[数值算法]求矩阵的最大特征值的幂法
幂法求矩阵最大特征值

幂法求矩阵最大特征值摘要在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。
幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。
对于稀疏矩阵较合适,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键词:幂法;矩阵最大特征值;j ava;迭代POWER METHOD TO CALCULATE THE MAXIMUMEIGENV ALUE MATRIXABSTRACTIn physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem.Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed.Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results.Key words: Power method; Matrix eigenvalue; Java; The iteration目录1幂法 (1)1.1 幂法基本思想 (1)1.2规范化 (2)2概要设计 (3)2.1 设计背景………………..…………………………………………………………. .32.2 运行流程 (3)2.3运行环境 (3)3 程序详细设计 (4)3.1 第一部分:矩阵转化为线性方程组……..………………………………………. .43.2 第二部分:特征向量的极大值 (4)3.3 第三部分:求幂法函数块 (5)4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5 心得体会 (7)参考文献 (8)附录:源程序 (9)1 幂法设A n 有n 个线性相关的特征向量v 1,v 2,…,v n ,对应的特征值λ1,λ2,…,λn ,满足|λ1| > |λ2| ≥ …≥ |λn |1.1 基本思想因为{v 1,v 2,…,v n }为C n的一组基,所以任给x (0)≠ 0,∑==ni i i v a x 1)0( —— 线性表示所以有])([)(21111111)0(∑∑∑∑====+====ni ii ki kni k k i i ni ik i n i i i kk v a v a v a v A a v a A xA λλλλ若a 1 ≠ 0,则因11<λλi 知,当k 充分大时 A (k )x (0) ≈ λ1ka 1v 1 = cv 1 属λ1的特征向量,另一方面,记max(x ) = x i ,其中|x i | = ||x ||∞,则当k 充分大时,111111*********)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a x A x A k kk k k k若a 1 = 0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0,迭代下去可求得λ1及对应特征向量的近似值。
矩阵最大特征值求法

矩阵最大特征值求法矩阵最大特征值求法矩阵最大特征值是矩阵理论中的重要概念,它在很多领域都有广泛的应用,如物理、化学、工程等。
在实际应用中,我们需要求解矩阵的最大特征值和对应的特征向量,以便对矩阵进行分析和处理。
本文将介绍两种常用的矩阵最大特征值求法:幂法和反迭代法。
一、幂法幂法是求解矩阵最大特征值和对应特征向量的一种常用方法。
其基本思想是:对于一个矩阵A,我们可以随机选择一个向量x0,然后通过不断迭代,使得向量x0趋近于矩阵A的最大特征值所对应的特征向量。
具体步骤如下:1. 随机选择一个向量x0,使其满足||x0||=1。
2. 对向量x0进行迭代,得到向量x1,即x1=Ax0。
3. 对向量x1进行归一化,得到向量x2,即x2=x1/||x1||。
4. 重复步骤2和步骤3,直到向量x收敛于矩阵A的最大特征值所对应的特征向量。
在实际应用中,为了提高计算效率,我们可以对向量x进行正交化处理,即每次迭代后,将向量x与前面所有的向量进行正交化,以避免向量的线性相关性对计算结果的影响。
二、反迭代法反迭代法是一种基于幂法的改进算法,它可以求解矩阵的任意一个特征值和对应的特征向量。
其基本思想是:对于一个矩阵A和一个已知的特征值λ,我们可以通过反迭代法,求解出矩阵A中与特征值λ最接近的特征值和对应的特征向量。
具体步骤如下:1. 随机选择一个向量x0,使其满足||x0||=1。
2. 对向量x0进行迭代,得到向量x1,即x1=(A-λI)-1x0,其中I为单位矩阵。
3. 对向量x1进行归一化,得到向量x2,即x2=x1/||x1||。
4. 重复步骤2和步骤3,直到向量x收敛于矩阵A中与特征值λ最接近的特征向量。
在实际应用中,我们可以通过多次迭代,求解出矩阵A中多个特征值和对应的特征向量,以便对矩阵进行更全面的分析和处理。
总结矩阵最大特征值求法是矩阵理论中的重要内容,幂法和反迭代法是常用的求解方法。
在实际应用中,我们需要根据具体情况选择合适的方法,并注意算法的收敛性和计算效率。
求特征值的技巧

求特征值的技巧特征值(eigenvalue)是矩阵在线性代数中非常重要的一个概念,它具有广泛的应用。
本文将探讨特征值的求解技巧。
首先,我们来了解一下特征值的定义。
给定一个n阶方阵A,如果存在一个非零向量v,使得满足Av=λv,其中λ为常数,那么λ就是A的特征值,v就是对应于λ的特征向量。
特征值与特征向量的求解可以分为数值方法和解析方法两种。
下面分别介绍这两种方法。
一、数值方法:1. 幂迭代法:幂迭代法是一种较为简单和常用的求矩阵最大特征值的方法。
其基本思想是通过迭代过程不断逼近最大特征值的值和对应的特征向量。
具体步骤如下:(1)取一个初始向量v0,通常为单位向量。
(2)迭代计算出序列:v1 = Av0, v2 = Av1, ..., vn = Avn-1。
(3)计算序列vn的模长:vn = √(vn * vn)。
(4)对vn进行归一化得到单位向量: vn = vn / vn 。
(5)判断收敛条件,如果满足收敛条件,则取vn为最大特征值对应的特征向量。
2. QR算法:QR算法是一种用于求解特征值的数值方法,可以同时求得所有特征值和特征向量。
它的基本思想是通过不断迭代,将矩阵A转化为上三角矩阵R,并使其对角线上的元素逼近A的特征值。
具体步骤如下:(1)将矩阵A分解为QR,其中Q为正交矩阵,R为上三角矩阵。
(2)计算矩阵A的逆:A^-1 = R^-1 * Q^-1。
(3)计算新矩阵B = R * Q。
(4)重复步骤1-3,直到矩阵B对角线上的元素收敛为止。
收敛时,矩阵B 的对角线元素即为矩阵A的特征值。
二、解析方法:1. 特征多项式:给定一个n阶方阵A,A的特征多项式定义为P(λ) = A - λI ,其中I为n 阶单位矩阵。
特征多项式的根即为矩阵A的特征值。
特征多项式可以通过展开矩阵A-λI的行列式来求解。
2. 特征向量的求解:通过求解特征多项式得到的特征值,可以求得对应的特征向量。
对于每个特征值λi,我们需要求解线性方程组(A - λiI)v = 0,其中v为特征向量。
幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量幂法和反幂法是求解矩阵最大最小特征值及其对应特征向量的常用方法。
在本文中,我们将详细介绍这两种方法的原理和具体实现。
一、幂法(Power Method)幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。
其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。
幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A和向量b1的乘积Ab1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A和向量b的乘积Ab,得到新的向量b;7.特征值的近似值λ=,Ab,/,b。
具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=A*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,A*bn,/,bn;4. 特征向量的近似值vbn=bn。
幂法的优点是计算简单、迭代次数少,但对于含有多个特征值接近的矩阵,可能会收敛到次大特征值。
二、反幂法(Inverse Power Method)反幂法是幂法的拓展,用于求解矩阵的最小特征值及其对应的特征向量。
其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。
反幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A的逆矩阵Ai和向量b1的乘积Ai*b1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A的逆矩阵Ai和向量b的乘积Ai*b,得到新的向量b;7.特征值的近似值λ=,Ai*b,/,b。
具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=inv(A)*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,inv(A)*bn,/,bn;4. 特征向量的近似值vbn=bn。
最大特征值计算公式

最大特征值计算公式
最大特征值是矩阵特征值中最大的一个,它在数学、物理、工程、经济学等多个领域中都有广泛应用。
最大特征值的计算方法有多种,其中一种常见的是幂法求解法。
幂法求解法是一种基于迭代的方法,它通过不断对矩阵进行重复乘法来逼近最大特征值。
具体而言,该方法首先需要选择一个随机向量x作为初始向量,然后对矩阵A进行多次乘法,
得到一系列向量{x, Ax, A^2x, A^3x, ...},其中向量的长度可能
会发生变化。
在每次计算中,都需要将当前向量除以其范数,使其成为单位向量,然后用新向量与旧向量进行比较以判断算法是否已经收敛。
当新向量与旧向量的差值小于一个给定的容差时,算法即停止,此时新向量的方向即为最大特征值所对应的特征向量。
具体来说,幂法计算最大特征值的公式为:
λ = lim(k→∞) (Akx_k · x_k)/(x_k · x_k)
其中,λ为最大特征值,x_k为第k次迭代得到的向量,A为
待求解矩阵,k为迭代次数。
由于幂法计算的复杂度较低且具有较好的数值稳定性,在实际应用中得到了广泛的应用。
同时,该方法也存在一些限制,如会受到矩阵特征值分布的影响,可能会在某些情况下收敛缓慢,因此需要在实际应用中结合具体问题进行调优。
矩阵特征值快速求法

矩阵特征值快速求法矩阵特征值是矩阵分析中十分重要的概念。
它在物理、工程、数学等许多领域都有着广泛的应用。
矩阵特征值是指矩阵运动时特殊的运动状态,是一种宏观量度矩阵运动的指标。
求解矩阵特征值是一项复杂的任务,通常需要使用高级算法来完成。
本文将介绍几种常用的求解矩阵特征值的算法,其中包括幂法、反幂法、QR算法、分裂Broyden算法等。
一、幂法幂法是求解矩阵特征值的一种基础算法,其基本思想是通过迭代来逐步逼近矩阵的最大特征值。
幂法的核心公式如下:x_(k+1)=A*x_k/||A*x_k||其中,x_k表示第k次迭代中得到的特征向量,A表示原始矩阵。
幂法通过不断的迭代来逼近A的最大特征值,当迭代次数趋近于无限大时,得到的特征向量就是A的最大特征值所对应的特征向量。
幂法的运算量较小,适用于比较简单的矩阵。
反幂法与幂法类似,不同之处在于每次迭代时采用的是A的逆矩阵来进行计算。
其核心公式如下:x_(k+1)=(A-λI)^(-1)*x_k其中,λ表示要求解的特征值。
反幂法能够求解非常接近于特征值λ的特征向量,并且对于奇异矩阵同样适用。
需要注意的是,在实际计算中,如果A-λI的秩不满,那么反幂法就无法使用。
三、QR算法1. 将原矩阵A进行QR分解,得到A=Q*R。
2. 计算A的近似特征矩阵A1=R*Q。
5. 重复步骤3-4,直到A的对角线元素全部趋近于所求特征值为止。
QR算法的计算量较大,但其具有收敛速度快、精度高等优点,广泛应用于科学计算中。
四、分裂Broyden算法分裂Broyden算法是QR算法的一种改进算法,其基本思想是将矩阵分解成上下三角形式,然后再对其进行QR分解,以减少QR算法中的乘法运算量。
具体实现过程如下:2. 构造一个倒数矩阵B=U^(-1)*L^(-1)。
4. 计算A的近似特征矩阵A1=Q^(-1)*L^(-1)*A*R^(-1)*U^(-1)*Q。
分裂Broyden算法的计算量较小,能够有效地解决QR算法中的乘法运算量过大的问题。
求矩阵特征值的方法

求矩阵特征值的方法矩阵特征值是矩阵理论中的一个重要概念,它在许多领域中都有着广泛的应用,如物理学、工程学、计算机科学等。
求矩阵特征值的方法有多种,下面将介绍其中的三种常用方法。
一、特征多项式法特征多项式法是求矩阵特征值的一种常用方法。
它的基本思想是将矩阵A与一个未知数λ相乘,得到一个新的矩阵B=A-λI,其中I为单位矩阵。
然后求解矩阵B的行列式,得到一个关于λ的多项式,称为特征多项式。
矩阵A的特征值就是使特征多项式等于零的λ值。
具体步骤如下:1. 构造矩阵B=A-λI。
2. 求解矩阵B的行列式det(B)。
3. 解特征多项式det(B)=0,得到矩阵A的特征值λ。
二、幂法幂法是求矩阵特征值的一种迭代方法。
它的基本思想是从一个任意的非零向量开始,不断地将其乘以矩阵A,直到向量的方向趋于特征向量的方向,同时向量的模长趋于特征值的绝对值。
具体步骤如下:1. 选择一个任意的非零向量x0。
2. 迭代计算xn+1=Axn/||Axn||,其中||Axn||为Axn的模长。
3. 当xn+1与xn的差值小于某个预设的精度时,停止迭代,此时xn 的模长即为矩阵A的最大特征值,xn/||xn||即为对应的特征向量。
三、QR分解法QR分解法是求矩阵特征值的一种数值方法。
它的基本思想是将矩阵A 分解为QR,其中Q为正交矩阵,R为上三角矩阵。
然后对R进行迭代,得到一个对角矩阵,对角线上的元素即为矩阵A的特征值。
具体步骤如下:1. 对矩阵A进行QR分解,得到A=QR。
2. 对R进行迭代,得到一个对角矩阵D,对角线上的元素即为矩阵A的特征值。
以上三种方法都有其优缺点,具体选择哪种方法取决于实际应用场景和计算需求。
在实际应用中,还可以结合多种方法进行求解,以提高计算精度和效率。
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量(DOC)

数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21≥≥≥>(2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程:i ni i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有1111112211211111111011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k ni ik i i ni i i k )(k (k))(k αλλλλλα++++=+=+++≈⎥⎦⎤⎢⎣⎡+++======∑∑ 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k(k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。
2 算法实现.,, 3,,1 , ).5()5(,,,,||).4();max(,).3()(max(;0,1).2(,).1()()()(停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←=←←k k N k y x Ay x x abs x y k N x A k k k3 matlab 程序代码function [t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量k=1;z=0; % z 相当于λy=x0./max(abs(x0)); % 规范化初始向量x=A*y; % 迭代格式b=max(x); % b 相当于βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=max(x);return;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=x./max(abs(x));x=A*y;b=max(x);end[m,index]=max(abs(x)); % 这两步保证取出来的按模最大特征值t=x(index); % 是原值,而非其绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int i=0;/*iterator value*/
assertF((*inArr)!=NULL,"in 2d arr mem free,in arr is null\n");
for(i=0;i<rowNum;i++)
free((*inArr)[i]);
free((*inArr));
}
这两个函数的作用相信大家一看就明白,是实现二维指针的申请内存和释放内存的,这样,以后再主程序里的工作量就会小多了。
{
FILE *inputFile;/*input file*/
FILE *outputFile;/*output file*/
double startTime,endTime,tweenTime;/*time callopsed info*/
int rowNum,colNum;
Type** wArr;
do
{
assertF(listNotZero(listU,size),"in the core of powerMethodForLamda list U is NULL\n");
assertF(listNotZero(listV,size),"in the core of powerMethodForLamda list V is NULL\n");
printf("input file open success\n");
/*default outpout file open*/
if(argc>2)strcpy(outFileName,argv[2]);
assertF((outputFile=fopen(outFileName,"wb"))!=NULL,"output file error");
assertF(matrixListAns!=NULL,"in twoMatrixBy matrixAns is null\n");
/*core program*/
for(i=0;i<rowNum;i++)
{
sum=0;
for(k=0;k<mNum;k++)
sum+=matrixA[i][k]*matrixListIn[k];
maxData=(Type)fabs(inList[0]);
for(i=1;i<len;i++)
if(fabs(inList[i])>maxData)maxData=(Type)fabs(inList[i]);
return maxData;
}
/*test program*/
/*maxLamda resolve test program*/
/*mem free*/
free(listV);
free(listU);
/*close the file*/
fclose(outputFile);
return maxLamda;
}
/*相应的辅助函数*/
/* matirxBy2DWith1DCol一个n*n的矩阵和一个n*1的列向量作乘法*/
void matirxBy2DWith1DCol(Type** matrixA,Type* matrixListIn,Type* matrixListAns,int rowNum,int mNum)
Type preMax;/*a tween data*/
float e=(float)0.0001;/*the precise controller*/
Type tmpData;/*temp data for program*/
int i=0;/*iterator times*/
int iteratorNum=0;/*iterator number*/
[数值算法]求矩阵的最大特征值的幂法.
对于工程计算而言,矩阵的特征值和特征向量都是相当重要和常见的数据,这里给出的幂法是一种常见的求解方法,用的是迭代的思想。
符号说明:
1A为待求的矩阵,
2Uk,Vk为迭代用的列向量。
3最后的最大特征值maxLamda由最后一次的max(Uk)-----求Uk中的绝对值最大的元素的绝对值.所决定。
matrixListAns[i]=sum;
}
}
/*求一个一维向量中绝对值的最大值*/
Type maxAbsValInList(Type* inList,int len)
{
int i;/*iterator num*/
Type maxData;
assertF(inList!=NULL,"in maxValInList,inList is NULL\n");
printf("output file open success\n");
/*This function,automatically fullfill the task of
apply the mem for the 2d pointers. Perfect,right? :)*/
read2DArrFloat(&wArr,&rowNum,&colNum,"inputData2.txt");
preMax=maxAbsValInList(listU,size);
matirxBy2DWith1DCol(matrixA,listV,listU,size,size);
tmpData=1/maxAbsValInList(listU,size);
numByList(tmpData,listU,listV,size);
outputListArrFloat(listV,0,size,outputFile);
/*End of the Core Program*/
maxLamda=maxAbsValInList(listU,size);
fprintf(outputFile,"the max lamda is:\r\n %f.\r\n",maxLamda);
#if DEBUG
printf("\n*******start of test program******\n");
printf("now is runnig,please wait...\n");
startTime=(double)clock()/(double)CLOCKS_PER_SEC;
/******************Core program code*************/
在贴出程序之前,先对一部分我新增加的实用函数进行说明:
如:
void twoDArrMemApply(Type*** inArr,int rowNum,int colNum)
{
int i=0;/*iterator vaule*/
(*inArr)=(Type**)malloc(sizeof(Type*)*rowNum);
而maxLamda所对应的特征向量由最后一次迭代的Vk所决定.
主要的想法就是先选一个不为0的初始向量U0!=0,然后按下面的式子迭代。
U0=V0!=0
Do
{
Uk=AVk-1
Vk=Uk/max(Uk)
}while(abs(max(Uk)-max(Uk-1))>=e)//e为精度.
好了,就这样,更多的细节请去参考相关的数值算法书籍.
/*argu prepare*/
assertF(colNum==rowNum,"in test colNum!=rowNum");
n=rowNum;/*get the size of square matrix*/
maxLamda=powerMethodForLamda(wArr,n,"output2.txt");
assertF((outputFile=fopen(outputFileName,"wb"))!=NULL,"output file open error\n");
/*mem apply*/
listArrMemApply(&listV,size);
listArrMemApply(&listU,size);
还有,我在写一些程序段的时候对待外部传进的指针采用如下处理手段(纯C条件下)
除非这个函数有特殊的作用,如申请内存,或要读入外部文本内容到二维指针等。其余的情况,一律不对外部指针进行任何申请或释放内存的处理。
对于要保护数据的外部传入指针,则在函数内部再做一个局部指针,在函数结尾释放.
对局部指针的操作,也仅限于赋值,而绝对不要用外部传入针指去指向它(即赋一个临时区的地址给外部的指针变量),这当然是错误的。
Type maxLamda;
int n;/*arr deminision for squre matrix*/
/*default input file open*/
if(argc>1)strcpy(inFileName,argv[1]);
assertF((inputFile=fopen(inFileName,"rb"))!=NULL,"input file error");
/*
incol;
//Arr
a11,a12,...;
, , , ,
, , , ,
an1,an2,...;
}
*/
char *outFileName="outputData.txt";