第3讲飞秒激光技术及其应用
飞秒激光技术在工业制造中的应用

飞秒激光技术在工业制造中的应用飞秒激光技术是高科技生产加工领域的一项先进技术,其应用范围涉及晶体、半导体、玻璃、陶瓷等物质的切割、钻孔、雕刻等工艺过程。
飞秒激光技术具有精度高、速度快、热影响区小、光谱范围宽等特点,可以大幅提高生产效率和产品品质。
一、飞秒激光技术基础飞秒激光技术是利用飞秒激光脉冲对材料进行微观切割、改性处理等加工工艺的技术。
所谓飞秒脉冲,就是一种纳秒级极短的激光脉冲,其能量密度极高,可以在极短时间内对物质进行切割和加工。
飞秒激光脉冲的宽度一般在飞秒级别(1fs=10^-15秒)左右,不同于传统的毫秒级或纳秒级激光,具有极强的穿透能力并且几乎没有热补偿效应。
二、飞秒激光技术的应用1. 飞秒激光切割和钻孔在钣金、半导体、玻璃等领域,飞秒激光可以精确、高效地实现各种形状的孔洞,满足产品制造和生产的需求。
因其能量集中,且热影响区极小,下料精度高,成品质量好,大大提高了生产效率。
2. 飞秒激光雕刻和刻蚀在电子领域,飞秒激光技术可以实现不同形状、不同深度的微纳米结构的制备,例如电路板和芯片的生产也可以应用飞秒激光技术实现更细小的电路结构,有利于提高信号传输速率及稳定性。
3. 飞秒激光打标飞秒激光技术可以实现各种材料的打标,如金属刻字、刻模图案,玻璃印标、陶瓷打标等。
由于飞秒激光技术具有极高的效率和精度,可以实现更加复杂的图案和设计,因此在定制化制造等领域应用广泛。
4. 飞秒激光制备微纳米结构材料配合其他先进加工技术,如等离子体技术、双光子聚合技术等,飞秒激光制备出的微纳米结构材料具有优异的性能,具有广泛应用前景。
例如,在太阳能电池、生物传感、化学催化、微纳米器件等领域都受到了广泛的关注。
三、飞秒激光技术的应用瓶颈飞秒激光技术的应用实际已经非常成熟,但由于高昂的设备成本、技术门槛较高等原因,其应用范围相对较狭窄,且其复杂性也需要高技能的操作人员才能实现。
随着激光技术的不断发展,相信飞秒激光技术将会在未来的工业制造领域中发挥更为广泛的作用。
飞秒激光及其应用

飞秒激光及其应用飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。
飞秒脉冲是如此的短,目前已经达到了4fs以内。
1飞秒(fs) ,即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其可聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。
飞秒激光完全是人类创造的奇迹。
近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。
桑迪亚国家实验室的R.Trebino 说:“过去10年中, (超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。
这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。
”根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。
它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。
飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。
它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。
飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子点和纳米晶体)中的载流子动力学。
在生物学方面,人们正在利用飞秒激光技术所提供的差异吸收光谱、泵浦/ 探测技术, 研究光合作用反应中心的传能、转能与电荷分离过程。
超短脉冲激光还被应用于信息的传输、处理与存贮方面。
光学中的高功率飞秒激光的应用

光学中的高功率飞秒激光的应用飞秒激光是一种特殊的激光,其激光脉冲时间短至飞秒级别(1飞秒等于1亿分之一秒)。
高功率飞秒激光作为一种新兴激光技术,有很多应用,特别是在光学领域。
本文将探讨高功率飞秒激光在光学中的应用。
一、飞秒激光的基本原理飞秒激光通过特殊的激光器器件产生,其原理是采用了超短脉冲激光的工作原理。
在这种激光中,由于脉冲时间极短,激光在介质中的传播时间也很短,所以能量非常强,能达到数千瓦甚至上万瓦的高功率。
二、飞秒激光在光学加工领域的应用在光学加工领域,飞秒激光被广泛应用。
在最初的应用中,飞秒激光主要用于三维微加工,比如制造微小的微机电系统和激光微加工。
近年来,人们发现飞秒激光还可以用于材料加工的超精细切割。
与传统的机械切割相比,飞秒激光可以实现材料精细切割。
三、飞秒激光在生物医学领域的应用除了光学加工领域,飞秒激光在生物医学领域也有很多应用。
比如,它可以用于切割角膜、修补血管以及治疗皮肤疾病等。
四、飞秒激光在光谱学领域的应用飞秒激光在光谱学领域也有应用。
由于其脉冲时间极短,可以用于对材料的微观结构进行分析和研究,包括分子和晶体的内部结构以及它们之间的相互作用。
五、飞秒激光在信息处理领域的应用飞秒激光在信息处理领域也有应用。
利用飞秒激光对物质材料进行编码,在空间和时间上形成基于路径的量子逻辑门的运算,以实现量子计算。
这一应用能力说明了在全世界范围内,作为实际应用现场的飞秒激光,具有巨大的发展潜力。
六、飞秒激光的未来发展趋势随着科技的进步和人们对高质量生活的追求,飞秒激光的未来发展趋势是显而易见的。
在生物医学、光学加工和量子计算等领域,飞秒激光将会有越来越广泛的应用。
总之,飞秒激光作为一种新技术,其应用领域非常广泛,已经在很多领域得到了广泛的应用。
未来它将继续发挥重要作用,为科学技术的进步和人类社会的发展做出贡献。
光电子学及应用——飞秒激光技术

光电子学及应用——飞秒激光技术随着科学技术的不断发展,光电子学得到了广泛的应用和深入的研究。
而飞秒激光技术作为光电子学领域的一种重要技术手段,不仅可以开启新的研究领域,还能结合现有技术取得更为优异的结果。
飞秒激光技术在生物学、材料科学、医学等领域均得到了广泛的应用。
一、飞秒激光技术的基本原理飞秒激光技术,是指通过超短脉冲激光对物体进行加工和研究的一种技术。
其核心原理是光子-电子相互作用,即将能量转移到物质的电子上,如超短激光将光子能量转移给物质的材料时,会发生电子激发离子化等过程。
因此,飞秒激光通常采用聚焦光束,使其能量密度足以造成材料内部原子或分子间的电子移动。
此时,物质处于等离子态,即产生高温高压等高复杂物理化学过程,从而实现材料的加工和研究。
二、飞秒激光技术的应用领域1. 生命医学领域飞秒激光技术被广泛应用于生命医学领域,如医学影像学和癌症治疗等。
例如,在眼科治疗中,飞秒激光可以用于角膜切削术,极大地提高了术后视力质量和治疗效率。
同时,在肿瘤治疗中,飞秒激光通过抑制肿瘤细胞的增殖和破坏肿瘤细胞,极大地提高了治疗效果。
2. 材料科学领域飞秒激光技术在材料领域中也有着广泛的应用,如材料表面处理、微加工等。
例如,在材料表面处理中,飞秒激光可以产生微纳米级的精度和高质量的表面处理效果,用于制造高科技产品。
此外,在材料的切割、起泡和成型等加工方面,也有广泛的应用。
3. 量子光学激光的相干性和精度约束是一件困难的工作,飞秒激光技术被广泛应用于量子光学研究当中。
例如在量子计算机的构建中,飞秒激光技术可以把任意两个光子进行数字量子逻辑门控制,从而实现量子计算操作。
同时在更容易实验的系统中,如自旋和波函数的准同态系统中,飞秒激光技术亦在方便的精度控制方面是有很高的应用价值。
三、飞秒激光技术的未来发展方向飞秒激光技术在科技领域中有着较高的价值和发展潜力。
可预见的未来,飞秒激光技术将广泛应用于更广泛的领域和更具挑战性的领域中。
飞秒激光加工技术的原理与应用

飞秒激光加工技术的原理与应用飞秒激光加工技术是一种先进的加工技术,由于其所具有的优越性能,已经被广泛应用于各种领域,包括材料加工、生物医学、光电子等领域。
本文将从单位时间、激光的应用、影响加工效率的因素等方面,介绍飞秒激光加工技术的原理与应用。
一、这种激光的单位时间飞秒激光是指脉冲宽度在飞秒量级(1/fs,10^-15秒)的激光束,它具有光强高、脉冲宽度短、准直性好等特点。
由于飞秒激光的能量密度非常高,能够瞬间将物体表面的原子或分子挪开,形成微小孔洞,从而实现对材料的精密刻蚀。
二、激光的应用飞秒激光加工技术可以被广泛应用于各种材料的加工过程中,包括半导体、生物材料、金属、玻璃、陶瓷等等。
常见的应用包括:微加工、激光粘接、表面处理、微纳加工、微型器件加工等。
例如,在半导体领域,飞秒激光加工技术可以替代传统的化学蚀刻法,实现对半导体芯片的加工。
在光学领域,它可以用于脉冲激光器的制造和反射镜镀膜,使用飞秒激光加工技术可以实现非常高的精度和清晰度,适用于制造高精度光学仪器和元器件。
实验表明,飞秒激光加工技术比传统的加工技术更加精密、更加高效,可以提高生产效率,减少问题,并且可以加工出精准且具有复杂形状的产品。
三、影响加工效率的因素虽然飞秒激光加工技术比其他加工技术更快、更有效,但仍存在一些因素会影响其加工效率。
下文将从以下几个方面进行阐述:1. 材料性质:材料的特性是决定加工效率的关键因素。
不同材料具有不同的光学和物理特性,例如折射率、散射系数、吸收系数等,会直接影响激光对材料的相互作用,从而影响加工效果和速度。
2. 激光参数:激光参数是影响飞秒激光加工效率的另一重要因素。
激光参数包括脉冲能量、波长、脉冲宽度等,这些参数会影响加工表现、结构和材料粗糙度。
3. 加工表面处理:加工表面的处理可以影响加工效率,通过预处理表面,可以提高加工表面的质量级别,从而减少加工过程中的错误率。
4. 加工气体:在加工过程中,加工气体是至关重要的。
飞秒激光技术的应用前景

飞秒激光技术的应用前景激光技术从问世至今已经发展了几十年,应用范围涉及到医疗、通讯、材料处理、光学仪器等众多领域。
而其中,飞秒激光技术作为一种新兴的技术,给我们带来了更多的发展前景。
一、飞秒激光技术简介飞秒激光简单地说,就是一种快速的激光技术,其脉冲宽度仅为10-15秒。
在过去,激光技术因为没有很好的纳秒级别的技术支持,无法实现高精度加工,但随着飞秒激光技术的问世,这一瓶颈得以突破。
由于其特殊的技术特点,飞秒激光在工业、科研各领域都有着很大的应用前景。
二、飞秒激光技术在医疗上的应用在医疗领域中,飞秒激光技术可以用于近视矫正手术等眼部手术中。
它的作用是借助高能量短脉冲光,将角膜组织切割,达到改善视力的效果。
由于飞秒激光的加工精度极高,切割角膜时不会对眼睛的内部组织及血管造成任何损伤,因此成功率大,风险也较小。
除了眼部手术,飞秒激光技术还可以用于美容保健。
三、飞秒激光技术在材料加工中的应用在工业加工中,飞秒激光技术同样有着广泛的应用。
用飞秒激光加工工艺加工的材料,表面光洁度能够达到毫米级别。
与以往的加工方法相比,更为优秀。
它可以被用于制造更为细小的微型元器件以及精密装置。
飞秒激光技术不仅可以制造小型零部件,还可以加工极硬高强度的材料,改善原本微弱脆弱的材料。
四、飞秒激光技术在通讯领域的应用飞秒激光技术在通讯技术中也有着很大的应用前景。
它能够制造出高精度的退火、超导等设备,并且还能在寿命不长的器件中使用。
同时,飞秒激光技术还可以用于数据传输。
在数据加密过程中,飞秒激光技术能够用于制作不可破译的加密设备。
此外,飞秒激光技术还可以用于制造纳米计量的光学设备,进一步提升现代通讯技术的效率。
五、结语总体来说,飞秒激光技术的应用前景十分广阔。
如今,工业制造、生物医药、通讯技术、光学仪器等领域都对飞秒激光技术有着越来越多的需求,也将有越来越多的技术实现在这一领域中。
未来,飞秒激光技术将在各领域不断推出新的应用,给人们的生活带来更多的便利和改善。
飞秒激光微加工技术研究及其应用

飞秒激光微加工技术研究及其应用随着科技的日益发展,飞秒激光微加工技术也越来越受到人们的关注。
这种技术利用飞秒激光的短脉冲和高能量密度,对材料进行微加工和微加工制造。
本文将介绍飞秒激光微加工技术的研究和应用,以及对未来的展望。
一、飞秒激光微加工技术研究飞秒激光微加工技术是一种先进的加工技术,其主要原理是通过高速的飞秒脉冲激光照射在材料表面,产生局部熔化和蒸发的现象,从而实现微加工和微加工制造。
这种技术所使用的激光脉冲时间非常短,只有几百飞秒,从而可以大大减少加工产生的热量和机械压力。
飞秒激光微加工技术的研究主要涉及到激光源的开发、加工机器的设计和开发、加工过程控制技术等方面。
激光源是飞秒激光微加工技术的核心,目前主要有铝镓镓砷(AlGaAs)、纳米抽运钛宝石(Nd:YAG)、纳米纤维激光(NFL)等类型的激光源被广泛应用于该技术领域。
此外,加工机器的设计和开发也是该技术研究的重点之一,通过优化机器结构、改进系统控制,可以提高加工的精度和效率。
二、飞秒激光微加工技术应用飞秒激光微加工技术具有高精度、高效率、高品质的特点,被广泛应用于制造、信息、能源、生命科学等领域。
以下将结合实际应用案例,介绍飞秒激光微加工技术的具体应用。
1. 精密制造精密制造是飞秒激光微加工技术的主要应用领域之一。
该技术可以用于制造微型零部件、微型机械、模具等产品。
例如,飞秒激光微加工技术可以制造微型LED芯片,利用飞秒激光脉冲加工出微结构,提高LED的光转换效率。
此外,在MEMS和MOEMS等领域,飞秒激光微加工技术也被广泛应用。
2. 信息技术飞秒激光微加工技术在信息技术领域中的应用主要涉及到光存储和光通信技术。
利用飞秒激光微加工技术可以制造出高分辨率的光栅和微孔阵列,作为信息记录介质,实现超高容量的光存储;同时也可以制造出高品质的光通信设备,实现高速、高容量、低损耗的光通信。
3. 能源科学飞秒激光微加工技术在能源科学领域中的应用主要涉及到纳米材料的制造和太阳能电池的研究。
飞秒激光在眼科手术中的应用

飞秒激光在眼科手术中的应用随着科技的不断进步与发展,飞秒激光在眼科手术领域中的应用已经变得越来越广泛。
飞秒激光技术是一种高精度、高效率、非侵入性的手术治疗技术,可以应用于角膜屈光手术、白内障摘除术、青光眼治疗、眼底手术等多种领域。
在这篇文章中,我们将探讨飞秒激光在眼科手术中的应用及其优点。
一、飞秒激光技术首先,必须要了解飞秒激光技术的基本原理。
飞秒激光技术是通过产生超快速的激光脉冲,对组织进行微观精细的切割以及形状调整。
飞秒激光每秒钟可以完成数百万次的重复动作,每一次都精确到微米级别,同时还能够掌控切割的深度、形状以及速度,从而创造出具有最佳治疗效果的理想形态。
二、角膜屈光手术在角膜屈光手术中,飞秒激光被用于制造角膜切割(FLAP)和激光刻蚀(LASEK)之中。
通过飞秒激光技术可以精确地创造翻盖,掌控切口的深度和形态,减少了手术的痛苦和并发症的发生率。
此外,飞秒激光还可以扫描并处理眼部数据,然后通过精确的操作来打造形状和大小符合消费者个性要求的角膜。
三、白内障摘除术在白内障摘除术中,飞秒激光被用于切割人工晶状体的安装口径,以及优化切口的完美度。
利用飞秒激光技术可以消除传统手术手动制作切口的误差,从而实现高精度、高效率的手术。
并且,使用飞秒激光技术的术后恢复时间较短,更具安全性和可靠性。
四、青光眼治疗青光眼治疗是诊治眼伤的一项最重要的辅助手段之一。
通过飞秒激光技术,可以有效改善青光眼患者的症状,并减少青光眼引起的视力损伤。
飞秒激光技术的操作过程非常精细和安全,因此可用于直接处理眼角膜或通过眼睫毛微量注射的方法来治疗青光眼。
五、眼底手术在眼底手术中,飞秒激光技术被广泛使用于切割和打孔术。
随着眼底手术技术的不断发展和改进,飞秒激光技术的应用也变得更加广泛和精细。
飞秒激光用于眼底手术的一个优点是创口精度高,减少了术后并发症和恢复时间。
综上所述,飞秒激光在眼科手术中的应用,可以有效地缩短手术时间,降低风险及并发症率,精度和安全性相对较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、脉冲激光器进展
60年代 70年代 Q-Switching 10-9 — 10-10 s (ns ) Modelocking 10-11 — 10-12 s(ps)
( Active, Synchronous Pumping, Passive Modelocking)
R6G吸收和荧光光谱 ∆λ > 50nm
脉宽与光谱带宽的变换极限: ∆ν×τ = 0.314 (场强分布为双曲正割函数) 0.441 (场强分布为高斯函数) 0.886 (场强分布为矩形) Ti:S 晶体Laser 最短脉冲宽度 τ = 3飞秒 (理论上) τ < 5 fs (4.5fs) (实验上)
80年代 90年代
Colliding Pulse Modelocking 10-13 s ( sub-ps ) Kerr Lens Modelocking
4.0 fs
10-15 s (fs )
最短的激光脉冲为 4.5 fs 腔外压缩
激光振荡周期为 T= 2.7fs
有机染料飞秒(80年代) 染料 发射光谱宽度50nm
M11 L4 L5 M17 A6 Ti: PC2 M15 M13
PA放大新技术
更高功率飞秒激光的获得
Nd:YAG laser (Q-switched)
0.6J SHG532 nm/5ns
1mJ
Seed source 1nJ/840nm 10.5fs stretched to 0.5ns BBO pre-ampl
脉冲的蓝光红光 分量重新重合
β
红光 蓝光
l
棱镜 1 (BP1) 棱镜 2 (BP2)
四、飞秒短脉冲的放大
——
CPA
1969年 E.B. Treacy IEEE J. Quan. Electron. QE-5, 454-458 引入衍射光栅对 造成不同波长分量光程不 同— — 短脉冲展宽或长脉 冲压缩 δλ τ =b(λ/d)dλ/{cd[1-(λ/d - sinγ)]} b --- 光栅对距离,d --- 光栅常数 γ --- 入射角
一、锁模基本知识
激光腔纵模 增益曲线
振荡阈值 允许振荡模
未经锁模多纵模自由运转激光器. 各模的振幅和位 相不固定无规叠加
模式锁定:
N个等振幅等相位激光锁模可表示成: I(t) ∝ E 02Sin 2(N ωt/2)/ Sin 2(ωt/2) 锁模后,最大光强为 N 2E02 (ωt/2 =m π ) 相干迭加
Linear optics ω0 Ii ω0 I0
Nonlinear optics ω0 Ii ω I0
No change of ω0
ω = 2 ω0 , 3 ω0 , … ...
PNL = ε0χ(2) : EE + ε0χ(3) : EEE χ(2) — — 非中心对称要求 χ(3) — — 无非中心对称要求
脉冲周期 T=2 π/ω = 2L/c 脉冲宽度 τ=2 π/N ω = 2L/Nc = T/N N= ∆νG/ ∆ν ∆ν = c/2L τ=1/ ∆νG ∆νG增益线宽 纵模间隔
∆νG越宽 — — τ 就越短 增益 — — 介质谱宽宽、反射镜宽带反射
可以锁定更多的模式 N越大 t 可以越小
Ti:Sapphire晶体吸 收和发射光谱 发射谱: 600 — 1150nm
two lasers cross-correlation τ= 74± 2fs (实验、理论符合)
双色激光同步在几飞秒时 间内(time jitter only few femtoseconds)
波长间隔很大的激光相干迭加
Phase-coherent optical pulse synthesis two separate fs lasers ( 100MHz ) 760nm, 810nm wavelengths
Ti:Sapphire
飞秒激光
新的锁模技术 — — 光克尔自锁模技术 1991年 D,E. Spence et al, Opt. Lett. 16, P.42
60fs, 845 - 950nm, 300mW ( 6W Ar+ 泵浦) 1997年 M.Nisoli et al, Opt. Lett. 22, P.522 光纤压缩 4.5fs 20µJ 1KHz
群速色散 GVD
客观存在 Vg--- 波包(脉冲)传播速度 Vg=c/n(1+λ/n dn/dλ) d2n/dλ2 > 0 dVg /dλ > 0 脉冲中长波分量快于短波 分量
波长 λ
正常色散(dn/dλ<0)介质
n(λ ) 折射率 dn(λ)/dλ
λ1
λ2
λ3
正啁啾( Chirp)的光脉冲
结果:+GVD 的作用是
~0. 6J
BBO
1000×
15mJ 840nm
15000 ×
光学参量啁啾脉冲放大(OPCPA)示意图
五、获得更短脉冲(如< 1fs ) 办法
1)锁定更多模式 增益带宽限制,难于突破 2)其它技术,大大增大锁定的纵模间隔,得到极 宽带宽 假设 锁定 ω0=800nm, 2 ω0, … … 11ω0 , 共 11个成分 则可以得到约 250as 的极短脉冲 可见红外波段: 双波长飞秒激光 不同激光器脉冲相关
三、Ti:S光克尔锁模技术
1、 KLM ( Kerr Lens Modelocking )
---- passive, simple, solid state modelocking
非线性光学效应 n n= =n n + ∆n(r) , ∆n(r) ∝ n I(r) I(r) 非线性光学效应 00+ ∆n(r) , ∆n(r) ∝ n22
n2 ∝ ε0 Re[χ(3)] χ(3) — — 三阶非线性光学系数
Nonlinear Optics P = ε0χ(1)E + ε0χ(2) : EE + ε0χ(3) : EEE
E很强时 Linear optics Reflection diffraction …… no frequency change Nonlinear optics EO effect SHG, SFG, THG Four-wave mixing self-action (self-focusing, SPM) … ...
KLM 锁模原理
n2>0 脉冲光光强强 自聚焦效应
锁模光斑截面
连续光斑截面
钛蓝宝石晶体
连续光
狭缝打开——锁模 与连续光束均无损耗
调节狭缝使 连续光束损耗
光栏
2、飞秒短脉冲的获得
SPM + 负GVD SPM ( Self Phase Modulation ) ∆n(t) ∝ n2I(t) ∆φ(t) ∝ I(t) n2 > 0 前沿 dI(t)/dt > 0 t t
20fs
A.Baltuska et al, Opt. Lett. 22, P.102 13fs 光纤压缩 5fs 6µJ 1MHz
1999年 腔内产生
U. Morgner et al, Opt. Lett. 24, P.411 4.3fs (Sech), 4.8fs (Gaussian )
< 2T (2.7fs), 200mW, 90MHz, 650-1050nm
双波长同步飞秒激光
Z.Wei, Opt. Lett. (2002)
Ti:S and Cr:forsterite lasers are coupled inside Ti:S crystal by M1,M2,M3,M4, F.C1, F.C2 frequency counters Cr:F laser (1250nm) T2 output coupler Ti:S laser (820nm) T1 output coupler
Re — 折射率变化 Im — 吸收变化
激光空间横截面分布为高斯分布
非线性光学效应 n n= =n n + ∆n(r) , ∆n(r) ∝ n I(r) I(r) 非线性光学效应 00+ ∆n(r) , ∆n(r) ∝ n22 Ir
r
光斑中心折射率高于边缘
n2 > 0, 光程 nL:中心光线 > 边缘光线 L 等 同 于
正常色散 前沿ω减少 (可见、 走得更快 长波分量 红外区)
飞秒短脉冲 d∆φ(t)/dt= -∆ω ∆ω
前沿 ∆ω < 0
结果:SPM (n2>0) 作用 是 脉宽越来越宽
Ti:S ( n2 > 0 ) SPM 作用 是 脉宽越来越宽
解决方法: 引入负 群速色散 ( Group Velocity Dispersion )
SPM + GVD : n2 , d2n/dλ2 > 0
脉宽越来越宽 脉宽不断展宽
GVD 引入负GVD d2n/dλ2( d2P/dλ2 )< 0
SPM n2>0
长波分量传播慢于短波分量
长波分量传播快于短波分量
稳定短脉冲
负GVD产生 ----- 光栅对 损耗大 ----- 棱镜组 布儒斯特角入射、可连续调节
PMT1
A/D
PC
高次谐波
位相相关 相干迭加
阿秒脉冲
Power spectrum of high harmonics 800nm, 1015W/cm2 , neon target
飞秒激光基本特性:
波长:750 - 1100nm 超快 (4.5fs) ---- 万亿分之一秒 超强 (100TW) 聚焦强度 光 压 1020W/cm2 1012bar 1021g 109Gauss 提供了极端实验条件 自然界存在 3.5 ×1016W/cm 2 1bar g 0.5Gauss