排列组合备课教案

合集下载

二年级排列组合教案

二年级排列组合教案

二年级排列组合教案第一章:排列组合的基本概念1.1 排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。

1.2 组合的概念:组合是指从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。

第二章:排列的计算方法2.1 排列数的计算公式:排列数A(n,m) = n! / (n-m)!,其中n!表示n的阶乘,即n×(n-1)×(n-2)×…×2×1。

2.2 举例说明排列数的计算方法:例如,计算A(5,3)的值,先计算5的阶乘,再计算5-3的阶乘,用5的阶乘除以(5-3)的阶乘得到A(5,3)的值。

第三章:组合的计算方法3.1 组合数的计算公式:组合数C(n,m) = A(n,m) / m!,其中A(n,m)表示从n 个元素中取出m个元素的排列数,m!表示m的阶乘。

3.2 举例说明组合数的计算方法:例如,计算C(5,3)的值,先计算A(5,3)的值,再计算3的阶乘,用A(5,3)的值除以3的阶乘得到C(5,3)的值。

第四章:排列组合的应用实例4.1 题目:有红、蓝、绿3种颜色的珠子,每种颜色有3个,从中取出2个珠子,求取出的珠子颜色不同的排列数。

4.2 解题过程:计算总的排列数A(9,2),即9个珠子中取出2个的排列数;计算颜色相同的排列数,即两个红色珠子、两个蓝色珠子、两个绿色珠子的排列数;用总的排列数减去颜色相同的排列数得到颜色不同的排列数。

4.3 答案:颜色不同的排列数为288种。

第五章:总结与拓展5.1 总结:本章学习了排列组合的基本概念、计算方法及其应用实例。

5.2 拓展:鼓励学生思考排列组合在实际生活中的应用,如彩票中奖号码的组合、水果店摆放水果的排列等。

第六章:组合的应用实例6.1 题目:一个篮子里有5个苹果,3个香蕉,2个橘子,从中选出2个水果,求选出的水果不同的组合数。

6.2 解题过程:计算总的组合数C(10,2),即从10个水果中选出2个的组合数;计算选出两个苹果、两个香蕉、两个橘子的组合数;用总的组合数减去选出两个相同水果的组合数得到选出不同水果的组合数。

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《排列与组合》教学设计优秀9篇作为一位杰出的老师,常常需要准备教案,教案有助于顺利而有效地开展教学活动。

排列组合问题(教案

排列组合问题(教案

排列组合问题(教案)第一章:排列组合基础1.1 排列组合概念:排列、组合的定义及其区别1.2 排列组合的基本公式:排列数公式、组合数公式1.3 排列组合的应用:简单的排列组合问题求解第二章:排列组合的性质与方法2.1 排列组合的性质:交换律、结合律、分配律等2.2 排列组合的方法:直接法、排除法、插空法等2.3 排列组合的实例分析:解决实际问题第三章:排列组合的拓展3.1 排列组合的递推关系:Fibonacci数列与排列组合3.2 排列组合的极限问题:鸽巢原理、包含-排除原理3.3 排列组合与其他数学领域的联系:组合数学与图论、概率论等第四章:排列组合在实际问题中的应用4.1 排列组合在组合优化问题中的应用:旅行商问题、装箱问题等4.2 排列组合在信息科学中的应用:编码理论、密码学等4.3 排列组合在生物学中的应用:遗传组合、进化论等第五章:排列组合问题的解题技巧与策略5.1 排列组合的分类讨论:按照元素属性、按照排列顺序等5.2 排列组合的简化方法:图论方法、recurrence relation 等5.3 排列组合的思维策略:逻辑思维、创新思维等第六章:排列组合的综合应用题6.1 排列组合与概率论的结合:计算事件的概率6.2 排列组合与图论的结合:解决图论中的问题6.3 排列组合与数论的结合:组合数与素数的关系等第七章:排列组合与其他数学问题的联系7.1 排列组合与组合优化:线性规划、整数规划等7.2 排列组合与算法:动态规划、回溯算法等7.3 排列组合与数学竞赛:排列组合在数学竞赛中的应用第八章:现代排列组合方法与工具8.1 计算机算法:排列组合问题的计算机算法实现8.2 数学软件:使用数学软件解决排列组合问题8.3 组合设计:拉丁方、Steiner系统等组合设计理论第九章:排列组合在生活中的应用9.1 排列组合在日常生活中的应用:如彩票、概率游戏等9.2 排列组合在社会科学中的应用:如人口统计、社会调查等9.3 排列组合在艺术中的应用:如密码、图案设计等第十章:排列组合问题的研究前沿与展望10.1 排列组合问题的新模型:如网络流模型、组合优化模型等10.2 排列组合问题的新方法:如图论方法、代数方法等10.3 排列组合问题的未来发展趋势:如与、大数据的结合等重点和难点解析重点环节一:排列组合概念的区分学生需要理解排列和组合的定义,并能够区分它们的应用场景。

排列组合问题(教案

排列组合问题(教案

排列组合问题教案章节:一、排列组合基础教学目标:1. 理解排列组合的概念和意义。

2. 掌握排列和组合的计算方法。

教学内容:1. 排列组合的定义和分类。

2. 排列的计算方法:排列数公式。

3. 组合的计算方法:组合数公式。

教学步骤:1. 引入排列组合的概念,解释其在实际生活中的应用。

2. 讲解排列的定义和计算方法,示例说明。

3. 讲解组合的定义和计算方法,示例说明。

4. 练习题:求解一些简单的排列组合问题。

教学评估:1. 课堂提问:学生能准确回答排列组合的定义和计算方法。

2. 练习题:学生能正确解答给定的排列组合问题。

教案章节:二、排列组合的应用教学目标:1. 掌握排列组合在实际问题中的应用。

2. 能够解决一些复杂的排列组合问题。

教学内容:1. 排列组合在排列问题中的应用。

2. 排列组合在组合问题中的应用。

教学步骤:1. 引入排列组合在实际问题中的应用,举例说明。

2. 讲解排列在排列问题中的应用,示例说明。

3. 讲解组合在组合问题中的应用,示例说明。

4. 练习题:解决一些实际的排列组合问题。

教学评估:1. 课堂提问:学生能理解排列组合在实际问题中的应用。

2. 练习题:学生能解决给定的实际排列组合问题。

教案章节:三、排列组合的拓展教学目标:1. 掌握排列组合的拓展概念和计算方法。

2. 能够解决一些特殊的排列组合问题。

教学内容:1. 排列组合的拓展概念和计算方法。

2. 特殊的排列组合问题的解决方法。

教学步骤:1. 引入排列组合的拓展概念,解释其在实际生活中的应用。

2. 讲解排列组合的拓展计算方法,示例说明。

3. 讲解特殊的排列组合问题的解决方法,示例说明。

4. 练习题:求解一些特殊的排列组合问题。

1. 课堂提问:学生能准确回答排列组合的拓展概念和计算方法。

2. 练习题:学生能正确解答给定的特殊的排列组合问题。

教案章节:四、排列组合的综合应用教学目标:1. 掌握排列组合的综合应用。

2. 能够解决一些综合性的排列组合问题。

排列组合问题(教案

排列组合问题(教案

排列组合问题(教案)第一章:排列与组合的基本概念1.1 排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。

1.2 组合的概念:组合是指从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。

1.3 排列数与组合数的表示:排列数用符号A(n,m)表示,组合数用符号C(n,m)表示。

第二章:排列数的计算方法2.1 排列数的直接计算方法:A(n,m) = n ×(n-1) ×(n-2) ××(n-m+1),当n≥m时成立。

2.2 排列数的递推计算方法:A(n,m) = A(n-1,m-1) ×(n-m+1),当n≥m时成立。

2.3 排列数的周期性:对于任意的正整数n和m,A(n,m)与A(n,n-m)相等。

第三章:组合数的计算方法3.1 组合数的直接计算方法:C(n,m) = A(n,m) / m!,当n≥m时成立。

3.2 组合数的递推计算方法:C(n,m) = C(n-1,m-1) + C(n-1,m),当n≥m时成立。

3.3 组合数的性质:C(n,m) = C(n,n-m),且C(n,m) = C(n-1,m-1) + C(n-1,m)。

第四章:排列组合的应用实例4.1 人员选拔问题:从n个人中选拔m个人,有多少种不同的选拔方式?4.2 活动安排问题:有n个活动,每个活动可以独立进行或进行,有多少种不同的安排方式?4.3 物品分配问题:有n个相同的物品,需要分成m组,每组至少有一个物品,有多少种不同的分配方式?第五章:排列组合问题拓展5.1 错位排列问题:将一个长度为n的序列中的每个元素错位排列,求错位排列的总数。

5.2 循环排列问题:将一个长度为n的序列进行循环排列,求循环排列的总数。

5.3 限制条件的排列组合问题:在排列组合问题中,添加一些限制条件,如元素不可重复使用等,求解符合条件的排列组合总数。

排列组合问题教案

排列组合问题教案

排列组合问题教案一、教学目标1. 让学生理解排列组合的概念和意义。

2. 培养学生运用排列组合知识解决实际问题的能力。

3. 引导学生掌握排列组合的计算方法和技巧。

二、教学内容1. 排列的概念和计算方法2. 组合的概念和计算方法3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的计算方法和技巧。

2. 教学难点:排列组合在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究排列组合的计算方法。

2. 运用案例分析法,让学生通过解决实际问题,巩固排列组合知识。

3. 采用小组合作学习法,培养学生的团队协作能力和交流表达能力。

五、教学准备1. 教学课件:排列组合的概念、计算方法和应用案例。

2. 练习题:涵盖排列和组合的各种类型,用于巩固知识点。

教案一、导入(5分钟)1. 教师通过引入“猜拳游戏”的问题,引导学生思考排列组合的概念。

2. 学生分享对排列组合的理解,教师总结并板书。

二、排列的概念和计算方法(10分钟)1. 教师讲解排列的定义和计算方法,示例演示。

2. 学生跟随教师一起完成典型案例的排列计算。

3. 学生自主练习排列计算,教师巡回指导。

三、组合的概念和计算方法(10分钟)1. 教师讲解组合的定义和计算方法,示例演示。

2. 学生跟随教师一起完成典型案例的组合计算。

3. 学生自主练习组合计算,教师巡回指导。

四、排列组合的综合应用(15分钟)1. 教师提出一个实际问题,引导学生运用排列组合知识解决。

2. 学生分组讨论,提出解决方案,并进行展示。

3. 教师点评并总结,强调排列组合在实际问题中的应用。

五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结排列组合的计算方法和应用。

2. 学生分享学习收获,教师给予鼓励和评价。

六、课后作业(课后自主完成)1. 完成练习题,巩固排列组合的知识点。

教学反思:本节课通过问题驱动、案例分析和小组合作学习等方法,引导学生掌握了排列组合的计算方法和实际应用。

简单的排列教案7篇

简单的排列教案7篇

简单的排列教案7篇简单的排列教案篇1【背景】在日常生活中,有很多需要用排列组合解决的知识。

如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。

在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。

这节课安排生动有趣额活动,让学生通过这些活动进行学习。

例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的`体会:怎样摆才能保证不重复、不遗漏。

【教材分析】“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。

排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。

【教学目标】1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】经历探索简单事物排列与组合规律的过程【教学难点】初步理解简单事物排列与组合的不同【教学准备】多媒体、数字卡片。

【教学方法】观察法、动手操作法、合作探究法等。

【课前预习】预习数学书99页,思考以下问题:1、用1、2两个数字能摆出哪些两位数?2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学准备】ppt【教学过程】……一、以游戏形式引入新课师:同学们,今天老师带大家去数学广角做游戏。

在门口设置了,上有密码。

小学二年级数学教案 排列组合9篇

小学二年级数学教案 排列组合9篇

小学二年级数学教案排列组合9篇排列组合 1教学目标1、使学生通过观察、猜测、实验等活动,找出最简单的事物排列数和组合数。

2、培养学生初步的观察、分析及推理能力。

3、初步培养学生有顺序地、全面地思考问题的意识。

教学重点:经历探索简单事物排列与组合规律的过程。

教学难点:引导学生发现和应用规律,做到不重复也不遗漏地找出事物的排列数和组合数。

教具准备:多媒体课件、数字卡片、练习纸。

教学过程:一、创设情境,引出课题师:同学们,今天老师带大家继续在数学王国里遨游,今天我们要去一个新的地方数学城堡,想去吗?生:想。

师:那我们就一起出发吧!老师相信,凭借你们的智慧,今天一定会玩儿的很开心的!二、趣味活动,探索新知(一)破译密码——体会排列1、破译密码——体会排列(出示城堡大门的大锁头)师:真不巧,今天城堡的管理员不在,大门紧锁,不过别着急,这里既然是数学城堡,那么用我们的数学头脑一定能解决问题。

我知道,这把锁是密码锁。

咱们只要破译了密码就可以顺利进入了。

师:快看,这把锁头上有提示,它的密码是由1和2组成的两位数,猜猜看会是几?生:12、21.师:有的说是12、有的说是21.还有别的可能吗?生:没有了。

师:为什么呢?生:因为由1和2组成的两位数不是12就是21。

不能组成其它数了。

师:好,那到底哪一个是密码呢?我们来试一试。

先来试一试12(错误)。

那肯定是?生:21.师:好,恭喜大家顺利进入数学城堡。

数学城堡为我们设置了几道关卡,想考验考验大家,你们有信心闯关吗?生:有!(二)排一排——应用排列师:那好,那我们就来看看第一关。

1、2、3能组成几个不同的两位数?括号里写的什么啊?生:请有序的思考。

师:咱们看谁能做到有序的思考(神秘些)。

当然,在数学城堡里闯关还要遵守闯关规则,那就是不重复、不遗漏。

下面请大家拿起手中的数字卡片试着排一排,然后把你摆出的两位数记录在练习纸上。

开始行动吧!(设计意图:通过解决闯关题,使学生自身产生对知识的迫切需要,使学生在充满兴趣的情感中不知不觉地进入了摆数活动,让学生在体验中感受,在活动操作中成功,在交流中找到方法,在学习中应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时:两个原理的应用周六
第三课时:排列、排列数周一
第四课时:排列的简单应用(一)周二
第五课时:排列应用(二)周三
第六课时:综合练习周四
作业分配:练习册习题处理
具体容:
第一课时:两个原理
一.知识讲解:
1.分类计数原理(加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,……,在第n类办法中有 种不同的方法 那么完成这件事共有
种不同的方法
2.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有 种不同的方法,做第二步有 种不同的方法,……,做第n步有 种不同的方法,那么完成这件事有
种不同的Байду номын сангаас法
3.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.
两个基本原理的作用:计算做一件事完成它的所有不同的方法种数
第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个
由分类计数原理得,不同的三角形共有5+20+10=35个.
例575600有多少个正约数?有多少个奇约数?
解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.
由于 75600=24×33×52×7
2.排列数的定义:
从 个不同元素中,任取 ( )个元素的所有排列的个数叫做从 个元素中取出 元素的排列数,用符号 表示
注意区别排列和排列数的不同:“一个排列”是指:从 个不同元素中,任取 个元素按照一定的顺序排成一列,不是数;“排列数”是指从 个不同元素中,任取 ( )个元素的所有排列的个数,是一个数 所以符号 只表示排列数,而不表示具体的排列
例2一种拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数?
例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?
三.作业:练习册课时作业33课时。
第二课时:两个原理的应用
一.例题讲解:
例1在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?
两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”
二.例题讲解:
例1书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
共有45+45=90种不同取法.
例2在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种?解:共有10+9+9+…+2+2+1+1=100种.
例3如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()
三.作业:课时作业第35课时。
第四课时:排列应用(一)
例1.计算:① ;② .
例2.解方程:3 .
例3.解不等式: .
例4.求证:(1) ;(2) .
例5.化简:⑴ ;⑵
作业:课时36作业。
第五课时:排列应用(二)
例1从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
数学思想:转化思想
情感与价值观:1、通过两个原理和排列的学习,加深数学与生活的联系,使数学更接近生活,增加了学生学习数学的兴趣。
2、学生通过转化思想的运用和分析问题能力的提高,培养了良好的思维习惯和严谨的学风。
重点:1、两个原理的理解与应用;
2排列概念的理解与应用;
难点:实际问题的分析
时间分配:第一课时:两个原理周五
A. 180 B.160 C. 96 D. 60
若变为图二,图三呢?(240种,5×4×4×4=320种)
例4如下图,共有多少个不同的三角形?
解:所有不同的三角形可分为三类”
第一类:其中有两条边是原五边形的边,这样的三角形共有5个
第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个
解法一:(从特殊位置考虑) ;
解法二:(从特殊元素考虑)若选: ;若不选: ,
则共有 种;
(1) 根据分步计数原理得约数的个数为5×4×3×2=120个.
(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成 的形式,同上奇约数的个数为4×3×2=24个.
二、课堂练习:
1.用1,2,3,4,5可组成多少个三位数?(各位上的数字允许重复)
2.用数字1,2,3可写出多少个小于1000的正整数? (各位上的数字允许重复)
3.集合A={a,b,c,d,e},集合B={1,2,3},问A到B的不同映射f共有多少个?B到A的映射g共有多少个?
4.将3封信投入4个不同的邮筒的投法共有多少种?
5. 求集合{1,2,3,4,5}的子集的个数
答案:1.5×5×5×5=6252.3+32+33=393.35,534.435.32个.
三.作业:课时作业第34课时
第三课时:排列、排列数
一.知识讲解:
1.排列的概念:
从 个不同元素中,任取 ( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从 个不同元素中取出 个元素的一个排列
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同
主题
课题:两个原理和排列
知识容:1、分类计数原理和分步计数原理
2、排列、排列数概念
3、排列数的计算公式
4.排列应用题
能力目标:1、通过两个原理的学习,培养学生的解决实际问题的能力;
2、通过排列的学习,可以迁移知识,更好的运用两个原理,并能解决稍复杂的数学问题。
3、培养学生的分析问题能力、解决问题的能力。
3.排列数公式及其推导:
二、例题讲解:
例1.计算:(1) ; (2) ; (3) .
例2.(1)若 ,则 , .
(2)若 则 用排列数符号表示.
例3.(1)从 这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?
(2)5人站成一排照相,共有多少种不同的站法?
(3)某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在
相关文档
最新文档