB′C′D′≌四边形ABCD,则图中阴影部分的面积=四边形ABCD的面积+扇形ABB′的面积-四边形AB′C′D′的面积=扇形ABB′的面积=45π×162360=32π(cm2).15. 【答案】12π16. 【答案】(16+8 3)π[解析] ∵∠OCD=30°,∴∠OCB=60°.又∵OB=OC,∴△OBC是等边三角形,∴挖去的圆锥的高为2 3,底面圆的半径为2,∴圆柱的高为1+2 3,则挖去圆锥后该物体的表面积为(1+2 3)×4π+π×22+12×4π×4=(16+8 3)π.17. 【答案】13π4-9 [解析] ∵S 正方形ABCD =3×3=9,S 扇形DAC =9π4,S 扇形AEF =π,∴S 1-S 2=S 扇形AEF -(S 正方形ABCD -S 扇形DAC )=π-⎝ ⎛⎭⎪⎫9-9π4=13π4-9.18. 【答案】6π [解析] 以边长为半径画弧,这三段弧的半径为正三角形的边长,即6 cm ,圆心角为正三角形的内角度数,即60°,所以每段弧的长度为60·π·6180=2π(cm),所以该莱洛三角形的周长为2π×3=6π(cm).三、解答题(本大题共4道小题)19. 【答案】解:(1)连接OD ,OC ,如图.∵C ,D 是半圆O 上的三等分点,∴AD ︵=CD ︵=BC ︵,∴∠AOD =∠DOC =∠COB =60°,∴∠CAB =30°.∵DE ⊥AB ,∴∠AEF =90°,∴∠AFE =90°-30°=60°.(2)由(1)知∠AOD =60°.∵OA =OD ,AB =4,∴△OAD 是等边三角形,OA =OD =2.∵DE ⊥AO ,∴AE =OE =12OA =1,∴DE =OD2-OE2=3,∴S 阴影=S 扇形OAD -S △OAD =60×π×22360-12×2×3=23π- 3.20. 【答案】解:(1)证明:如图,连接OA.∵AD =AB ,∠D =30°,∴∠B =∠D =30°,∴∠DAB =120°.∵BC 是⊙O 的直径,∴∠BAC =90°,∴∠DAC =30°,∴∠BCA =60°.∵AO =CO ,∴△ACO 是等边三角形,∴∠CAO =60°,∴∠DAO =∠CAO +∠DAC =90°,即AD ⊥AO.又∵AO 是⊙O 的半径,∴直线AD 是⊙O 的切线.(2)由(1)知Rt △ADO 中,AO =2,∠D =30°,∴OD =2AO =4,∴AD =2 3,∴SRt △ADO =12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3.21. 【答案】解:(1)∵AD ∥BC ,∠BAD =120°,∴∠ABC =60°,∠ADB =∠DBC.又∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ADB =30°,∴AB ︵=AD ︵=DC ︵,∠BCD =60°,∴AB =AD =DC ,∠BDC =90°,∴BC是圆的直径,BC=2DC,∴BC+32BC=15,解得BC=6,∴此圆的半径为3.(2)设BC的中点为O,由(1)可知点O为圆心,连接OA,OD. ∵∠ABD=30°,∴∠AOD=60°.根据“同底等高的三角形的面积相等”可得S△ABD=S△OAD,∴S阴影=S扇形OAD=60×π×32360=32π.22. 【答案】13π4解:(1)如图(2)23πa103πa10πa(3)15πa 2(4)①30nπa②m(m+1)nπa。

2014-2015学年北京市东城区2015届九年级上学期期末考试数学试题(含答案)

东城区2014—2015学年第一学期期末初三数学统一检测试题一、选择题(本题共32分,每小题4分) 1.已知1sin 2A =,则锐角A 的度数是 A .30︒B .45︒C .60︒D .75︒2.下列安全标志图中,是中心对称图形的是ABCD3.以下事件为必然事件的是A .掷一枚质地均匀的骰子,向上一面的点数是0B .多边形的角和是360︒C .二次函数的图象必过原点D .半径为2的圆的周长是4π 4.将二次函数2y x =的图象向左平移1个单位,再向下平移2个单位后,所得图象的函数表达式是 A.2(1)2y x =++ B.2(1)2y x =-- C.2(1)2y x =+-D.2(1)2y x =-+5.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于A. 120°B. 140°C. 150°D. 160°第5题图 第6题图6.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接EC 交对角线BD 于点F ,则S △DEF :S △BCF 等于 A. 1:2B .1:4C .1:9D .4:9A'DCBB'A 35°7.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数2b y cx a=+与反比例函数ab y x =在同一坐标系的图象大致是8.如图,边长为4的正方形ABCD 的边BC 与直角边分别是2和4的Rt ∆GE F 的边GF 重合,正方形ABCD 以每秒1个单位长度的速度沿GE 向右匀速运动,当点A 和点E 重合时正方形停止运动.设正方形的运动时间为t 秒,正方形ABCD 与Rt ∆GEF 重叠部分的面积为S ,则S 关于t 的函数图象为二、填空题(本题共16分,每小题4分) 9.已知反比例函数ky x=(k 是常数,且0k ≠)的图象在第二、四象限,请写出一个符合条件的反比例函数表达式.10.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△''A B C ,''A B 交AC 于点D ,若∠'A DC =90°,则∠A =度.11.如图,反比例函数6y x=在第一象限的图象上有两点A ,B ,它们的横坐标分别是2,第10题图 第11题图6,则△AOB的面积是.12.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为,点B2014的坐标为.三、解答题(本题共30分,每小题5分)13.计算:32sin453cos602︒︒+︒+-.14.如图,正方形网格中的每个小正方形的边长都是1,顶点叫做格点.△ABC的三个顶点A,B,C都在格点上.将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过的区域的面积.15.已知二次函数268y x x=-+.(1)将268y x x=-+化成2()y a x h k=-+的形式;(2)当04x≤≤时,y的最小值是,最大值是;(3)当0y<时,写出x的取值围.16.如图,AB是半圆O的直径,点P(不与点A,B重合)为半圆上一点.将图形沿BP折叠,分别得到点A,O的对称点'A,'O.设∠ABP =α.CB(1)当α=10°时,'ABA∠=°;(2)当点'O落在PB上时,求出α的度数.17.如图,在△ABC中,AB=AC=8,BC=6,点D为BC上一点,BD=2.过点D作射线DE交AC于点E,使∠ADE=∠B. 求线段EC的长度。

山东省青岛市城阳区2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年山东省青岛市城阳区九年级(上)期末数学试题一、选择题(本大题共10小题,每小题3分,共30分)1.方程x 2=x 的解是( )A .x =1B .x =0C .x 1=1,x 2=0D .x 1=﹣1,x 2=02.三个大小相同的正方体搭成的几何体如图所示,其主视图是()A .B .C .D .3.如图,在平面直角坐标系中,四边形ABCD 是菱形,∠ABC =120°,点B 的坐标为(0,﹣3),则点A 的坐标为()A .B .C .(﹣6,0)D .(6,0)4.如图,在平面直角坐标系中,大鱼与小鱼是关于原点O 的位似图形,则下列说法中错误的是()A .小鱼与大鱼的周长之比是1:2B .小鱼与大鱼的对应点到位似中心的距离比是1:2C .大鱼尾巴的面积是小鱼尾巴面积的2倍D .若小鱼上一点的坐标是(a ,b ),则大鱼上的对应点的坐标是(﹣2a ,﹣2b )5.平地上立有三根等高的木杆,其俯视图如图所示,在某一时刻三根木杆在阳光下的影子可能是()(A .B .C .D .6.将抛物线y =x 2﹣1向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的表达式为( )A .y =(x ﹣2)2+3B .y =(x +2)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+27.神奇的自然界处处蕴含着数学知识,如图,动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A .平移B .旋转C .轴对称D .黄金分割8.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2023年底某市汽车拥有量为25.6万辆.已知2021年底该市汽车拥有量为10万辆,如果设2021年底至2023年底该市汽车拥有量的年均增长率为x ,那么根据题意列出的方程为( )A .10(1+x )2=25.6B .10(1+2x )=25.6C .10(1﹣x )2=25.6D .10(1﹣2x )=25.69.如图,四边形ABCD 中,AD ∥BC ,∠C =90°,AB =AD ,连接BD ,∠BAD 的角平分线交BD ,BC 分别于点O ,E ,若EC =3,CD =4,则BO 的长为()A .4B .CD .10.如图,已知抛物线y =ax 2+bx +c 与直线y =kx +m 交于A (﹣3,﹣1),B (0,3)两点.下列结论:①bc <0;②b 2﹣4ac >0;③关于x 的不等式ax 2+bx +c ≥kx +m 的解集是﹣3≤x ≤0;④a 2﹣ab +ac <0;⑤关于x 的方程ax 2+bx +c +4=0无解;其中正确的有()A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)11.4cos 30°﹣2tan 45°=.12.如图①,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为10m ,宽为7m 的长方形将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此可估计不规则图案的面积大约是m 2.13.已知正方形ABCD ,分别以BC ,DC 为边长作等边△BEC 和等边△DCF ,连接EF ,则∠CEF =°.14.考察函数的图象,当y ≥﹣1时,x 的取值范围是.15.直线y =ax ﹣6与抛物线y =x 2﹣4x +3只有一个交点,则a 的值为.16.△ABC 中,,AB =4,分别过点A ,C 作AB ,BC 边的垂线相交于点D ,连接DB ,则AD =.4y x-=BC AC ==三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.17.如图,已知:△AB C .求作:点N ,使CN ∥AB ,且BN 距离最短.四、解答题(本大题共8小题,满分68分)18.(1)解方程:x 2+6x ﹣3=0;(2)用配方法求二次函数y =2x 2+4x +5图象的对称轴和顶点坐标.19.“春雨惊春清谷天,夏满芒夏暑相连;秋处露秋寒霜降,冬雪雪冬小大寒”,这是大家耳熟能详的二十四节气歌,“二十四节气”是中华上古农耕文明的产物,蕴含了中华民族悠久的文化内涵和历史沉淀.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张后(不放回),再从中随机抽取一张,请用列表或画树状图的方法求小乐抽到的两张邮票恰好是“立春”和“大寒”的概率.(立春、立夏、秋分、大寒可以分别用A ,B ,C ,D 表示)A B C D20.大约在两千四五百年前,如图①墨子和他的学生做了世界上第1个小孔成像的实验,并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图②,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y (单位:cm )是物距(小孔到蜡烛的距离)x (单位:cm )的反比例函数,当x =6时,y =2.(1)求y 关于x的函数表达式;(2)若小孔到蜡烛的距离为4cm ,求火焰的像高;(3)若火焰的像高不得超过3cm ,求小孔到蜡烛的距离至少是多少厘米?21.如图①是位于青岛的山东省内最大的海景摩天轮“琴岛之眼”,游客可以在碧海蓝天之间领略大青岛的磅礴气势.图②是它的简化示意图,点O 是摩天轮的圆心,AB 是摩天轮垂直地面的直径,小红在E 处测得摩天轮顶端A 的仰角为24°,她沿水平方向向左行走122m 到达点D ,再沿着坡度i =0.75的斜坡走了20米到达点C ,然后再沿水平方向向左行走40m 到达摩天轮最低点B 处(A ,B ,C ,D ,E 均在同一平面内),求摩天轮AB 的高度.(结果保留整数)(参考数据:sin 24°≈0.4,cos 24°≈0.91,tan 24°≈0.45)22.已知:如图,在矩形ABCD 中,AB =3,BC =4,G ,H 分别是AB ,DC 的中点,E ,F 是对角线AC 上的两个点,AE =F C .(1)判断四边形EGFH 的形状,并说明理由;(2)若四边形EGFH 为矩形,求AE 的长度.23.【初建模型】如图①,△ABC 和△ADE 都是等腰三角形,AD =AE ,AB =AC ,∠BAC =∠DAE ,连接BD ,CE .求证:BD =CE .分析:要证明BD =CE ,我们可以通过 (只填序号)的方法证明△ADB 和△AEC 全等即可.①SSS ②ASA ③AAS ④SAS【类比探究】如图②,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°,连接BD ,CE .请你写出BD 与CE 的数量关系,并说明理由.【拓展提升】如图③,在图②的基础上,延长BD ,交AC 于点F ,交CE 的延长线于点G ,求sinG的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届九年级上学期期末竞赛数学试题(人教版含答案)
(时间:120分钟满分:120分)一、选择题(每题3分,共45分) 1.如图所示几何体的主(正)视图是()
A. B. C. D. 2.一个口袋中装有 4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出 1个球是白球的概率是() A B C D 3.抛物线的顶点坐标是() A(2,0) B(-2,0) C(1,-3) D(0,-4) 4.若x1,x2是一元二次方程的两个根,则的值是() A.1 B.5 C. D.6 5.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是() A.8米 B.4.5米 C.8厘米 D.4.5厘米 6.顺次连结一个四边形各边中点所得的四边形必定是( )。

A、平行四边形 B、矩形 C、菱形 D、正方形. 7. 如图,Rt△ABC中,∠ACB=90°,∠A= 50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则() A.40° B.30° C.20° D.10° 8. 如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB 的值是() A. 2 3 B. 3 2 C. 3 4 D. 4 3
9.已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A. B. C.或 D.以上都不对 10.如图,在菱形ABCD中,∠ABC =60°.AC=4.则BD的长为()(A)(B)(C)(D)8 11. 如图,AB∥CD,BO:OC= 1:4,点E、F分别是OC, OD的中点,则EF:AB 的值为() A、1 B、2 C、3 D、4 12.上海世博会的某纪念品原价168元,连续两次降价 %后售价为128元. 下列所列方程中正确的是()A. B. C. D. 13.已知点A()、B()是反比例函数()图象上的两点,若,则有() A. B. C. D. 14.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(). A . B. C. D. 15.定义[ ]为函数的特征数, 下面给出特征数为 [2m,1 �C m , �C1�C m] 的函数的一些结论:① 当m = �C 3时,函数图象的顶点坐标是( , );② 当m > 0时,函数图象截x轴所得的线段长度大于;③ 当m < 0时,函数在x > 时,y随x的增大而减小;④ 当时,函数图象
经过同一个点. 其中正确的结论有()A. ①②③④ B. ①②④ C.
①③④ D. ②④ 二、填空题(每空3分,共18分) 16. 已知点A (2,m)在函数的图象上,那么m=_________。

17.在比例尺为1:50000的某城市旅游地图上,某条公路的长度是15厘米,则这条公路的实际长度是____ _____千米. 18.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为:________. 19.如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________. 20.定义新运算“ ”,规则:,如,。

若的两根为,则=. 21. 如图,在反比例函数()的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则.三、解答题(共7个大题,共57分) 22.(7分)(1)解方程:.(2)
23.(7分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (参考数据: )
24. (8分)商场某种商品平均每天可销售30件,每件盈利50元。

为了尽快减少库存,商场决定采取适当的降价措施。

经调查发现,每件商品每降价1元,商场平均每天可多售出2件。

每件商品降价多少元时,商场日盈利可达到2 100元?为获得最大利润,商场该商品应降价多少元?
25(8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率. 26. (本小题满分9分)如图,二次函数的图象与x轴交于A(,0)、B(2,0)两点,且
与y轴交于点C. (1) 求该��物线的解析式,并判断△ABC的形状;
(2) 在x轴上方的��物线上有一点D,且以A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标; (3) 在��物线上存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形,求出P点的坐标.
27.已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.当绕点旋转到时(如图1),易证.(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.(2 )当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
28.(9分).如图,在平面直角坐标系x Oy中,已知点A(4,0),点B(0,3),点P从点B出发沿BA方向向点A匀速运动,速度为每秒1个单位长度,点Q从点A出发沿AO方向向点O匀速运动,速度为每秒2个单位长度,连结PQ.若设运动的时间为t秒(0<t<2). (1)求直线AB的解析式; (2)设△AQP的面积为,求与之间的函数关系式; (3)是否存在某一时刻,使线段PQ恰好把△AOB的周长和面积同时平分?若存在,请求出此时的值;若不存在,请说明理由; (4)连结PO,并把△PQO沿QO翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,请求出此时点Q的坐标和菱形的边长;若不存在,请说明理由.一:选择题答案:二:填空题答案:解答题: 22:(1)略(不好打根号所以略)(3分)(2)1.5 (4分)23:Rt△ACB中,AC=AB×sin45= (m)(1分)∴AD-AB≈ 2.07(m).改善后的滑梯会加长2.07 m .(4分)(2)这样改造能行.因为CD-BC≈ 2.59(m),而6-3 > 2.59. 24:解:设每件商品应降价x元,由题意得:(50-x)(30+2x)=2100 解得x1=20,x2=15 因为尽快减少库存,所以舍去15元。

设每件应降价x元,获得利润为Y元,由题意得y=(50-x)(30+2x) 根据二次函数顶点坐标得x=17.5元时获利最大。

27:(1)BM+DN=MN AEM全等与三角形ANM (2)DN-BM=MN AMN全等于三角形AQN 28:设直线AB的解析式为y=kx+b,∴ 解得,∴直线AB的解析式是y=- x+3.
(2)在Rt△AOB中,AB= =5,依题意,得BP=t,AP=5-t,AQ=2t,
过点P作PM⊥AO于M,∵△APM∽△ABO,∴ ,∴ ,∴PM=3- t,∴y= AQ•PM= •2t•(3- t)=- t2+3t.
解得t=1.若PQ把△AOB面积平分,则S△APQ= S△AOB,∴- t2+3t=3,∵t=1代入上面方程不成立,∴不存在某一时刻t,使线段PQ把△AOB 的周长和面积同时平分.
(4)存在某一时刻t,使四边形PQP'O为菱形,过点P作PN⊥BO
于N,若四边形PQP′O是菱形,则有PQ=PO,∵PM⊥AO于M,∴QM=OM,∵PN⊥BO于N,可得△PBN∽△ABO,∴ ,∴ ,∴PN= t,∴QM=OM= t,∴ t+ t+2t=4,∴t= ,∴当t= 时,四边形PQP′O是菱形,∴OQ=4-2t= ,∴点Q的坐标是(,0).∵PM=3- t= ,OM= t= ,在Rt△PMO中,PO= = = ,∴菱形PQP′O的边长为.。

相关文档
最新文档