不等式。因式分解。分式复习

合集下载

不等式的解法

不等式的解法

复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。

复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。

(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。

2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。

易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。

如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。

3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。

4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。

<2>注:g(x)=0为孤立点,易遗漏。

5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。

<2>形如的基本解法:<i>分段讨论;<ii>数形结合。

6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。

易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。

解不等式问题重点注意:i.等价变形;ii.数形结合的方法。

分式知识点总结及复习汇总

分式知识点总结及复习汇总

分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。

分式可以表示一个数,也可以表示一个运算过程。

分式可以进行四则运算,包括加减乘除。

分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。

分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。

分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。

二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。

2.减法:两个分式相减,分母相同,分子相减。

3.乘法:两个分式相乘,分子相乘,分母相乘。

4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。

三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。

2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。

四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。

2.整式转化为分式:将一个整数写成分子,分母为1的形式。

五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。

2.部分与整体的关系:可以用分式表示部分与整体的关系。

3.商业问题:例如打折、利润等问题,可以用分式来表示计算。

4.几何问题:例如面积、体积等问题,可以用分式来表示计算。

六、分式的简化步骤:1.因式分解。

2.分子、分母约去最大公约数。

3.整理化简结果。

七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。

整式、分式、因式分解

整式、分式、因式分解

个性化教学辅导教案学科: 数学任课教师:讲课时刻(6)),0(1);0(10为正整数p a a a a a pp ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

二、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子叫做分式。

1.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0; 分式无意义的条件:分式的分母等于0。

2.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(),其中A 、B 、C 是整式注意:(1)“C 是一个不等于0的整式”是分式基本性质的一个制约条件; (2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C ;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

3.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

4..分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母各自乘方。

5.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,(注意:当幂指数为负整数时,最后的计算结果要把幂指数化为正整数。

因式分解与分式综合复习测试题

因式分解与分式综合复习测试题

因式分解与分式综合检测一 选择题1. 下列变形正确的是 ( )A .22a ab b +=+ B .2a a b ab = C .a ax b ax = D .2a abb b =2、下列各式的分解因式:①()()2210025105105p q q q -=+- ②()()22422m n m n m n --=-+-③()()2632x x x -=+- ④221142x x x ⎛⎫--+=-- ⎪⎝⎭正确的个数有( ) A 、0 B 、1 C 、2 D 、33.下列多项式,不能运用平方差公式分解的是( )A.42+-mB.22y x --C.122-y x D.412-x 4.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 5. 下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+ D .222()x y x y +=+ 6.若()()26323----x x 有意义,则x 的取值范围是( )A .3>xB .2<xC .3≠x 或2≠xD .3≠x 且2≠x 7.下列各式中,能用完全平方公式分解因式的是( ).A.4x 2-2x +1B.4x 2+4x -1C.x 2-xy +y 2 D .x 2-x +128.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 9、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( ) A 、()4x cm - B 、()4x cm - C 、()164x cm - D 、()416x cm -10、下列变形正确的是( ) A .x y x y x y x y -+--=-+ B .x y x y x y x y -+-=--+ C .x y x y x y x y -++=--- D .x y x yx y x y-+-=---+ 二、耐心填一填1.分解因式:244x x ---=_____________。

代数式、整式、分式、因式分解的专题复习

代数式、整式、分式、因式分解的专题复习

代数式、整式、分式、因式分解的专题复习一、选择题1.(2022秋•平泉市校级期末)当12x =,计算代数式21(x --= ) A .0B .54-C .34 D .34-2.(2022秋•广宗县期末)若132m a b +与473n a b +-是同类项,则m ,n 的值分别为( ) A .2,1B .3,4C .3,4-D .3,23.(2022秋•平泉市校级期末)单项式212xy -的系数是( )A .2B .2-C .12 D .12-4.若4a b +=-,1ab =.则22(a b += ) A .14-B .14C .7D .7-5.(2022秋•路北区校级期末)代数式21x xx ++的值为零,则x 的值为( )A .1-B .0C .1-或0D .16.(2022秋•大名县期末)下列计算正确的是( ) A .()x y z x y z --=+- B .()x y z x y z --+=--+C .333()x y z x z y +-=-+D .()()a b c d a c d b -----=-+++7.(2022秋•平泉市校级期末)已知:2a b -=,那么225(a b -+= ) A .1-B .1C .9D .38.(2022秋•高阳县校级期末)已知x ﹣3y =3,那么代数式﹣2x +6y +5的值是( ) A .﹣3B .0C .﹣1D .119.(2022秋•栾城区校级期末)下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .2()22x z y x z y -+=-+D .()()a b c d a b c d -----=-+++10.(2022秋•南宫市期末)给出两个运算:甲222.34m n nm m n -=-;乙22.330m n mn -=.下列判断正确的是( ) A .甲、乙均正确 B .甲正确,乙错误 C .甲、乙均错误D .甲错误,乙正确11.(2022秋•栾城区校级期末)如图是长为a ,宽为b 的小长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为8,宽为6)的盒子底部(如图),盒子底部未被卡片覆盖的部分用阴影表示,则两块阴影部分的周长之和为( )A .16B .24C .20D .2812.(2022秋•丛台区校级期末)已知0a ≠,下列运算中正确的是( ) A .236a a a ⋅=B .532a a a -=C .325()a a -=D .34a a a ⋅=13.(2022秋•平泉市校级期末)下列计算,正确的是( ) A .2(3)(3)3x x x +-=- B .2242(1)1x x x +=++ C .23(2)2x x x x +=+D .222()2a b a ab b -=--14.若3m a =,2n a =.则32m n a -等于( ) A .34B .98C .274D .015.(2022秋•栾城区校级期末)下列说法正确的是( ) A .22x -的系数是2 B .32xy+是单项式 C .x 的次数是0D .8既是单项式,也是整式16.(2022秋•新华区校级期末)下列说法正确的是( ) A .单项式y -的系数是1-,次数是0 B .25x +=是代数式C .多项式3232x y x --是四次三项式D .0不是单项式17.(2022秋•霸州市校级期末)记238256(12)(12)(12)(12)(12)x =+⨯+⨯+⨯+⨯⋯⨯+,则1x +是( ) A .一个奇数 B .一个质数C .一个整数的平方D .一个整数的立方18.(2022秋•丛台区校级期末)下列由左到右的变形,属于因式分解的是( )A .()m x y mx my +=+B .243(2)(2)3x x x x -+=+-+C .2(3)(3)9x x x +-=-D .3(1)(1)x x x x x -=+-19.(2022秋•安次区期末)若2(3)4x m x +-+能用完全平方公式进行因式分解,则常数m 的值为( ) A .1或5B .7或1-C .5D .720.(2022秋•磁县期末)下列各式从左到右的变形中,是因式分解且完全正确的是( ) A .2(2)(2)4x x x +-=- B .223(2)3x x x x --=-- C .2244(2)x x x -+=-D .32(1)x x x x -=-21.(2022秋•广宗县期末)若212()()x x x p x q +-=++,则p ,q 的值分别为( ) A .3p =,4q =B .3p =-,4q =C .3p =,4q =-D .3p =-,4q =-22.下面是嘉淇同学的练习题,他最后得分是( ) 姓名嘉淇得分_____填空题(评分标准:每道题5分) (1)2-的相反数为(2); (2)11||()22-=;(3)用代数式表示a ,b 之差与c 的商:()ba c-;(4)单项式245x y-的系数为(4)-.A .20分B .15分C .10分D .5分23.(2022秋•襄都区校级期末)已知23a b -=,则代数式367b a -+的值为( ) A .2-B .4-C .4D .5-24.如果式子225y y -+的值为7,那么式子2421y y -+的值为( ) A .2B .3C .2-D .525.(2022秋•河北期末)下列运算正确的是( ) A .232(31)3m mn n m n m n -+=- B .2224(3)9ab a b -=-C .551022a a a +=D .233x y xy x ÷=26.(2022秋•路北区校级期末)下列计算正确的是( ) A .236(3)9a a -=- B .235()a a = C .2242(2)2a b ba a b ⋅-=-D .933a a a ÷=27.(2022秋•南宫市期末)已知2022202020212021202120202022x -=⨯⨯,则x 的值为( ) A .2023B .2022C .2021D .202028.(2022秋•雄县校级期末)将多项式316a a -进行因式分解的结果是( ) A .(4)(4)a a a +-B .2(4)a -C .(16)a a -D .(4)(4)a a +-29.(2022秋•定州市期末)下列因式分解最后结果正确的是( ) A .223(1)(3)x x x x --=-+ B .2()()()x x y y y x x y -+-=-C .32(1)x x x x -=-D .2269(3)x x x -+-=-30.若对分式“2121x x x x-+⋅-”进行约分化简,则约掉的因式为( ) A .1x +B .2x +C .1x -D .x31.(2022秋•雄县校级期末)化简22422a b a b b a+--的结果是( ) A .2a b -+ B .2a b --C .2a b +D .2a b -32.若分式35x -有意义,则x 的取值范围是( ) A .3x ≠ B .5x ≠ C .5x > D .5x >-33.(2022秋•新华区校级期末)若a ≠2,则我们把称为a 的“友好数”,如3的“友好数”是=﹣2,﹣2的“友好数”是=,已知a 1=3,a 2是a 1的“友好数”,a 3是a 2的“友好数”,a 4是a 3的“友好数”,⋯,依此类推,则a 2023的值为( ) A .﹣2B .C .D .334.若多项式235ax x -+与222x bx --的差是常数,则a b -的值为( ) A .1 B .1- C .5 D .5-二、填空题35.(2022秋•栾城区校级期末)若代数式:||3a x y -与212b x y 是同类项,则a b -= .36.(2022秋•路北区校级期末)若222(1)16x m xy y --+是完全平方式,则m = . 37.(2022秋•丰南区校级期末)已知16m x =,3n x =.则2m n x -的值为 . 38.(2022秋•桥西区校级期末)分解因式:256ax ax a -+= . 39.若分式||55y y --的值为0,则y = ;若分式||55y y--有意义,则y . 40.(2022秋•桥西区期末)若221m m -=,则2242024m m --的值是 .41.(2021秋•定州市期末)当x = 时,分式21628x x --的值为0.42.已知2210x x --=,则236x x -= ;则322742019x x x -+-= . 三、解答题43.(2021秋•桥西区校级期末)化简:2242137a a a a ++--.44.(2022秋•栾城区校级期末)计算下列各小题. (1)122()(18)|10|639-+⨯---;(2)52243(1)[3()2]()34-⨯-⨯--⨯-;(3)13342x x x +--=-;(4)先化简,再求值:2222()3()1x y xy x y xy x y +--+-,其中x 是最大的负整数,y 是2的倒数.45.(2021秋•易县期末)(1)计算:08611(3)33()3π---÷+(2)分解因式:2363x x ++46.(2022秋•襄都区校级期末)(1)计算:322433(25)()(3)9-÷+----⨯-;(2)解方程:321123y y -++=;(3)先化简,再求值:222214()3()212x y xy x y x xy +-+-+,其中2x =-,3y =.47.(2022秋•桥西区校级期末)已知一个代数式与22x x -+的和是263x x -++. (1)求这个代数式;(2)当12x =-时,求这个代数式的值.48.(2022秋•邯山区校级期末)计算:(1)2(2)(2)()a b a b a b +---; (2)2432932(3)x x x x x ----÷.49.(2022秋•万全区期末)分解因式:(1)416a -; (2)22331212x y xy y ++.50.(2022秋•雄县校级期末)计算:(1)20300211|6|( 3.14)()3π--+---+-; (2)31321()2x y x y --.51.(2022秋•路南区校级期末)(1)计算:22012()(2022)|3|2ππ--+-+---.(2)先化简,再求值:222569(1)22x x x x x x--+-÷--,然后选择一个你喜欢的数代入求值.52.(2022秋•路南区校级期末)已知多项式222A x x n =++,多项式222433B x x n =+++. (1)若多项式222x x n ++是完全平方式,则n = ;(2)有同学猜测2B A -的结果是定值,他的猜测是否正确,请说明理由; (3)若多项式222x x n ++的值为1-,求x 和n 的值.53.(2022秋•邯山区校级期末)先化简:222()1121x x x xx x x x --÷---+,然后从1-、0、1、2中选取一个你认为合适的数作为x 的值代入求值.。

职高数学知识点总结复习整理

职高数学知识点总结复习整理

数学知识要点总结 初中基础知识:1. 相反数、绝对值、分数的运算;2. 因式分解:提公因式:xy-3x=(y-3)x十字相乘法 如:)2)(13(2532-+=--x x x x配方法 如:825)41(23222-+=-+x x x 公式法:(x+y )2=x 2+2xy+y 2 (x-y)2=x 2-2xy+y 2 x 2-y 2=(x-y)(x+y) 3. 一元一次方程、一元二次方程、二元一次方程组的解法: (1) 代入法 (2) 消元法6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-7.平方差公式:))((22b a b a b a -+=-8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑φ是否满足题意)(2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合 (2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。

代数式、整式、分式、因式分解的专题复习题

代数式、整式、分式、因式分解的专题复习题

代数式、整式、分式、因式分解的专题复习题一、选择题1.(2021秋•石泉县期末)计算12-的值为( ) A .2B .12C .2-D .1-2.(2022春•丰泽区校级期中)计算:11()(6-= ) A .6-B .6C .16-D .163.(2022秋•余庆县期末)下列各式从左到右的变形为分解因式的是( ) A .32321836x y x y =B .2(2)(3)6m m m m +-=--C .289(3)(3)8x x x x x +-=+-+D .26(2)(3)m m m m --=+-4.(2022秋•淄川区期中)计算211x xx x--÷的结果是( ) A .2xB .2x -C .xD .x -5.(2022春•吴江区期中)如果1(0.1)a -=-,0(2022)b =-,23()2c -=-,那么a 、b 、c三个数的大小为( ) A .b c a >>B .c b a >>C .b a c >>D .c a b >>6.(2022秋•朝阳区期末)单项式232x y -的系数和次数分别是( )A .3-,2B .12-,3C .32-,2D .32-,37.下列计算正确的是( ) A .22(3)9a a +=+ B .222(9)189x y x xy y -=-+ C .22(23)469a a a +=++D .222()2x y x xy y -+=-+8.若关于x 的多项式2(2)(24)x ax x ++-展开合并后不含2x 项,则a 的值是( ) A .0B .12C .2D .2-9.(2022秋•淄川区期中)已知多项式2ax bx c ++,其因式分解的结果是(1)(4)x x +-,则abc 的值为( )A .12B .12-C .6D .6-10.(2022秋•怀柔区期末)下列等式中,从左到右的变形是因式分解的是()A .2(2)2x x x x +=+B .22(3)69x x x -=-+C .211()x x x x+=+D .29(3)(3)x x x -=+-11.(2022春•庐江县月考)下列四个式子中在有理数范围内能因式分解的是()A .21x +B .2x x +C .221x x +-D .21x x -+12.(2022春•运城月考)下列从左边到右边的变形,属于因式分解的是( ) A .2(2)(3)6x x x x -+=+- B .2(2)24x x -=- C .24414(1)1x x x x -+=-+D .3(1)(1)x x x x x -=-+13.(2022秋•离石区月考)下列各式中.是因式分解的是( ) A .292(9)2m m m m -+=-+ B .3()33m n m n +=+C .2244(2)m m m ++=+D .2223623(2)m m m m --=-+14.(2022秋•苍溪县期末)下列分式的变形正确的是( )A .33a ab b +=+B .22a a b b=C .2a ab b b =D .a aa b a b-=-++ 15.(2022秋•门头沟区期末)如果分式1xx +有意义,那么x 的取值范围( ) A .0x ≠B .1x ≠C .1x =-D .1x ≠-16.(2022秋•淄川区期中)若分式中22aba W+的a 和b 都扩大3倍,且分式的值不变,则W 可以是( ) A .3B .bC .2bD .3b17.(2022秋•合川区校级期末)下列分式是最简分式的是( ) A .93baB .22aba bC .a ba b+- D .2aa ab- 18.(2022秋•东丽区校级期末)计算32(3)x y -的结果是( )A .329x yB .629x yC .326x yD .626x y -19.(2022秋•泸县校级期末)若2(3)(5)15x x x mx -+=+-,则m 的值为( ) A .8-B .2C .2-D .5-20.(2022秋•丰满区期末)在下列计算中,正确的是( ) A .4482a a a ⋅=B .236(2)8a a -=-C .347a a a +=D .623a a a ÷=21.(2021秋•红花岗区校级月考)下列计算正确的是( ) A .2221x x -= B .22234a a a -+=-C .3(1)31a a +=+D .2(1)22x x -+=--22.(2021春•济南期中)若29x mx ++是完全平方式,则m 的值是( ) A .3±B .6-C .6D .6±23.(2022秋•霍邱县月考)单项式24m n -的系数和次数是( )A .系数是14,次数是3B .系数是14-,次数是3C .系数是14-,次数是2D .系数是3,次数是14-24.(2022秋•安徽期中)一个多项式与221x x +-的和是32x +,则这个多项式为( )A .251x x -++B .23x x -++C .251x x ++D .23x x --25.(2021秋•儋州校级期末)下列多项式中,能进行因式分解的是( ) A .22x y +B .32x y x y +C .x y +D .1y +26.(2022秋•莱州市期末)下列多项式,能用平方差公式分解的是( ) A .224x y -+B .2294x y +C .22(2)x y +-D .224x y --27.(2022秋•北京期末)下列等式中,从左到右的变形是因式分解的是( ) A .2(3)(3)9x x x +-=- B .22(2)44x x x +=++ C .2(3)(5)215x x x x -+=+-D .222469(23)x xy y x y -+=-28.(2022春•运城月考)将下列多项式因式分解,结果中不含有3x +因式的是()A .29x -B .23x x +C .269x x -+D .269x x ++29.(2022春•金牛区校级月考)多项式2224333126x y x y x y --的公因式是( ) A .223x y zB .22x yC .223x yD .323x y z30.(2022秋•龙江县校级期末)下列式子运算结果为1x +的是( )A .2211x x x x -⋅+ B .11x- C .2211x x x +++D .111x x x +÷- 31.(2021秋•白云区月考)下列选项中最简分式是( )A .23x x x+B .224xC .211x x +- D .211x + 32.若234a b c ==,且0abc ≠,则32a bc a+-的值是( ) A .2B .2-C .3D .3-33.(2022秋•淄川区期中)下列式子:33,,,21x y a xx a π++,其中是分式的是( ) A .4个 B .3个 C .2个 D .1个34.(2022秋•石景山区期末)下列各式中,运算正确的是( )A .11223x x x +=B .2112111x x x +=+-- C .2642142y x x y y⋅=D .221323y xy x y÷=35.(2022秋•南岸区校级月考)下列运算正确的是( ) A .222a a a +=B .235a a a ⋅=C .236(2)8a a -=D .222()a b a b +=+36.(2021秋•平山区校级月考)下列计算正确的是( ) A .2222a a a ⋅= B .321a a a-⋅= C .235()a a =D .222()a b a ab b -=++37.(2022秋•新野县期中)下列变形中,从左到右不是因式分解的是( ) A .22(2)x x x x -=-B .2221(1)x x x ++=+C .24(2)(2)x x x -=+-D .22(1)x x x+=+38.(2022秋•中山区期末)若多项式2x bx c ++因式分解的结果为(2)(3)x x -+,则b c +的值为( ) A .5-B .1-C .5D .639.已知223A x x =--,2234B x x =-+,则A B -等于( ) A .21x x --B .21x x -++C .2357x x --D .27x x -+-40.(2022秋•合川区校级期末)已知23x y -=,则代数式221744x xy y -++的值为( )A .434B .134C .3D .4二、填空题41.(2022秋•朝阳区校级期末)多项式23223x y xy y --+的次数是 .42.已知2ba=,则2222444a ab b a b ++=- .43.(2022秋•密山市校级期末)若210y y m ++是一个完全平方式,则m = . 44.(2021秋•岳麓区校级期末)单项式232x y -的系数为 . 45.(2022秋•铁东区校级期末)若分式2xx-有意义,则x 的取值范围是 . 46.计算:223()2a b ---= . 47.(2022秋•苍溪县期末)若分式242a a -+的值为零,则a 的值是 .48.(2022秋•西岗区校级期末)因式分解22mx mx m ++= .49.若2610x x -+=,则242461x x x =++ .50.(2022秋•北京期末)分解因式:2327a -= . 三、解答题51.(2022秋•朝阳区期末)计算:2213[4.5(3)2]2x x x x ---+. 52.先化简,再求值:23(2)[15(2)]a a b a b -----,其中1a =,5b =-.53.因式分解:(1)2()6()m a b n a b ---; (2)222(91)36a a +-;(3)222(5)8(5)16x x -+-+.54.因式分解:(1)229a b -; (2)22242a ab b -+. 55.计算:(1)22()()x x y x y -++; (2)[(2)2()()]y x y x y x y x --+-÷;56.先化简,再求值:228(2)22x x x x x x +÷+---,其中1x =.57.先化简,再求值:23211(1)x x x x ---÷,其中20x x --=.。

湘教版八年级数学上册知识点总结

湘教版八年级数学上册知识点总结

湘教版八年级数学上册知识点总结第1章分式1.1分式1.2分式的乘法和除法1.3整数指数幕1.4分式的加法和减法1.5可化为一元一次方程的分式方程J本章复习与测试第2章三角形2.1三角形2.2命题与证明2.3等腰三角形2.4线段的垂直平分线2.3全等三角形2.6用尺规作三角形本章复习与测试第3章实数3.1平方根3.2立方根3.3实数第4章一元一次不等式(组)4.1不等式4.2不等式的基本性质4.3一元一次不等式的解法4.4一元一次不等式的应用4.5—元一次不等式组本章复习与测试第5章二次根式3.1二次根式3.2二次根式的乘法和除法3.3二次根式的加法和减法本章复习与测试知识点总结第一章:分式一、课前构建:认真阅读教材P IT回顾相关知识:—分式的走义4—分式的概念一—分式的性质2分式_—分式的运算一—分式方程a一分式无意义+j—分式的值为零4—乘’除运算a—整数指数幕的运算A—加、减运算厂二、课堂点拨:知识点一:分式的概念★考点1:分式的定义:f 一个空成/除以一个 ______________ (___________ ),所得的商®叫做分乙1S例1、下列式子竿竽,±⅛叵中,是分式的是__________________ 。

“2x 5 K X姑点2汾式无意义:*jf⅛5>X-屮,当g ______ 时.分Λt⅛⅛: g_______ 时.÷1S例2、令二_____ 亦分式上没有意凫争__________ 陥分式厶有意矢2兀+1 工+1姑点3汾式的值为象亠f⅛5>X-屮,⅛/ ________ JLg ______ 叭分貞的½⅛0BSIY-I例氐若分式J的動岔则询勵_____________ O ÷'A-+1知识点二:分式的性质★考点4:分式的基本性质:分式的分子与分母都乘 _________ ,所得分式与原分式相等。

即 ___________ (其中A ≠ O)分式的分子与分母约去公因式,所得分式与原分式相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式、因式分解、分式
1.由y x >得到ay ax <的条件是( ) A 、0>a
B 、0≥a
C 、0<a
D 、0≤a
2.若m 为有理数,下列不等式关系不一定成立的是( ) A 、m m +>+79 B 、m m -<-43 C 、m m 46> D 、0||4≥m
3.已知b a ,两数在数轴上对应的点如图所示,下列结论正确的是( )
A 、b a >
B 、0<ab
C 、0>-a b
D 、0>+b a 5.不等式14
3<x 的非负整数解是( )
A 、无数个
B 、1
C 、0,1
D 、1,2
6.若0,<>c b a 且,那么在下面不等式(1)c b c a +>+;(2)bc ac >;(3)c
b c
a ->-; (4)22bc ac <中成立的个数是( )A 、1 B 、2 C 、3 D 、4 9.已知
b a x b x a >>-=+=3,1,2且,则x 的取值范围是( )
A 、1>x
B 、4<x
C 、1>x 或4<x
D 、41<<x 11.如果b ax >,02<ac ,则x
a
b
12.不等式2
113
1<-x 的解集是 ,12≤-x 的正整数解为 . 13.若不等式a x <6的解集为3<x ,则a 的值为 .
14.如果不等式1)1(+>+a x a 的解集为1<x ,那么a 必须满足 . 17.已知不等式42213x a x +>
-的解集为2>x ,求()a x a ->-23
1
的解集.
18.若不等式组⎩
⎨⎧<+>-b x a
x 11的解集为31<<x ,求b a ,的值.
19.若不等式组⎩⎨⎧-<+<m
x m x 71
2的解集为12+<m x ,则m 的取值范围是多少?
b
a 0
20.如果不等式04<-a x 的正整数解是1,2,3,那么a 的取值范围多少?
21.已知关于x 的不等式组⎩
⎨⎧>+≤-1230
x a x 的整数解共有5个,求a 的取值范围.
6. 分解因式:
(3)4(x+y)2
-20(x+y)+25 (4)16x 4
-72x 2y 2
+81y 4
15、(1)()()n m m n m m ++++12942
2 (2)()()y x y x +-++202542
(3)22816y ax axy a +- (4)()
222
224y x y x -+
8. 2221237124354
x x x x x x ⎛⎫
+÷ ⎪-+-+-+⎝⎭ 9.2
22
221244x x x x x x x x +--⎛⎫+÷ ⎪--+⎝⎭
4.若不等式组的解集为,那么m 的取值范围是( ) A.
B.
C.
D.
5.若不等式组有解,则a 的取值范围是( )A.
B.
C.
D.
6.若不等式组恰有两个整数解,则实数a 的取值范围是( )
A.
B.
C.
D.
7.若不等式组的所有整数解的和为5,则实数a 的取值范围是( )
A. B.
C.
D.
8.计算的正确结果为( )A.1 B.
C.
D.
9.当a=2015时,式子的
结果是( )
A.2017
B.2015
C.
D.
11.若分式方程有增根,则m 的值是( ) A.-1或1 B.-1或2 C.1或-2 D.1或2 1.若26x x k -+是x 的完全平方式,则k =__________。

二、填空题(共2道,每道6分)
12.某商店第一次用6000元购进了练习本若干本,第二次又用了6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本. (1)第一次每本的进货价格是____元.
(2)若要求这两次购进的练习本按统一价格全部销售完毕后获利不低于4500元,问每本售价至少是____元.
3.若()()2
310x
x x a x b --=++,则a =________,b =________。

6.若不等式组⎩⎨
⎧≥≤a
x x 2有解,则a 的取值范围是 __________________. 9. 当x 时,分式-2(2)(3)
x x x -+值为0 10. 分式512
++x x 的值为负,则应满足x
一、
选择(每题2分,共20分)
1. 如果不等式组⎩⎨
⎧><m
x x 5有解,那么m 的取值范围是 (A) m >5 (B) m ≥5 (C) m<5 (D) m ≤8
2.下列各式从左到右的变形中,是因式分解的是( ) A 、
()()2339a a a +-=- B 、()()22a b a b a b -=+-
C 、()2
4545a
a a a --=-- D 、23232m m m m m ⎛
⎫--=--
⎪⎝

3.下列各式中,能用完全平方公式分解因式的是( ) A 、
()()4x y y x xy +-- B 、2224a ab b -+ C 、2144
m m -+ D 、()2221a b a b ---+
4.三角形的三边a 、b 、c 满足()2
230a
b c b c b -+-=,则这个三角形的形状是( )
A 、等腰三角形
B 、等边三角形
C 、直角三角形
D 、等腰直角三角形
5.如图,在边长为a 的正方形中挖掉一个 边长为b 的小正方形(a >b ),把余下的部分 剪拼成一个矩形(如图②),通过计算两个图 形(阴影部分)的面积,验证了一个等式,则 这个等式是( ) A 、
()()2222a b a b a ab b +-=+- B 、()2222a b a ab b +=++
C 、()2
222a b a ab b -=-+ D 、()()2
2a
b a b a b -=+-
6.已知311=-y x ,则代数式y xy x y xy x ----22142的值为()A.-4 B.-2 C.-8 D.-7
7、如果关于x 的方程x
m x x -=--55
2有增根,则的值为( )
A 、-2
B 、5
C 、2
D 、3
8、一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( ) A 、b a +
B 、b
a a
b + C 、2
b a +
D 、b
a
11+
10. 观察函数y 1和y 2的图象, 当x=1,两个函数值的大小为 ( )
(A) y 1> y 2 (B) y 1< y 2 (C) y 1=y 2 (D) y 1≥ y 2
二、
化简求值(5分)
)22
3
(44122a a a a a +-+÷++-, a=3
三、
解答题(每题10分,共20分)
1.方程3
23-=--x m x x 会产生增根,求m 的取值
2.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.
(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部..运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、
乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600
元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
0-1
-2
123x
y 31
-1
24
y
y 1
2
a
b

a
b
②。

相关文档
最新文档