课程设计--直流电机调速控制系统设计

合集下载

直流电机控制课程设计

直流电机控制课程设计

直流电机控制课程设计一、课程目标知识目标:1. 学生能理解直流电机的工作原理,掌握直流电机的基本结构及其功能。

2. 学生能掌握直流电机控制的基本方法,包括启动、调速、制动等。

3. 学生能了解并描述直流电机在自动化控制中的应用。

技能目标:1. 学生能运用所学知识,进行简单的直流电机控制电路的设计与搭建。

2. 学生能通过实际操作,熟练使用相关仪器设备进行直流电机控制实验。

3. 学生能通过实验数据分析,解决直流电机控制过程中出现的问题。

情感态度价值观目标:1. 学生对直流电机控制技术产生兴趣,培养探究精神和创新意识。

2. 学生在小组合作中,培养团队协作能力和沟通表达能力。

3. 学生关注直流电机控制技术在现实生活中的应用,增强学以致用的意识。

分析课程性质、学生特点和教学要求:1. 本课程为工程技术类课程,注重理论与实践相结合,强调学生的动手能力。

2. 学生为初中年级学生,具备一定的物理基础和动手操作能力,但对复杂电路和控制原理理解有限。

3. 教学要求以学生为主体,注重启发式教学,引导学生主动探究和解决问题。

二、教学内容1. 直流电机的工作原理与结构- 直流电机的组成及其功能- 直流电机的工作原理- 直流电机的类型及特点2. 直流电机控制方法- 直流电机的启动方法- 直流电机的调速方法- 直流电机的制动方法3. 直流电机控制电路设计与搭建- 控制电路元件的识别与选用- 控制电路的设计原理与步骤- 控制电路的搭建与调试4. 直流电机控制实验- 实验设备的使用与操作- 实验步骤与方法- 实验数据的收集与分析5. 直流电机控制技术应用- 直流电机控制技术在现实生活中的应用案例- 直流电机控制技术的未来发展教学内容安排与进度:第一课时:直流电机的工作原理与结构第二课时:直流电机控制方法第三课时:直流电机控制电路设计与搭建第四课时:直流电机控制实验第五课时:直流电机控制技术应用教材章节关联:教学内容与教材第二章“直流电机的原理与应用”相关联,涵盖直流电机的基本概念、原理、控制方法及其在实际中的应用。

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

直流电机斩波调速控制系统设计

直流电机斩波调速控制系统设计

湖南工程学院课程设计任务书课程名称:电力电子技术题目:直流电机斩波调速控制系统设计专业班级电气工程及其自动化0603学生姓名:刘清学号:200601010314指导老师:蔡斌军审批:任务书下达日期2009 年 6 月8 日设计完成日期2009 年 6 月19 日第一章概述 (1)1.1概述 (1)1.2控制对象 (1)1.3控制要求...................................21.4设计任务...................................2第二章系统工作原理 (3)2.1直流电机的结构与调速原理 (3)2.2调速方案选择 (5)2.3 调速电路方案 (6)2.4 控制方案选择 (7)第三章主电路设计与分析 (8)3.1 主电路原理图及说明 (8)3.2 电路参数计算及选型 (9)第四章控制电路的设计与分析 (11)4.1宽调制PWM电路 (11)4.2电流检测装置 (12)4.3 电流调节器ACR (13)4.4 触发装置 (13)总结 (15)参考文献 (16)附录 (17)第一章.概述 (1)第二章.设计总体思路 (2)2.1主电路设计思路 (2)2.2控制电路设计思路 (3)2.3结构框图 (5)第三章. 各单元思路 (6)3.1 主电路的设计 (6)3.1.1 主电路 (6)3.1.2 电路分析 (6)3.1.3 主电路参数计算和元器件的选择 (6)3.1.4 H型桥式斩波电路的设计 (8)3.1.5 整流电路的设计 (8)3.2 控制电路的设计 (9)3.2.1 控制电路框图 (9)3.2.2 控制电路原理简要 (9)3.2.3 SG3525的结构图和工作原理 (10)3.2.4 各引脚具体功能 (11)3.2.5 SG3525的工作原理 (12)3.2.6 SG3525主要电路及其功能 (13)第四章.保护电路及设计 (14)4.1 主回路输出端过电流保护 (14)4.2 电源欠压报警 (14)4.3 MOSFET的保护设计 (15)4.3.1 MOSFET的过电流保护 (15)4.3.2 MOSFET开关过程中的过电压保护 (16)第五章.总结与体会 (16)附录 (18)参考文献 (19)评分表 (20)第一章.概述电力电子技术在现代化社会的建设中的应用起着重要作用并得到飞跃性的发展。

v-m直流调速课程设计

v-m直流调速课程设计

v-m直流调速课程设计一、课程目标知识目标:1. 理解V-M直流调速系统的基本原理与结构;2. 掌握V-M直流调速系统中速度调节、电流调节的基本方法;3. 学会分析V-M直流调速系统的性能指标,如稳态误差、动态响应等。

技能目标:1. 能够运用所学的理论知识,设计简单的V-M直流调速系统;2. 能够运用相应的仿真软件,对V-M直流调速系统进行模拟与调试;3. 能够解决实际应用中V-M直流调速系统出现的常见问题。

情感态度价值观目标:1. 培养学生对电力电子技术及其应用的兴趣,激发学生的创新意识;2. 培养学生具备团队协作精神,提高沟通与交流能力;3. 增强学生面对工程技术问题的责任感,树立正确的工程伦理观念。

课程性质:本课程为专业核心课程,旨在帮助学生掌握V-M直流调速系统的基本理论和实践技能,提高解决实际工程问题的能力。

学生特点:学生具备一定的电力电子基础,具有较强的学习能力和动手能力,对新技术和新方法充满好奇心。

教学要求:结合学生的特点,注重理论与实践相结合,强调知识的应用性和实践性。

通过课程学习,使学生能够将所学知识应用于实际工程问题中,提高学生的综合素养。

课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. V-M直流调速系统原理- 介绍V-M直流调速系统的组成及工作原理;- 分析V-M直流调速系统的数学模型;- 探讨电机在不同运行状态下的调速性能。

2. V-M直流调速系统设计方法- 速度调节方法:比例、积分、微分控制;- 电流调节方法:PWM控制技术;- 系统设计方法:系统参数的整定与优化。

3. V-M直流调速系统性能分析- 稳态性能分析:稳态误差、稳态响应;- 动态性能分析:动态响应、过渡过程;- 系统稳定性分析:奈奎斯特稳定判据、根轨迹法。

4. V-M直流调速系统实践应用- 介绍常见的V-M直流调速系统实例;- 分析实际应用中存在的问题及解决方案;- 指导学生运用仿真软件进行系统模拟与调试。

直流电机的PWM电流速度双闭环调速系统课程设计

直流电机的PWM电流速度双闭环调速系统课程设计

电力拖动课程设计题目:直流电机的PWM电流速度双闭环调速系统姓名:学号:班级:指导老师:课程评分:日期目录一、设计目标与技术参数二、设计基本原理(一)调速系统的总体设计(二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图(五)双闭环调速系统的硬件电路(六)泵升电压限制(七)主电路参数计算和元件选择(八)调节器参数计算三、仿真(一)仿真原理(含建模及参数)(二)重要仿真结果(目的为验证设计参数的正确性)四、结论参考文献附录1:调速系统总图附录2:调速系统仿真图一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。

PWM变换器的放大系数:K S=20。

二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。

但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。

这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。

如图2-1所示。

图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。

电机直流课程设计

电机直流课程设计

电机直流课程设计一、课程目标知识目标:1. 让学生掌握电机直流的基本工作原理,包括电磁感应定律在直流电机中的应用。

2. 使学生了解并掌握直流电机的类型、结构、性能及用途。

3. 引导学生理解并掌握电机转速与电枢电压、电流的关系,以及励磁对电机性能的影响。

技能目标:1. 培养学生能够正确使用万用表、示波器等工具进行电机参数测试的能力。

2. 培养学生具备分析、解决直流电机常见故障的能力。

3. 让学生学会设计简单的直流电机控制系统,并能进行基本的调试。

情感态度价值观目标:1. 培养学生对电机工程技术的兴趣和热情,激发他们探索科学的精神。

2. 培养学生的团队协作意识,使他们能够在学习过程中积极与他人交流、合作。

3. 引导学生认识到电机技术在生产、生活中的重要作用,增强他们的社会责任感。

课程性质:本课程为电机原理与应用的实践课程,注重理论知识与实际操作的结合。

学生特点:学生处于高中年级,已具备一定的物理基础和动手能力,对新技术具有强烈的好奇心。

教学要求:教师应采用启发式教学,引导学生通过实验、讨论等方式主动探究电机直流的知识,提高他们的实践操作能力和问题解决能力。

同时,注重培养学生的团队合作意识和科学素养,为后续学习打下坚实基础。

通过分解课程目标为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 直流电机的基本原理:包括洛伦兹力定律、电磁感应定律在直流电机中的应用,电机转速与电枢电压、电流的关系,以及励磁对电机性能的影响。

2. 直流电机的类型与结构:介绍常见的直流电机类型,如永磁直流电机、励磁直流电机;讲解电机的结构,包括电枢、励磁绕组、换向器等组成部分。

3. 直流电机的性能与用途:分析不同类型直流电机的性能特点,如功率、转速、效率等,探讨其在实际应用中的选择和适用场合。

4. 直流电机控制系统设计:学习电机控制的基本原理,设计简单的直流电机控制系统,包括调速、转向等功能。

5. 直流电机参数测试与故障分析:教授如何使用万用表、示波器等工具进行电机参数测试,分析常见故障原因,并提出相应的解决方法。

单片机课程设计PWM直流电动机调速控制系统方案

单片机课程设计PWM直流电动机调速控制系统方案

单片机原理及应用—— P W M直流电机调速控制系统概括直流电动机具有良好的启动性能和调速特性。

具有起动转矩大、调速平稳、经济大范围、调速容易、调速后效率高等特点。

本文设计的直流电机调速系统主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路和独立按键组成的电子产品组成。

电源采用78系列芯片,采用PWM波方式实现电机+5V、+15V调速,PWM为脉宽调制,通过51单片机改变占空比实现。

通过独立的按键实现电机的启停、调速和转向的手动控制,LED实现测量数据(速度)的显示。

电机转速采用霍尔传感器检测输出方波,通过51单片机统计1秒内方波脉冲个数,计算电机转速,实现直流电机的反馈控制。

关键词:直流电机调速; H桥驱动电路; LED显示屏; 51单片机目录摘要2摘要错误!未定义书签。

目录3第 1 章引言41.1 概述41.2 国外发展现状41.3 要求51.4 设计目的及6第 2 章项目论证与选择72.1 电机调速模块72.2 PWM调速工作模式72.3 PWM脉宽调制方式错误!未定义书签。

2.4 PWM 软件实现错误!未定义书签。

第三章系统硬件电路设计83.1 信号输入电路83.2 电机PWM驱动模块电路9第 4 章系统的软件设计104.1 单片机选型104.2 系统软件设计分析10第 5 章 MCU 系统集成调试135.1 PROTEUS 设计与仿真平台错误!未定义书签。

18传统开发流程对比错误!未定义书签。

第一章简介1.1 概述现代工业的电驱动一般要求部分或全部自动化,因此必须与各种控制元件组成的自动控制系统相联动,而电驱动可视为自动电驱动系统的简称。

在这个系统中,生产机械可以自动控制。

随着现代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动电驱动正朝着计算机控制的生产过程自动化方向发展。

以实现高速、高质量、高效率的生产。

在大多数集成自动化系统中,自动化电力牵引系统仍然是不可或缺的组成部分。

直流电动机调速课程设计

直流电动机调速课程设计

直流电动机调速课程设计一、课程目标知识目标:1. 让学生理解直流电动机的基本构造、工作原理和调速方法;2. 使学生掌握直流电动机调速的相关理论知识,如电枢电压调速、励磁电流调速和串电阻调速;3. 帮助学生了解直流电动机调速在实际应用中的关键作用和价值。

技能目标:1. 培养学生运用所学知识分析和解决实际直流电动机调速问题的能力;2. 让学生学会使用相关仪器、设备进行直流电动机调速实验,提高动手操作能力;3. 培养学生团队协作、沟通交流的能力,以小组合作形式完成实验任务。

情感态度价值观目标:1. 激发学生对直流电动机调速技术的兴趣,培养科技创新精神;2. 培养学生严谨、务实的科学态度,关注实际问题的解决;3. 增强学生的环保意识,认识到调速技术在节能减排方面的重要性。

课程性质:本课程为高二年级物理课程,旨在让学生掌握直流电动机调速的基本原理和实际应用。

学生特点:高二年级学生已具备一定的物理知识基础,具有较强的逻辑思维能力和动手操作能力。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。

通过课程学习,使学生能够达到上述课程目标,并为后续相关课程的学习奠定基础。

在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。

二、教学内容1. 理论知识:(1)直流电动机的基本构造、工作原理及分类;(2)直流电动机调速原理,包括电枢电压调速、励磁电流调速和串电阻调速;(3)调速性能指标及影响调速性能的因素。

2. 实践操作:(1)使用仿真软件或实验设备进行直流电动机调速实验;(2)学习并掌握相关仪器、设备的使用方法;(3)小组合作完成实验任务,分析实验结果,探讨调速方法在实际应用中的优缺点。

3. 教学大纲:(1)第1课时:介绍直流电动机的基本构造、工作原理及分类;(2)第2课时:讲解直流电动机调速原理及调速方法;(3)第3课时:分析调速性能指标及影响调速性能的因素;(4)第4课时:实践操作,进行直流电动机调速实验;(5)第5课时:总结实验结果,讨论调速方法在实际应用中的优缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。

改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。

本文就是利用这种控制方式来改变电压的占空比实现直流电机速度的控制。

文章中采用了专门的芯片组成了PWM信号的发生系统,然后通过放大来驱动电机。

利用直流测速发电机测得电机速度,经过滤波电路得到直流电压信号,把电压信号输入给A/D转换芯片最后反馈给单片机,在内部进行PI运算,输出控制量完成闭环控制,实现电机的调速控制。

一、直流电动机的工作原理应用了“通电导体在磁场中受力的作用”的原理,励磁线圈两个端线同有相反方向的电流,使整个线圈产生绕轴的扭力,使线圈转动。

要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。

为此必须增添一个叫做换向器的装置,换向器配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转,这就是直流电动机的工作原理。

如图1-1所示,图1-1 直流电动机的工作原理图将电枢绕组通过电刷接到直流电源上,绕组的转轴与机械负载项链,这时便有电流从电源的正极流出,经A电刷流入点数绕组,再经电刷B流回电源的负极。

在图(a)所示位置时,线圈的ab边在N极下,cd边在S极下,电枢绕组中的电流沿着a-b-c-d的方向流动。

电枢电流与磁场相互作用产生电磁力F,其方向可用左手定则来判断。

这一对电磁力所形成的电磁转矩使电机逆时针旋转。

当线圈的ab边在S极下,cd边在N极下,如果线圈中电流的方向仍然不变,那么作用在这两个线圈上的电磁力和电磁转矩的方向就会与原来的方向相反,电机便无法旋转。

如图(b)所示,由于原来与电刷A接触的线圈a端的铜片现在已改接成与电刷B接触,而原来与电刷B接触的线圈d端的铜片现在已改接成与电刷A接触,因而电枢绕组中的电流沿着d-c-b-a的方向流动。

利用左手定则来判断出:电磁力及电磁转矩的方向仍然是电动机逆时针旋转。

这样,就使得电机一直旋转下去。

二、直流电动机的结构直流电机由定子、转子和机座等部分构成。

1、定子主磁极——主磁极的作用是建立主磁场。

绝大多数直流电机的主磁极不是用永久磁铁而是由励磁绕组通以直流电流来建立磁场。

主磁极由主磁极铁心和套装在铁心上的励磁绕组构成。

换向极——换向极是安装在两相邻主磁极之间的一个小磁极,它的作用是改善直流电机的换向情况,使电机运行时不产生有害的火花。

机座——机座有两个作用,一是用来固定主磁极、换向级和端盖;另一个是作为磁路的一部分。

电刷装置——电刷装置是把直流电压、直流电流引入或引出的装置。

由电刷、刷握、刷杆座和铜丝辫组成。

图2-1 直流电机的定子图2-2 直流电机的转子2、转子电枢铁心——电枢铁心也有两个用处,一是作为主磁路的主要部分,二是嵌放电枢绕组。

电枢绕组——电枢绕组由许多按一定规律连接的线圈组成,它是直流电机的主要电路部分,是通过电流和感应产生电动势以实现机电能量转换的关键部件。

换向器——换向器也是直流电机的重要部件。

在直流电动机中,它的作用是将电刷上所通过的直流电流转换为绕组内的交变电流;在直流发电机中,它将绕组内的交变电动势转换为电刷端上的直流电动势。

三、直流电动机的分类根据励磁线圈和转子绕组的连接关系,励磁式的直流电机又可细分为:他励直流电动机、并励直流电动机、串励直流电动机和复励直流电动机。

1、他励直流电动机他励直流电动机是一种励磁绕组与电枢绕组无连接关系,而由其他直流电源而由其他直流电源对励磁绕组单独供电的直流电动机,如图3-1(a)所示。

2、并励电直流动机并励直流电动机的励磁绕组与电枢绕组并联,如图3-1(b)所示。

这种直流电动机的励磁绕组上所加的电压就是电枢电路两端的电压。

3、串励直流电动机串励直流电动机的励磁绕组与电枢绕串联,如图3-1(c)所示。

这种直流电动机的励磁电流就是电枢电流,若有调节电阻与励磁绕组并联,其电流则为电枢电流的一部分。

4、复励直流电动机这种直流电机的主磁极上装有两个励磁绕组,一个与电枢电路并联,然后再和另一个励磁绕组串联,如图3-1(d)所示。

图3-1 他励直流电动机图3-2 并励直流电动机图3-3 串励直流电动机图3-4 复励直流电动机四、电动机的机械特性4.1他励电动机的转速与转矩之间的关系 由于T n C C R R C U n 02T e a e a βφφ-=+-=T 0n 是电动机的理想空载转速,其值为φe aC U =0nβ是机械特性的斜率,其值为2T e a C C RR φβ+=α是机械特性的硬度,其值为βα1= 斜率β越大,硬度α越大,机械特性特硬。

4.2他励直流电动机的固有机械特性当他励直流电动机的额定电压、气隙每极磁通量为额定值,电枢回路不电阻时的机械特性称为固有机械特性,其表达式为T n n n C C T R C U n 002T e a e a βφφ-=∆-=-=N N由于电枢绕组的电阻a R 值很小,而φ值大,因此Δn 很小,固有机械特性为硬特性。

4.3他励直流电动机的人为机械特性他励直流电动机的参数如电压、励磁电流、电枢回路电阻大小等改变后,其机械特性称为人为机械特性。

主要人为机械特性有3种。

(1).电枢回路串联电阻R 时的人为机械特性1)人为机械特性方程为T C C R R C U n 2T e a e a N N φφ+-=2)人为机械特性的特点理想空载转速0n 保持不变;机械特性的斜率β随R 的增大而增大,特性曲线变软。

从图4-1中可以看出改变电阻R 大小,可以使电动机的转速发生变化。

因此,电枢回路串电阻可用于调速,R 越大,转速越低。

(2)改变电源电压U 时的人为机械特性1)人为机械特性方程为 T C C R C U n 2T e a e a N N φφ-=2)人为机械特性的特点理想空载转速0n 正比于电压U ,U 下降时,0n 成正比例减小;特性曲线斜率β不变。

从图4-1中可以看出改变电压U 大小,可以使电动机的转速发生变化。

因此,降低电源电压也可用于调速,U 越低,转速越低。

(3)改变励磁电流f I 时的人为机械特性1)人为机械特性方程式为 T C C R C U n 2t e ae a φφ-=2)人为机械特性的特点理想空载转速与励磁电流f I 成反比,减小励磁电流f I ,0n 升高;斜率 与磁通二次方成反比,减小励磁电流f I使斜率增大。

从图4-1中可以看出改变励磁电流f I大小,可以使电动机的转速发生变化。

因此,降低励磁电流f I也可用于调速,f I越大,转速越低。

图4-1五、他励直流电动机起动5.1直流电动机启动条件起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。

对于任何一台电动机,在启动时,都有下列两个基本的要求:1)起动转矩要足够大。

2)启动电流不要超过允许范围。

aNa a N st R U R E U I =-=0=Φ=n C E e a 此外,他励直流电动机在起动瞬间,转速n=0,电动势E=0,起动电流aast R U I =在额定电压下直接起动时,由于a R 很小,st I 很大,一般可达到电枢电流额定值的10~20倍,这样大的电流是换向所不允许的,起动转矩也能达到额定转矩的10~20倍,过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机构和生产机械。

因此,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、电枢电a I 阻大、转动惯量有比较小、可以直接起动外,一般的直流电动机是不允许采用直接启动的。

5.2直流电动机启动方法 1、直接起动直接起动是指接通励磁电源后,将电动机的电枢直接投入额定电压的电源上起动。

直接起动又称为全压起动。

由于起动瞬间,转速等于零,电枢绕组的感应电动势(5-1)则起动电流为 (5-2)由于电枢绕组的电阻Ra 很小,所以起动电流很大,可达到额定电流的十几倍。

该电流对电网的冲击很大。

因而,除了小容量电机可采用直接起动外,对大中、容量的电动机不能直接起动。

2、电枢串电阻起动电枢回路串电阻R,启动电流为 RR U I A NS +=为了保持启动过程中电磁转矩持续较大及电枢电流持续较小,可以逐渐切除启动电阻,启动完成后,启动电阻全部切除,这种情况下的特性如图5-1所示。

UMr ar a2n0hecITO TLI L I2T2g mfd32b1R alαr aR a2r a1K m1K m2R k1R k2+-(b)特性图(a)电路图图5-1 直流他励电动机串电路启动的电路图和特性图3、降电压起动降低电源电压到U,启动电流为aS RUI降低电枢电压起动,即起动前将施加在电动机电枢两端的电源电压降低,以减小起动电流,电动机起动后,再逐渐提高电源电压,使起动电磁转矩维持在一定数值,保证电动机按需要的加速度升速。

相关文档
最新文档