幂法计算特征值--亮

合集下载

幂法求矩阵最大特征值

幂法求矩阵最大特征值

幂法求矩阵最大特征值摘要在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。

幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。

对于稀疏矩阵较合适,但有时收敛速度很慢。

用java来编写算法。

这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。

其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键词:幂法;矩阵最大特征值;j ava;迭代POWER METHOD TO CALCULATE THE MAXIMUMEIGENV ALUE MATRIXABSTRACTIn physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem.Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed.Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results.Key words: Power method; Matrix eigenvalue; Java; The iteration目录1幂法 (1)1.1 幂法基本思想 (1)1.2规范化 (2)2概要设计 (3)2.1 设计背景………………..…………………………………………………………. .32.2 运行流程 (3)2.3运行环境 (3)3 程序详细设计 (4)3.1 第一部分:矩阵转化为线性方程组……..………………………………………. .43.2 第二部分:特征向量的极大值 (4)3.3 第三部分:求幂法函数块 (5)4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5 心得体会 (7)参考文献 (8)附录:源程序 (9)1 幂法设A n 有n 个线性相关的特征向量v 1,v 2,…,v n ,对应的特征值λ1,λ2,…,λn ,满足|λ1| > |λ2| ≥ …≥ |λn |1.1 基本思想因为{v 1,v 2,…,v n }为C n的一组基,所以任给x (0)≠ 0,∑==ni i i v a x 1)0( —— 线性表示所以有])([)(21111111)0(∑∑∑∑====+====ni ii ki kni k k i i ni ik i n i i i kk v a v a v a v A a v a A xA λλλλ若a 1 ≠ 0,则因11<λλi 知,当k 充分大时 A (k )x (0) ≈ λ1ka 1v 1 = cv 1 属λ1的特征向量,另一方面,记max(x ) = x i ,其中|x i | = ||x ||∞,则当k 充分大时,111111*********)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a x A x A k kk k k k若a 1 = 0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0,迭代下去可求得λ1及对应特征向量的近似值。

幂法求特征值和特征向量

幂法求特征值和特征向量

幂法求特征值和特征向量
幂法是一种用于求解特征值和特征向量的迭代算法。

它可以应用于任何具有特征值和特征向量的方阵,并且在实际应用中被广泛使用。

首先,我们需要了解什么是特征值和特征向量。

对于一个n阶方阵A,如果存在一个非零向量x,使得Ax = λx,其中λ是一个实数,那么λ称为A的特征值,x称为对应于特征值λ的特征向量。

幂法的基本思想是通过迭代过程得到一个向量序列,使得每一次迭代后的向量越来越接近于所需的特征向量。

具体步骤如下:
1. 选择一个非零向量b作为初始向量。

2. 迭代计算b的下一个近似向量b' = Ab,即将初始向量乘以
矩阵A。

3. 归一化向量b',即将b'除以其模长,得到新的向量b。

4. 重复步骤2和步骤3,直到向量b的变化趋于稳定。

在每次迭代过程中,向量b的模长会越来越接近于最大的特征值。

此外,向量b也收敛到与最大特征值对应的特征向量。

需要注意的是,幂法只能找到矩阵A的最大特征值和对应的特征向量。

如果需要找到其他特征值和特征向量,可以通过将矩阵A进行位移变换,使得所需的特征值成为矩阵A的最大特征值。

幂法的收敛速度取决于矩阵A的特征值的大小差异。

如果特征值之间的差异很大,那么幂法将很快收敛。

然而,如果特征值之间的差异很小,那么幂法的收敛速度将较慢。

总之,幂法是一种简单而有效的方法,用于求解矩阵的特征值和
特征向量。

它在很多实际问题中都得到了广泛的应用,例如在机器学习、信号处理和物理学等领域。

matlab幂法求特征值与特征向量 -回复

matlab幂法求特征值与特征向量 -回复

matlab幂法求特征值与特征向量-回复Matlab幂法求特征值与特征向量Matlab是一种常用的数学软件,它提供了一系列强大的数值计算工具和函数,旨在简化数学建模和计算的过程。

其中,求解特征值与特征向量是矩阵分析与线性代数中的重要问题之一。

在此,我们将介绍如何使用Matlab中的幂法来求解矩阵的特征值与特征向量。

特征值与特征向量是矩阵分析的基本概念。

给定一个矩阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个实数,则称λ为A的特征值,x 为相应于特征值λ的特征向量。

在Matlab中,计算矩阵的特征值与特征向量可以使用`eig`函数。

这个函数能够计算矩阵所有特征值的值,其中特征值按照降序排列。

对于复杂特征值,这个函数会返回具有相应特征向量的V矩阵。

然而,幂法是一种迭代方法,可用于估计矩阵A的最大特征值λ和相应的特征向量x。

幂法的基本思想是利用矩阵的特征值分解性质中最大特征值的绝对值大于其他特征值的绝对值,从而将问题简化为求解最大特征值及其特征向量。

下面,我们将以以下步骤详细介绍如何使用Matlab中的幂法求解矩阵的特征值与特征向量:步骤1:定义初始向量x0首先定义一个非零的初始向量x0。

该向量可以是随机生成的,或者是具有合理初始值的向量。

步骤2:计算矩阵的迭代利用初始向量x0和矩阵A,计算下一个迭代向量x1。

具体而言,使用x0得到x1通过以下公式计算:x1 = A * x0步骤3:归一化迭代向量计算归一化的迭代向量x1。

这可以通过除以向量中的最大元素来完成。

归一化向量可以确保以后的计算产生可靠结果。

x1 = x1 / max(x1)步骤4:计算特征值估计计算特征值的估计值λ。

这可以通过计算x1的无穷范数与x0的无穷范数之比来实现:λ= norm(x1,Inf) / norm(x0,Inf)步骤5:收敛判断判断计算得到的特征值估计是否收敛。

这可以通过设定一个容差值来实现,在误差满足一定条件时停止迭代计算。

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序

矩阵的特征值与特征向量的计算摘要物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。

矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。

幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。

其基本思想是任取一个非零的初始向量。

由所求矩阵构造一向量序列。

再通过所构造的向量序列求出特征值和特征向量。

反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。

本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。

计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。

然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。

关键词:矩阵;特征值;特征向量;冥法;反冥法THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIXABSTRACTPhysics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix computation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value.Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence.The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use the inverse power method to calculate the minimum eigenvalue of a matrix and its corresponding eigenvalues. The basic idea of calculating the minimum characteristic vector of a matrix is to transform it to the maximum characteristic vector of the modulus of the inverse matrix. Then, according to the model, the minimum feature vector of the original matrix is introduced.Key words: Matrix;Eigenvalue;Eigenvector;Iteration methods;目录1 引言 (1)2 相关定理。

幂法(指数迭代法)

幂法(指数迭代法)

幂法(指数迭代法) 幂法是通过迭代来计算矩阵的主特征值(按模最⼤的特征值)与其对应特征向量的⽅法,适合于⽤于⼤型稀疏矩阵。

基本定义 设A=(a ij)∈R n×n,其特征值为λi,对应特征向量x i(i=1,...,n),即Ax i=λi x i(i=1,...,n),且{x1,...,x n}线性⽆关。

任取⼀个⾮零向量v0∈R n,且v0≠0,构造⼀个关于矩阵A的乘幂的向量序列:v k=Av k−1=A2v k−2=A3v k−3=...=A k v0 称v k为迭代向量。

设特征值λi的前r个为绝对值最⼤的特征值(ppt中分为λ1强占优和⾮强占优,感觉没必要),即有:|λ1|=|λ2|=...=|λr|>|λr+1|≥...≥|λn| 由于{x1,...,x n} 线性⽆关,所以构成R n的⼀个基,于是v0能被表达为:v0=n∑i=1αi x i(且设α1...αr⾮全零) 由Ax i=λi x i:v k=Av k−1=...=A k v0=n∑i=1A kαi x i=n∑i=1λk iαi x i=λk1(r∑i=1αi x i+εk) 其中:εk=n∑i=r+1(λiλ1)kαix i 因为λ1最⼤,所以有|λiλ1|<1 (i=r+1,...,n),从⽽有:limk→∞(λiλ1)k=0 (i=r+1,...,n) 所以有:limk→∞εk=0limk→∞v k=limk→∞λk1(r∑i=1αi x i+εk)=limk→∞λk1(r∑i=1αi x i) 因为在上式中(r∑i=1αi x i)是固定项,可以看出,迭代到后期,v k+1和v k的各个元素有固定⽐值λ1,即:limk→∞(v k+1)i(v k)i=λ1 这样,收敛到主特征值后,还可另外计算它对应的⼀个特征向量(其实就是构成v0的前r项之和,⽽且只能算⼀个):lim k→∞v kλk1=r∑i=1αi x i 其中收敛速度由⽐值|λr+1λ1|决定,越⼩收敛越快。

幂法求矩阵最大特征值

幂法求矩阵最大特征值

幂法求矩阵最大特征值摘要在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。

幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。

对于稀疏矩阵较合适,但有时收敛速度很慢。

用java来编写算法。

这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。

其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键词:幂法;矩阵最大特征值;j ava;迭代POWER METHOD TO CALCULATE THE MAXIMUMEIGENV ALUE MATRIXABSTRACTIn physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem.Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed.Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results.Key words: Power method; Matrix eigenvalue; Java; The iteration目录1幂法 (1)1.1 幂法基本思想 (1)1.2规范化 (2)2概要设计 (3)2.1 设计背景………………..…………………………………………………………. .32.2 运行流程 (3)2.3运行环境 (3)3 程序详细设计 (4)3.1 第一部分:矩阵转化为线性方程组……..………………………………………. .43.2 第二部分:特征向量的极大值 (4)3.3 第三部分:求幂法函数块 (5)4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5 心得体会 (7)参考文献 (8)附录:源程序 (9)1 幂法设A n 有n 个线性相关的特征向量v 1,v 2,…,v n ,对应的特征值λ1,λ2,…,λn ,满足|λ1| > |λ2| ≥ …≥ |λn |1.1 基本思想因为{v 1,v 2,…,v n }为C n的一组基,所以任给x (0)≠ 0,∑==ni i i v a x 1)0( —— 线性表示所以有])([)(21111111)0(∑∑∑∑====+====ni i i ki kni k k i i ni ik i n i i i kkv a v a v a v A a v a A xA λλλλ若a 1 ≠ 0,则因11<λλi知,当k 充分大时 A (k )x (0) ≈ λ1k a 1v 1 = cv 1 属λ1的特征向量,另一方面,记max(x ) = x i ,其中|x i | = ||x ||∞,则当k 充分大时,111111*********)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a x A x A k kk k k k若a 1 = 0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0,迭代下去可求得λ1及对应特征向量的近似值。

幂法求矩阵主特征值

幂法求矩阵主特征值

幂法求矩阵主特征值幂法是一种用于求解矩阵的主特征值的迭代方法,它基于以下原理:对于一个矩阵A,如果存在一个非零向量x和一个数值λ,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。

幂法的基本思想是通过不断迭代,找到一个与特征值最接近的数值和向量对。

算法步骤如下:1.随机选择一个与A的列数相同的初始向量x(0),并对其进行归一化。

2.计算x(k+1)=Ax(k),得到下一轮的向量。

3.归一化x(k+1),得到新的归一化向量y(k+1)。

4.利用归一化向量y(k+1)和x(k)的比值,计算相应的数值s(k+1),即s(k+1)=(y(k+1)Tx(k))/(x(k)Tx(k))。

5.重复步骤2-4,直到迭代收敛,即当s(k+1)-s(k)小于一个给定的收敛值时停止。

6.返回最终的向量x(k)和数值s(k)。

幂法的收敛性和精确性与矩阵A的特征值和特征向量的相对大小有关。

在理论上,当迭代次数足够多时,幂法可以找到矩阵A的绝对值最大的特征值,并得到一个与之对应的特征向量。

在实际应用中,幂法有一些限制和局限性。

首先,幂法只能求解具有主特征值的矩阵,即矩阵A必须具有一个特征值的绝对值大于其他特征值的情况。

其次,幂法可能无法收敛,或者得到的结果可能并不是矩阵的主特征值。

为了克服这些限制,可以使用改进的幂法,如反幂法或位移幂法。

反幂法使用矩阵的倒数作为迭代的基础,可以求解矩阵的最小特征值。

位移幂法通过对矩阵进行平移或缩放,可以使得矩阵A的主特征值接近一些预先给定的值。

总结起来,幂法是一种简单而有效的方法,用于求解矩阵的主特征值。

尽管幂法存在一些限制,但在实践中,它仍然是一种常用的迭代方法,用于估计矩阵的特征值和特征向量。

幂法求矩阵特征值

幂法求矩阵特征值

一. 问题描述用幂法与反幂法求解矩阵特征值求n 阶方阵A 的特征值和特征向量,是实际计算中常常碰到的问题,如:机械、结构或电磁振动中的固有值问题等。

对于n 阶矩阵A ,若存在数λ和n 维向量x 满足 Ax=λx (1) 则称λ为矩阵A 的特征值,x 为相应的特征向量。

由线性代数知识可知,特征值是代数方程 |λI-A|=λn+a 1λ1-n +…+a 1-n λ+a n =0 (2)的根。

从表面上看,矩阵特征值与特征向量的求解问题似乎很简单,只需求解方程(2)的根,就能得到特征值λ,再解齐次方程组(λI-A )x=0 (3) 的解,就可得到相应的特征向量。

上述方法对于n 很小时是可以的。

但当n 稍大时,计算工作量将以惊人的速度增大,并且由于计算带有误差,方程(2)未必是精确的特征方程,自然就不必说求解方程(2)与(3)的困难了。

幂法与反幂法是一种计算矩阵主特征值及对应特征向量的迭代方法, 特别是用于大型稀疏矩阵。

这里用幂法与反幂法求解带状稀疏矩阵A[501][501]的特征值。

二. 算法设计1. 幂法(1)取初始向量u )0((例如取u)0(=(1,1,…1)T),置精度要求ε,置k=1.(2)计算v)(k =Au)1(-k , m k =max(v)(k ), u)(k = v)(k / m k(3)若| m k -m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2) 2. 反幂法 (1)取初始向量u)0((例如取u)0(=(1,1,…1)T),置精度要求ε,置k=1.(2)对A 作LU 分解,即A=LU (3)解线性方程组 Ly )(k =u)1(-k ,Uv)(k =y)(k(4)计算mk =max(v)(k), u)(k= v)(k/ mk(5)若|mk -m1-k|<ε,则停止计算(1/m k作为绝对值最小特征值nλ,u)(k作为相应的特征向量);否则置k=k+1,转(3).三.程序框图1.主程序2.子程序(1). 幂法迭代程序框图(2). 反幂法迭代程序框图四. 结果显示计算结果如下:矩阵A 的按模最大特征值为:-1.070011361487e+001 矩阵A 的按模最小特征值为:-5.557910794230e-003 矩阵A 最大的特征值为:9.724634101479e+000 矩阵A 最小的特征值为:-1.070011361487e+001与各k μ(1,2,...,39)k =最接近的ik λ(用[]V k 表示)的值如下:v[ 1]=-1.018293403315e+001 u[ 1]=-1.018949492196e+001 v[ 2]=-9.585707425068e+000 u[ 2]=-9.678876229054e+000 v[ 3]=-9.172672423928e+000 u[ 3]=-9.168257536145e+000v[ 4]=-8.652284007898e+000 u[ 4]=-8.657638843237e+000 v[ 5]=-8.0934********e+000 u[ 5]=-8.147020150328e+000 v[ 6]=-7.659405407692e+000 u[ 6]=-7.636401457419e+000 v[ 7]=-7.119684648691e+000 u[ 7]=-7.125782764510e+000 v[ 8]=-6.611764339397e+000 u[ 8]=-6.615164071601e+000 v[ 9]=-6.0661********e+000 u[ 9]=-6.104545378693e+000 v[10]=-5.585101052628e+000 u[10]=-5.593926685784e+000 v[11]=-5.114083529812e+000 u[11]=-5.0833********e+000 v[12]=-4.578872176865e+000 u[12]=-4.572689299966e+000 v[13]=-4.096470926260e+000 u[13]=-4.062070607058e+000 v[14]=-3.554211215751e+000 u[14]=-3.551451914149e+000 v[15]=-3.0410********e+000 u[15]=-3.040833221240e+000 v[16]=-2.533970311130e+000 u[16]=-2.530214528331e+000 v[17]=-2.003230769563e+000 u[17]=-2.019595835422e+000 v[18]=-1.503557611227e+000 u[18]=-1.508977142514e+000 v[19]=-9.935586060075e-001 u[19]=-9.983584496049e-001 v[20]=-4.870426738850e-001 u[20]=-4.877397566962e-001 v[21]=2.231736249575e-002 u[21]=2.287893621262e-002 v[22]=5.324174742069e-001 u[22]=5.334976291214e-001 v[23]=1.052898962693e+000 u[23]=1.044116322030e+000 v[24]=1.589445881881e+000 u[24]=1.554735014939e+000 v[25]=2.060330460274e+000 u[25]=2.065353707848e+000 v[26]=2.558075597073e+000 u[26]=2.575972400756e+000 v[27]=3.080240509307e+000 u[27]=3.086591093665e+000 v[28]=3.613620867692e+000 u[28]=3.597209786574e+000 v[29]=4.0913********e+000 u[29]=4.107828479483e+000 v[30]=4.603035378279e+000 u[30]=4.618447172392e+000 v[31]=5.132924283898e+000 u[31]=5.129065865300e+000 v[32]=5.594906348083e+000 u[32]=5.639684558209e+000 v[33]=6.080933857027e+000 u[33]=6.150303251118e+000 v[34]=6.680354092112e+000 u[34]=6.660921944027e+000 v[35]=7.293877448127e+000 u[35]=7.171540636935e+000 v[36]=7.717111714236e+000 u[36]=7.682159329844e+000 v[37]=8.225220014050e+000 u[37]=8.192778022753e+000 v[38]=8.648666065193e+000 u[38]=8.703396715662e+000 v[39]=9.254200344575e+000 u[39]=9.214015408571e+000五.程序#include<stdio.h>#include<math.h>#define N 501void main(){double Q[5][501];double mifa(double A[5][501]);double fanmifa(double A[5][501]);double lm,lmax,lmin,ls,delta,u[39],v[39];int i,j,k;double A[5][501];A[0][0]=A[0][1]=A[1][0]=A[3][500]=A[4][499]=A[4][500]=0.0;//输入*501矩阵for(i=2;i<N;i++)A[0][i]=-0.064;for(i=1;i<N;i++)A[1][i]=0.16;for(i=0;i<N;i++)A[2][i]=(1.64-0.024*(i+1))*sin(0.2*(i+1))-0.64*exp(0.1/(i+1));for(i=0;i<500;i++)A[3][i]=0.16;for(i=0;i<499;i++)A[4][i]=-0.064;for(i=0;i<5;i++)//保存Afor(j=0;j<501;j++)Q[i][j]=A[i][j];lm=mifa(A);//按模最大特征值,函数mifa()不会改变矩阵A的值,不需还原for(i=0;i<N;i++) //平移A{A[2][i]=A[2][i]-lm;}lmax=mifa(A);//平移后A的按模最大特征值lmax=lmax+lm;//最大特征值或最小特征值if(lmax<lm){lmin=lmax;lmax=lm;}elselmin=lm;for(i=0;i<N;i++)//还原Afor(j=0;j<5;j++)A[j][i]=Q[j][i];ls=fanmifa(A);//按模最小特征值for(i=0;i<N;i++)//还原Afor(j=0;j<5;j++)A[j][i]=Q[j][i];for(k=0;k<39;k++)//计算u1-u39u[k]=lmin+(k+1)*((lmax-lmin)/40);for(k=0;k<39;k++){for(j=0;j<N;j++)A[2][j]=A[2][j]-u[k];v[k]=fanmifa(A)+u[k];for(i=0;i<N;i++)//还原Afor(j=0;j<5;j++)A[j][i]=Q[j][i];}printf("矩阵的按模最大特征值为:%.12e",lm);printf("\n");printf("矩阵的按模最小特征值为:%.12e",ls);printf("\n");printf("矩阵最大的特征值为:%.12e",lmax);printf("\n");printf("矩阵最小的特征值为:%.12e",lmin);printf("\n");for(k=0;k<39;k++){printf("v[%2d]=%.12e ",k+1,v[k]);printf("u[%2d]=%.12e",k+1,u[k]);printf("\n");}}double sgn(double a)//符号函数{if(a>0)return 1;else if(a=0)return 0;else return -1;}int max2(int a,int b){return a>b?a:b;}int max3(int a,int b,int c)return max2(a,b)>c?max2(a,b):c;}int min(int a,int b){return a<b?a:b;}void LU(double A[5][501],double u[501],double B[501])//LU分解法{double X[501];int i,j,k,t,l;double m=0,n=0;for(k=1;k<=N;k++)//求L,U{for(j=k;j<=min(N,k+2);j++)//U{m=0;for(t=max3(1,k-2,j-2);t<=k-1;t++){m+=A[k-t+2][t-1]*A[t-j+2][j-1];}A[k-j+2][j-1]=A[k-j+2][j-1]-m;}for(i=k+1;i<=min(N,k+2);i++)//Lif(k<N){n=0;for(l=max3(1,i-2,k-2);l<=k-1;l++){n+=A[i-l+2][l-1]*A[l-k+2][k-1];}A[i-k+2][k-1]=(A[i-k+2][k-1]-n)/A[2][k-1];}}for(i=2;i<=N;i++)//回代过程{m=0;for(t=max2(1,i-2);t<=i-1;t++)m+=A[i-t+2][t-1]*B[t-1];B[i-1]=B[i-1]-m;}X[N-1]=B[N-1]/A[2][N-1];//回代过程for(i=N-1;i>=1;i--){n=0;for(t=i+1;t<=min(N,i+2);t++)n+=A[i-t+2][t-1]*X[t-1];X[i-1]=(B[i-1]-n)/A[2][i-1];}for(i=1;i<=N;i++)//输出方程结果{u[i-1]=X[i-1];}}double mifa(double A[5][501])//幂法{int i,j,l=0;double u[501],t[501];double y[501];double h,b,c;c=0;for(i=0;i<N;i++)//幂法初始向量u[i]=1;while(1){for(i=0;i<N;i++)t[i]=0;h=u[0];for(i=0;i<N;i++)//无穷范数{if(fabs(h)<fabs(u[i])){h=u[i];l=i;}}for(i=0;i<N;i++)y[i]=u[i]/fabs(h);for(i=2;i<499;i++){for(j=i-2;j<=i+2;j++){t[i]=t[i]+A[i-j+2][j]*y[j];}u[i]=t[i];u[0]=A[2][0]*y[0]+A[1][1]*y[1]+A[0][2]*y[2];u[1]=A[3][0]*y[0]+A[2][1]*y[1]+A[1][2]*y[2]+A[0][3]*y[3];u[499]=A[4][497]*y[497]+A[3][498]*y[498]+A[2][499]*y[499]+A[1][N-1]*y[N-1];u[N-1]=A[4][498]*y[498]+A[3][499]*y[499]+A[2][N-1]*y[N-1];b=sgn(h)*u[l];if((fabs(b-c)/fabs(b))<=1e-12){//printf("幂法成功!");//printf("\n");break;}c=b;}return b;}double fanmifa(double A[5][501])//反幂法{double u[501],y[501];double P[5][501],Y[501];//LU分解前用于保存A和y的值double m=0,n=0,b=0,c=0;int i,j;for(i=0;i<N;i++)//反幂法初始向量u[0]=1;while(1){b=0;n=0;for(i=0;i<N;i++)n=n+u[i]*u[i];n=sqrt(n);for(i=0;i<N;i++)y[i]=u[i]/n;for(i=0;i<N;i++)//保存A和y{Y[i]=y[i];for(j=0;j<5;j++){P[j][i]=A[j][i];}}LU(A,u,y);//LU分解法,会改变A,y,u的值(目的只需求出u)for(i=0;i<N;i++)//还原A和yy[i]=Y[i];for(j=0;j<5;j++){A[j][i]=P[j][i];}}for(i=0;i<N;i++)b=b+y[i]*u[i];if((fabs(b-c)/fabs(b))<=1e-12){//printf("反幂法成功!");//printf("\n");break;}c=b;}return 1/b;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档