线性代数第一章行列式

合集下载

线性代数学习

线性代数学习
(3)1A=A、OA=O、A+(-A)=(-A)+A=O
2.矩阵的乘法
性质:
(1)(AB)C=A(BC)、A(B+C)=AB+AC、(B+C)A=BA+CA
(2)k(AB)=(kA)B=A(kB)
(3)AB≠BA
(4) 、
注: = 、kA=
3.矩阵的转置
,
性质:
(1) 、 、
(2) 、 =
(3) 、 (A为方阵)
如 (第一行加到第二行上)
矩阵初等行变换相当于左乘初等阵
矩阵初等列变换相当于右乘初等阵
例:矩阵的第一行加到第二行上的一次初等变换=
矩阵的第一行和第二行互换=
六、矩阵的秩
1.定义:矩阵A的r阶子式不为0,所有的r+1阶子式都为0,则A的秩为r。
例:A= ,
二阶子式A= ≠0,
三阶子式 , ,

所以
2.矩阵秩的求法
对称矩阵 A=
反对称矩阵 A=
三、逆矩阵
1.逆矩阵定阵)
2.矩阵可逆的判断: ≠0
3.逆矩阵的求法:
A= ,


4.逆矩阵性质
(1 、
(2 =
(3 、
(4 AB=O,则B=O、AB=AC,则B=C
5.正交矩阵: (A为方阵,且A中元素为实数)
A为正交阵的性质:
4.准对角矩阵:
(1)
(3) ≠0,则:
五、初等变换
1.矩阵初等变换:
(1)互换两行或两列
(2)常数k乘某行或某列
(3)某行或某列乘以k倍加到其他行或列
2.矩阵相似:矩阵A经过有限次初等变化到B就称A与B等价。

线性代数-行列式(完整版)

线性代数-行列式(完整版)

思考练习(排列的逆序数详解)
方法1 在排列x1x2…xn中,任取两数xs和xt(s<t), 则它们必在排列x1x2…xn或xnxn-1…x1中构成逆序, 且只能在其中的一个排列中构成逆序.又在排列
x1x2…xn中取两数的方法共有
C 2 n! n(n 1)
n 2!(n 2)!
2
故排列 x1x2…xn 与 xnxn-1…x1 中逆序之和为
k经s+1次相邻对换成为 …kj i1…is … j经s次相邻对换成为 …ki1…is j … 即经2s+1次相邻对换后(3) 成为 (4). 相邻对换改变排列的奇偶
性20 ,奇数次这样的对换后排列的奇偶性改变.
||
定理1.2. n个数码共有n!个排列,其中奇偶排列各占 一 半, 各 为n! . 2
32
例2
2
3
设 D

,
31
(1)当 为何值时, D 0,
(2)当 为何值时 D 0.
解 2 3 0 0,或 3
2
D
2
31
例3 求二阶行列式
a 1 b2
(2)三阶行列式
记号
a11 a12 a13 a21 a22 a23 称为三阶行列式. a31 a32 a33
是所有取自不同行、不同列n个元素的乘积 a1 j1a2 j2 anjn 并冠以符号 (1)N ( j1 j2 jn ) 的项的和.
((决ii)i)定行a1每j标1a一2按j2项自的然an符j顺n 是号序取;排自列不,同列行标、排不列同的列奇的偶n性个元N(素j1的j2 乘j积n ) ; (iii) 表示对所有的 j1 j2 jn 构成的n!个排列求和.

第1章线性代数

第1章线性代数

第一节 二阶、三阶行列式
第一章 行列式
hang lie shi
二阶、三阶行列式的概念在中学已有介绍,在此进一步复习巩固。
一、二阶行列式
对于二元线性方程组
aa1211xx11

a12 x2 a22 x2

b1 , b2 ,
由消元法得
((aa1111aa2222

a12a21 )x1 a12a21 )x2
第一章 行列式
第一章 行列式
行列式的概念是由解线性方程组 引入的,是线性代数中最基本的内容, 也是学习矩阵与线性方程组的理论基 础。本章主要包括行列式的概念、性 质、展开及应用——克莱姆法则。
目录
1 第一节 二阶、三阶行列式 2 第二节 n阶行列式 3 第三节 行列式的性质 4 第四节 行列式的展开 5 第五节 行列式的应用
研究问题的简捷,引入记号
第一章 行列式
hang lie shi
a11 a12 a13 D a21 a22 a23
a31 a32 a33
来表示变形方程(1-3)中 x1的系数,它是由未知量系数排成三行三列构成的,
称为三阶行列式,即
a11 a12 a13
D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
显然, D1 ,D2 可看作是以 b1 ,b2 为一列分别取代D中第1列、第2列得到。
于是,方程组的解可表示为
x1

D1 D



x2

D

由此,二元线性方程组可通过其未知量系数、常数项构成的二阶行列式

线性代数第一章

线性代数第一章

0 0
a11a22 ann
ann
除了以上三种特殊行列式外,还有以下对角行列式和三角行列式:
a2 ,n1
a1n
a1n
a11 a12
a1n
a2 ,n1 a2n a21 a22
an1
an1 an2
ann
an1
n ( n 1)
(1) 2 a1na2 ,n1 an1 ,
1.2.4 特殊行列式
定义4
(4)如果行列式 D 中元素满足 aij aji ,则行列式 D 称为对称行列式.
(1-3)
1.2.1 二阶行列式
定义1
二元线性方程组的解(1-2)可简单表示为
x1
D1 D
,x2
D2 D
(D 0) .
(1-4)
其中, D a11 a12 为方程组未知数的系数所组成的行列式,称为方程组的系数行列 a21 a22
式;D1
b1 b2
a12 a22
(用方程组的常数项代替系数行列式的第 1 列);D2
uvgh
分析:按行列式的定义,它应有 4! 24 项.但只有 adeh,adfg,bceh,bcfg 这四项不为
零.与这四项相对应列标的排列分别为 1 2 3 4,1 2 4 3,2 1 3 4 和 2 1 4 3,它们的逆序数分
别为 0,1,1,2,所以第一、四项应取正号,第二、三项应取负号.
解: D adeh adfg bceh bcfg .
行列式的和,即
a11
a12
bi1 ci1 bi2 ci2
a1n
a11 a12
bin cin bi1 bi2
a1n
a11 a12
bin ci1 ci2

线性代数第一章行列式课件

线性代数第一章行列式课件

a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设

第一章 行列式

第一章  行列式

6
λ2 ⋰
λ1
n ( n −1)
= (−1) 2 λ1λ2 ⋯λn
λn
例 1.5 计算上三角行列式
a11 a12 ⋯ a1n
D=
a22 ⋯ a2n ⋱⋮
ann
解 由于当 i > j 时, aij = 0 ,故 D 中可能不为 0 的元素 aipi ,其下标应有
pi ≥ i ,即 p1 ≥ 1, p2 ≥ 2, ⋯, pn ≥ n 。
(1.7)式简记为 det(aij ) ,数 aij 称为行列式 det(aij ) 的元素。 例 1.4 计算行列式
1 2 D= 3 4 解 这是一个四阶行列式,按定义 1.5 展开得
∑ D = (−1)τ a a 1p1 2 p2 a a 3 p3 4 p4
在展开式中应该有 4!= 24 ,注意到,当 p1 ≠ 4 时 a1p1 = 0 ,从而这一项就等
1
类似地,(1.2)式的分子也可写成二阶行列式
b1a22
− a12b2
=
b1 b2
a12 a22
, a11b2
− b1a21
=
a11 a21
b1 b2
那么(1.2)式可写成
b1 a12
a11 b1
x1 =
b2 a11
a22 a12
, x2
=
a12 a11
b2 a12
a21 a22
a21 a22
二、三阶行列式的定义
如果比 pi 大的且排在 pi 前面的元素有τ i 个,就是说 pi 这个元素的逆序数是τ i ,
3
全体元素的逆序数的总数
就是这个排列的逆序数。
n
∑ τ = τ1 + τ 2 + ⋯ + τ n = τ i

线性代数-行列式(完整版)

线性代数-行列式(完整版)

a11a22 a12a21
数a( ij i, j 1,2)称为它的元素。
今后对任何行列式,横 排称为行, 竖排称为列 ,
aij中i称为行标, j称为列标, aij 表示第i行第j列元素, 左上角到右下角表示主对角线,
4
右上角到左下角表示次对角线, 例1
5 1 3 2
5 2 (1) 3 13
a21 a22 a31 a32
可以用对角线法则来记忆如下.
8
主对角线法
a11
a12
a13 a23 a11a22a33 a12a23a31 a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
a21 a22 a31 a32
9
例4 计算三阶行列式
定理1.1:任一排列经过一个对换后奇偶性改变。
证明:
19

对换在相邻两数间发生,即
设排列 …jk… (1) 经j,k对换变成 …kj… (2) 此时,排列(1)、(2)中j,k与其他数是否构成逆序的情形未 发生变化;而j与k两数构成逆序的情形有变化: 若(1)中jk构成逆序,则(2)中不构成逆序(逆序数减少1) 若(1)中jk不构成逆序,则(2)中构成逆序(逆序数增加1)
n!个) 称为一个n级排列(总数为 . 如:由1,2,3可组成的三级排列有3!=6个: 123 132 213 231 312 321 注意:上述排列中只有第一个为自然顺序(小大),其 他则或多或少地破坏了自然顺序(元素大小与位置相
反)——构成逆序.
15
(2)排列的逆序数

定义: 在一个n 级排列i1i2…in中,若某两数的前 后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in).

线性代数第一章行列式

线性代数第一章行列式

04
式可以表示为三个向量的向量积的 二倍,即 |a b c| = 2abc。
向量积的符号由行列式的值决定,当行列式 值为正时,向量积为正;当行列式值为负时, 向量积为负。
行列式可以用来判断平行四边形的 形状,当行列式值为正时,平行四 边形为锐角;当行列式值为负时, 平行四边形为钝角。
行列式与平行四边形面积的关系
行列式可以表示平行四边形的面积,即 |a b| = ab/2。
当行列式值为正时,平行四边形的面积为正; 当行列式值为负时,平行四边形的面积为负。
行列式可以用来判断平行四边形的方向,当行 列式值为正时,平行四边形为顺时针方向;当 行列式值为负时,平行四边形为逆时针方向。
行列式与空间向量的关系
01
02
03
行列式可以表示空间向量的模长,即 |a b c| = abc。
当行列式值为正时,空间向量的模长 为正;当行列式值为负时,空间向量 的模长为负。
行列式可以用来判断空间向量的方向 ,当行列式值为正时,空间向量为右 手系;当行列式值为负时,空间向量 为左手系。
05
行列式的应用实例
在线性方程组中的应用
定义
代数余子式是去掉一个元素所在的行和列后,剩 下的元素构成的二阶行列式。
性质
代数余子式与去掉的元素所在的行和列的符号有 关。
计算方法
可以通过二阶行列式的计算法则来计算代数余子 式。
行列式的展开定理
01
定理内容
一个n阶行列式等于它的任一行 (或列)的所有元素与其对应的 代数余子式的乘积之和。
02
03
定性。
求解线性方程组
03
在求解线性方程组时,可以利用展开定理计算系数矩阵的行列
式值,从而判断方程组是否有解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档