3(1).复合材料的复合效应详解

合集下载

《复合材料》课程笔记

《复合材料》课程笔记

《复合材料》课程笔记第一章:复合材料概述1.1 材料发展概述复合材料的发展历史可以追溯到古代,人们使用天然纤维(如草、木)与土壤、石灰等天然材料混合制作简单的复合材料,例如草绳、土木结构等。

然而,现代复合材料的真正发展始于20世纪40年代,当时因航空工业的需求,发展了玻璃纤维增强塑料(俗称玻璃钢)。

此后,复合材料技术经历了多个发展阶段,包括碳纤维、石墨纤维和硼纤维等高强度和高模量纤维的研制和应用。

70年代,芳纶纤维和碳化硅纤维的出现进一步推动了复合材料的发展。

这些高强度、高模量纤维能够与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,形成了各种具有特色的复合材料。

1.2 复合材料基本概念、特点复合材料是由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。

复合材料具有以下特点:- 重量轻:复合材料通常具有较低的密度,比传统材料轻,有利于减轻结构重量。

例如,碳纤维复合材料的密度仅为钢材的1/5左右。

- 强度高:复合材料可以承受较大的力和压力,具有较高的强度和刚度。

例如,碳纤维复合材料的拉伸强度可达到3500MPa以上。

- 加工成型方便:复合材料可以通过各种成型工艺进行加工,如缠绕、喷射、模压等。

这些工艺能够适应不同的产品形状和尺寸要求。

- 弹性优良:复合材料具有良好的弹性和抗冲击性能,能够吸收能量并减少损伤。

例如,橡胶基复合材料在受到冲击时能够吸收大量能量。

- 耐化学腐蚀和耐候性好:复合材料对酸碱、盐雾、紫外线等环境因素具有较好的抵抗能力,适用于恶劣环境下的应用。

例如,聚酯基复合材料在户外长期暴露下仍能保持较好的性能。

1.3 复合材料应用由于复合材料的优异性能,它们在各个领域得到了广泛的应用。

主要应用领域包括:- 航空航天:飞机、卫星、火箭等结构部件。

复合材料的高强度和轻质特性使其成为航空航天领域的重要材料,能够提高飞行器的性能和燃油效率。

复合材料的复合理论

复合材料的复合理论
另外,复合材料中的裂纹的扩展在颗粒前受阻,发生应力钝 化或扩展路径发生偏转,同样可以消耗较多的断裂能,提高 材料的强度。
2、纤维(包括晶须、短纤维)复合材料增强机制
基体:通过界面将载荷有效地传递到增强相(晶须、纤 维等),不是主承力相。
纤维:承受由基体传递来的有效载荷,主承力相。
假定纤维、基体理想结合,且松泊比相同;在外力作用 下,由于组分模量的不同产生了不同形变(Байду номын сангаас移),在基 体上产生了剪切应变,通过界面将外力传递到纤维上(见 下图)。
Xc = Xm Vm + XfVf 或 Xc = XfVf + Xm1 - Vf) 式中: X:材料的性能,如强度、弹性模量、密度等;V: 材料的体积百分比; 下脚标 c、m、f 分别代表复合材料、 基体和纤维。
2、连续纤维单向增强复合材料(单向层板)
2-1 应力 - 应变关系和弹性模量 在复合材料承受静张应力过程中,应力—应变经历以
复合材料的面内剪切强度:在垂直纤维方向承受剪切时,
剪切力发生在垂直
纤维的截面内,剪切力由基体和纤维共同承担。
复合材料的复合理论
一、复合材料 增强机制 二、复合材料的复合法则 — 混合定律
一、复合材料 增强机制
1、 颗粒增强复合材料增强机制
1)颗粒阻碍基体位错运动强化: 基体是承受外来载荷相;颗粒起着阻碍基体位错运动的作 用,从而降低了位错的流动性。
颗粒起着阻碍基体位错运动作用示意图
颗粒增强复合材料的强度直接与颗粒的硬度成正比,因为 颗粒必须抵抗位错堆集而产生的应力,另外,颗粒相与基 体的结合力同样影响着材料的强度。
下阶段: (1)基体、纤维共同弹性变形;2)基体塑性屈服、 纤维弹性变形;3)基体塑性变形、纤维弹性变形或基体、 纤维共同塑性变形;4)复合材料断裂。 对于复合材料的弹性模量: 阶段1:E = EfVf + Em(1-Vf) 阶段2:E = EfVf + ( dm/dm)(1-Vf)

复合效应

复合效应

复合效应复合材料的复合效应是复合材料特有的一种效应,包括线性效应和非线性效应两类。

线性效应包括平均效应、平行效应、相补效应和相抵效应。

相补效应和相抵效应常常是共同存在的,相补效应是希望得到的,而相抵效应要尽量能够避免。

平均效应、相乘效应、平行效应、诱导效应、相补效应、共振效应、相抵效应、系统效应等各种复合效应,都是复合材料科学所研究的对象和重要内容,这也是开拓新型复合材料,特别是功能型复合材料的基础理论问题。

所有这些,可通过相应复合材料的设计来加以实现。

复合材料的复合效应(Composition effect of Composite materials)是复合材料特有的一种效应,包括线性效应和非线性效应两类。

线性效应包括平均效应、平行效应、相补效应和相抵效应。

平均效应是复合材料所显示的最典型的一种复合效应。

它可以表示为:式中,P为材料性能,V为材料体积含量,角标c、m、f分别表示复合材料、基体和增强体(或功能体)。

复合材料的某些功能性质,例如电导、热导、密度和弹性模量等服从平均效应这一规律。

例如,复合材料的弹性模量,若用混合率来表示,则为平行效应显示这一效应的复合材料,它的各组分材料在复合材料中,均保留本身的作用,既无制约,也无补偿。

对于增强体(如纤维)与基体界面结合很弱的复合材料,所显示的复合效应,可以看作是平行效应。

相补效应组成复合材料的基体与增强体,在性能上相互补充,从而提高了综合性能,则显示出相补效应。

相抵效应基体与增强体组成复合材料时,若组分间性能相互制约,限制了整体性能提高,则复合后显示出相抵效应。

在玻璃纤维增强塑料中,当玻璃纤维表面选用适宜的硅烷偶联剂处理后,与树脂基体组成的复合材料,由于强化了界面的结合,故致使材料的拉伸强度比未处理纤维组成的复合材料可高出30--40%,而且湿态强度保留率也明显提高。

但是,这种强结合的界面同时却导致了复合材料冲击性能的降低。

因此,在金属基、陶瓷基增强复合材料中,过强的界面结合不一定是最适宜的。

31复合材料的复合效应详解

31复合材料的复合效应详解
14
由于磁致伸缩材料在磁场作用下,其长度发生变化,可发生 位移而做功或在交变磁场作用可发生反复伸张与缩短,从而产 生振动或声波,这种材料可将电磁能(或电磁信息)转换成机 械能或声能(或机械位移信息或声信息)。
相反也可以将机械能(或机械位移与信息),转换成电磁能 (或电磁信息),它是重要的能量与信息转换功能材料。它在 声纳的水声换能器技术,电声换能器技术、海洋探测与开发技 术、微位移驱动、减振与防振、减噪与防噪系统、智能机翼、 机器人、自动化技术、燃油喷射技术、阀门、泵、波动采油等 高技术领域有广泛的应用前景。
对于增强体(如纤维)与基体界面结合很弱的复 合材料所显示的复合效应,可以看作是平行效应。
8
3.1 材料的复合效应
3. 相补效应:组成复合材料的基体与增强体,在性能 上能互补,从而提高了综合性能,则显示出相补效应。
对于脆性的高强度纤维增强体与韧性基体复合 时,两相间若能得到适宜的结合而形成的复合材料, 其力学性能显示为增强体与基体的互补。
可发生相乘效应。

电磁效应·磁光效应=电光效应。
通常可以将一种具有两种性能相互转换的功能材料X/Y
和另一种换能材料Y/Z复合起来,即:
X/Y·Y/Z=X/Z
式中,X、Y、Z分别表示各种物理性能。
11
表3.1 复合材料的乘积效应
A相性质 X/Y 压磁效应 压磁效应 压电效应 磁致伸缩效应 光导效应 闪烁效应 热致变形效应
3. 复合材料的 复合效应
1
3 复合材料的复合效应
3.1 材料的复合效应
掌握:复合效应的分类及其特点;
3.2 复合材料的结构与复合效果 3.3 复合材料的模型及性能的一般规律 3.4 复合材料的设计原理和复合理论

复合材料八种复合效应

复合材料八种复合效应

复合材料八种复合效应嘿,朋友!咱们今天来聊聊复合材料那神奇的八种复合效应。

先来说说乘积效应,这就好比你有一把锋利的刀,再配上一个坚固的刀柄,两者结合起来,战斗力可不是简单的相加,而是相乘啊!原本刀锋利能切割,刀柄结实能握住,它们组合在一起,威力那叫一个惊人。

还有协同效应,想象一下,一支篮球队里,有善于突破的前锋,有精准投篮的后卫,还有能掌控全场的中锋,大家各自发挥优势,相互配合,那可不是1+1=2 这么简单,而是产生远超个体能力总和的效果。

复合材料中的各种成分协同起来,也是这么牛!系统效应呢,就像一个复杂的机器,每个零件都有自己的作用,但只有所有零件完美配合,整个机器才能高效运转。

复合材料也是这样,各种成分形成一个系统,共同发挥作用。

诱导效应,打个比方,就像一个优秀的老师引导学生学习,让学生发挥出原本没有的潜力。

在复合材料里,一种成分能诱导另一种成分展现出更好的性能。

共振效应,这就像一群人合唱,声音在某个频率上产生共鸣,变得特别响亮动听。

复合材料在某些条件下也能产生这种神奇的共振效果。

界面效应,好比两个人合作,他们之间的沟通和理解至关重要。

复合材料中不同成分之间的界面,决定了它们能否完美结合,发挥出最大效能。

混杂效应,就像把不同颜色的颜料混在一起,会产生新的独特颜色。

复合材料把各种不同特性的材料混杂,也能带来全新的性能。

相补效应,就像拼图的各个板块,有的缺了一角,有的凸出来一块,正好相互弥补,拼成完整的图案。

复合材料的不同成分也能这样相互补充,达到完美的效果。

总之,这八种复合效应让复合材料变得无比神奇和强大。

它们就像魔法一样,能让材料拥有超乎想象的性能,为我们的生活带来更多的便利和惊喜。

不是吗?咱们在很多领域都能看到复合材料的身影,从航空航天到日常用品,它们无处不在,这难道不令人惊叹吗?所以啊,好好了解这八种复合效应,能让我们更深刻地认识材料世界的奇妙之处!。

复合材料的复合理论

复合材料的复合理论
颗粒起着阻碍基体位错运动作用示意图
颗粒增强复合材料的强度直接与颗粒的硬度成正比,因为 颗粒必须抵抗位错堆集而产生的应力,另外,颗粒相与基 体的结合力同样影响着材料的强度。
颗粒相与基体的界面处于低能量状态是有益的,因为这对 颗粒阻碍基体位错运动是必须的。高的界面能相当一个空 洞环绕着颗粒,这样不仅降低了颗粒阻碍基体位错运动的 能力,而且在材料结构中起到了一个微裂纹的作用。
复合材料的面内剪切强度:在垂直纤维方向承受剪切时,
剪切力发生在垂直
纤维的截面内,剪切力由基体和纤维共同承担。
在纤维上的拉力为: fu (d2/4), 在界面上的剪切力为: t dlc/2 。
当 fu ( d2/4) = tdlc/2 时, (l /d)c = fu / 2ty , l /d )c 为纤维临界长径比, l c 为纤维临界长度。 当(l /d )c 10 时,复合材料可获得理想的增强效果。
2-3、泊松比
当材料拉伸或压缩时,在弹性范围内,纵、横向应变之 比为泊松比。
假定复合材料纵向拉伸或压缩时,纤维与基体的纵向应 变相等,且等于复合材料的纵向应变,即 f =m=c,
则纵向泊松比为: mLT= mfVf + mmVm 或 mLT= mfVf + mm(1- Vf )
若考虑纤维与界面的结合情况 mLT = mfVf(1 - K)+ KVf + mm(K- Vf )(1 - K )
晶粒细化增强的幅度可以利用以下公式计算:
t = t f + kd-1/2 式中d 为晶粒尺寸。
(2)位错与细小粒子相互作用而产生的强度增量。
它由Orห้องสมุดไป่ตู้wan关系表示:
0 =[0.83mb Ln(2r / r0)]/[2(1-)1/2(S - 2rS)] 式中 :Taylor因子,m:切变模量,b:柏矢模量,:泊松比,r: 粒子半径,r0:位错芯半径,(S - 2rS):粒子间距。 显然当增强体粒子体积分数一定时,粒子尺寸越大,粒子间距 就越大,Orowan强化项就愈弱。由于小粒子是不可穿透的硬 粒子,在变形过程中位错只能被迫绕过粒子并留下一位错环围 绕粒子,表明小粒子通过影响维持位错源以及作为位错运动的 钉扎中心改变基体的滑移行为。当粒度在1mm以下时, Orowan强化机制起较大作用。

复合材料的复合原理

复合材料的复合原理

单向纤维增强复合材料的断裂强度单向纤维增强复合材料的断裂强度σσc 和弹性模量模量E E c 与各组分材料性能关系如下与各组分材料性能关系如下::式中式中::σf 、E f 分别为纤维断裂强度和弹性模量分别为纤维断裂强度和弹性模量;;σm 、E m 分别为基体材料的强度和弹性模量分别为基体材料的强度和弹性模量;;V f 为纤维体积分数积分数;;k 1、k 2为常数为常数。

1.4 1.4 复合材料的增复合材料的增强机制Ⅰ纤维增强复合材料的增强机制以上公式表明以上公式表明::纤维纤维、、基体对复合材料平均性能的贡献正比它们各自的体积分数在纤维与基体都是线弹件情况下在纤维与基体都是线弹件情况下,,纤维与总体承担应力与载荷的情况推导如下承担应力与载荷的情况推导如下::因此有因此有::可以看出可以看出,,复合材料中各组分承载的应力比等于相应弹性模量比等于相应弹性模量比,,为广有效地利用纤维的高强度的高强度,,应使纤维有比基体高得多的弹性模量模量。

复合材料中组分承载比可以表达为为达到强化目的为达到强化目的,,必须满足下列条件列条件::5)纤维和基体的热膨胀系数应匹配1)增强纤维的强度增强纤维的强度、、弹性模量应远远高于基体2)纤维和基体之间应有一定的结合强度3)纤维的排列方向要和构件的受力方向一致4)纤维和基体之间不能发生使结合强度降低的化6)纤维所占的体积分数纤维所占的体积分数,,纤维长度L 和直径d 及长径比L/d 等必修满足一定要求等必修满足一定要求。

(1)弥散强化的复合材料的增强机制Ⅱ.粒子增强型复合材料的增强机制弥散强化的复合材料,其粒子直径d一般为0.001~0.1μm,粒子体积分数φv 为1%~15%;颗粒增强的复合材料,粒子直径d为1~50μm,体积分数φv 为>20%。

增强机理可用位错绕过理论解释。

载荷主要由基体承担,弥散微粒阻碍基体的位错运动或分子链运动。

微粒阻碍基体位错运动能力越大,增强效果愈大。

3(2).复合材料的复合效应解析

3(2).复合材料的复合效应解析
10
表3.3 单向复合材料模型的基本假设
名称
基本假设
单元体 宏观均匀、无缺陷、增强体与基体性能恒定、线弹性
增强体 匀质、各向同性、线弹性、定向排列、连续
基 体 匀质、各向同性、线弹性
界 面 粘结完好(无孔隙、滑移、脱粘等)、变形协调
11
3.3.1 复合材料的模型
根据复合材料组分之增强体(或功能体)和基体的几何形 态,常见的几何结构模型有以下几种。
Vm=1-V f -Vi
注:对于非球形体微粒增强体,可以采用粒子的当
量半径rd=(0.75Vf/π)1/3代替rf。球形模型的特点是各 向同性材料。
13
作业2
假设2 wt%二氧化钍(ThO2)加入到镍 (Ni)中, ThO2颗粒直径为100 nm, 已知ThO2和Ni的密度分别为9.69和8.9 g/cm3,请计算每立方厘米的复合材料中 有多少个ThO2颗粒。(假设界面上没有反 应产物)
y
3GmGpbVp1 2 2d (1Vp )c
作用
响应 4
材料模型化的方法
连续介质理 论
待确定复合 模型化 材料的微观
体系性能
结构模型
相微观作用
O
(O)
1 V


OdV
场Ii,响应场Oi
给定宏观作 用场I
有效性能ε
O= ε(I)
宏观响应场 O
O表示宏观响应场,V表示单元体积
5
3.3.1 复合材料的模型
在研究材料复合的有关理论时,建立一个能包含主要 影响因素、显示材料真实性能、易得确切结果的材料模型 是十分重要的。
(Angew. Chem. Int. Ed. 2009, 48, 7035 –7039)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
超声波传感器用作汽车倒车防撞报警器装置,也被称为超声 波倒车雷达或倒车声纳系统,尤其适用于加长型装载汽车、 载重大货车、矿山汽车等大型车辆。 原理上利用锆钛酸铅PZT压电陶瓷在电能与机械能之间相互转 换的正、逆压电效应,既在压电陶瓷加一电信号,便产生机械 振动而发射超声波,当超声波在空气传播途中碰到障碍物立即 被反射回来,作用于它的陶瓷时,则会有电信号输出,通过数 据处理时间差测距,计算显示车与障碍物的距离及危险相撞时 报警,可准确无误地探测汽车尾部及驾车者视角盲区的微小障 碍物,实用性相当强。
17
3.1 材料的复合效应
7.共振效应:两个相邻的材料在一定条件下,会产生 机械的或电、磁共振。
由不同材料组分组成的复合材料其固有频率不同 于原组分的固有频率,当复合材料中某一部位的结构 发生变化时,复合材料的固有频率也会发生改变。
利用该效应,可以根据外来的工作频率,改变复合材料固有频率 而避免材料在工作时引起的破坏。对于吸波材料,同样可以根据 外来波长的频率特征,调制复合材料频率,达到吸收外来波的目 18 的。
线性效应 非线性效应
一 次 函 数 y=kx+b 叫 线 性 函 数 , 它 的 图 象 是 一 条 直 线 。 非一次函数 (如y=x2, y=k/x, y=sinx...)都叫非线性函数 , 它们的图象都不是直线。 与一次函数相关的一次方程叫线性方程 , 一次方程组叫线 5 性方程组。
3.1 材料的复合效应
3. 复合材料的 复合效应
1
3 复合材料的复合效应
3.1 材料的复合效应
掌握:复合效应的分类及其特点;
3.2 复合材料的结构与复合效果
3.3 复合材料的模型及性能的一般规律 3.4 复合材料的设计原理和复合理论
2
3.1 材料的复合效应
一.复合效应: 对于由A、B两种原材料复合而成的材料 C,其性能既包含A、B两种原材料所固有的 性能,又具有A、B两种原材料所不具备的新 性能。 源于耦合:不同性质材料之间的相互作用 注:复合效应表现为复合材料的性能在其组分 材料基础上的线性和非线性的综合。
11
表3.1 复合材料的乘积效应
A相性质 X/Y B相性质 Y/Z 复合后的乘积性质(X/Y)(Y/Z)=X/Z
压磁效应
压磁效应 压电效应
磁阻效应
磁电效应 场致发光效应
压敏电阻效应
压电效应 压力发光效应
磁致伸缩效应
光导效应 闪烁效应 热致变形效应
压阻效应
电致效应 光导效应 压敏电阻效应
磁阻效应
光致伸缩 辐射诱导导电 热敏电阻效应
复合材料的性质 与增强组元(功 能组元)的含量 有线性关系
不同复合效应的类别
复合效应
线性效应 平均效应 平行效应 相补效应 相抵效应
非线性效应 相乘效应 诱导效应 共振效应 系统效应
6
3.1 材料的复合效应
1.平均效应:
是复合材料所显 示的最典型的一 种复合效应。
表示为:Pc=PmVm+PfVf ,式中P为材料性能,V
为材料体积含量,角标c、m、f分别表示复合材料、 基体和增强体。
如复合材料的弹性模量,若用混合率来表示, 则为:Ec=EmVm+EfVf
7
3.1 材料的复合效应
2.平行效应:即组成复合材料的各组分在复合材料 中,均保留本身的作用,既无制约也无补偿。
对于增强体(如纤维)与基体界面结合很弱的复 合材料所显示的复合效应,可以看作是平行效应。
15
3.1 材料的复合效应
6. 诱导效应:在一定条件下,复合材料中的一组分 材料可以通过诱导作用使另一组分材料的结构发生 改变,而改变整体性能或产生新的效应。 例如 结晶的纤维增强体对非晶基体的诱导结晶或 晶形基体的晶形取向作用。
16
纤维/树脂界面横晶形态:A碳纤维/聚苯硫醚 B 碳纤维/尼龙66 C 石墨纤维/聚醚醚酮
12
当你在点燃煤气灶或热水器
时,就有一种压电陶瓷已悄悄地 为你服务了一次。
生产厂家在这类压电点火装
置内,藏着一块压电陶瓷,当用 户按下点火装置的弹簧时,传动
装置就把压力施加在压电陶瓷上,
使它产生很高的电压,进而将电 能引向燃气的出口放电,于是,
燃气就被电火花点燃了。压电陶
瓷的这种功能就叫做压电效应。 反之施加电压,则产生机械应力, 称为逆压电效应。
14
由于磁致伸缩材料在磁场作用下,其长度发生变化,可发生 位移而做功或在交变磁场作用可发生反复伸张与缩短,从而产 生振动或声波,这种材料可将电磁能(或电磁信息)转换成机 械能或声能(或机械位移信息或声信息)。 相反也可以将机械能(或机械位移与信息),转换成电磁能 (或电磁信息),它是重要的能量与信息转换功能材料。它在 声纳的水声换能器技术,电声换能器技术、海洋探测与开发技 术、微位移驱动、减振与防振、减噪与防噪系统、智能机翼、 机器人、自动化技术、燃油喷射技术、阀门、泵、波动采油等 高技术领域有广泛的应用前景。
8
3.1 材料的复合效应
3. 相补效应:组成复合材料的基体与增强体,在性能 上能互补,从而提高了综合性能,则显示出相补效应。 对于脆性的高强度纤维增强体与韧性基体复合
时,两相间若能得到适宜的结合而形成的复合材料,
其力学性能显示为增强体与基体的互补。
9
3.1 材料的复合效应
4. 相抵效应:基体与增强体组成复合材料时, 若组分间能相互制约,限制了整体性能提高, 则复合后显示出相抵效应。
3
复合材料的基本理论
构效关系 材料的微观组织 形状、分散程度 体积分数 几何学特征 原材料的性能 力学性能 物理性能 界面的状态
复合材料的 基本理论
复合材料的 整体性能
复合材料理论与组织、性能之间关系
4
3.1 材料的复合效应
就其产生复合效应的特征,分为两大类:
线性指量与量之 间成正比关系。 非线性指量与量之 间成曲线关系 。
如,脆性的纤维增强体与韧性基体组成的复合材料, 当两者间界面结合很强时,复合材料整体显示为脆性 断裂。
10
3.1 材料的复合效应
5.相乘效应:两种具有转换效应的材料复合在一起,即 可发生相乘效应。

电磁效应· 磁光效应=电光效应。
通常可以将一种具有两种性能相互转换的功能材料X/Y 和另一种换能材料Y/Z复合起来,即: X/Y· Y/Z=X/Z 式中,X、Y、Z分别表示各种物理性能。
相关文档
最新文档