亥姆霍兹函数和吉布斯函数..
亥姆霍兹函数和吉布斯函数

dAT d-W 0
dAT d-W AT W
dAT d-WR AT WR
恒温时系统亥氏函数的减小值等于可逆过程中 系统所作的功,大于不可逆过程中所作的功
上一页 下一页 节首
3.恒温恒容过程
dV 0
d-W d-W
dAT ,V d-W 0
dAT ,V d-W dAT ,V d-W R
上一页 下一页 节首
解:(1) 这是一个 ( )T , p,W '0 的可逆过程
\ G 0 G 可作为可逆性判据。
(2) G 0 状态函数 因过程并非恒压,故∆G不能作为可逆性 判据。
上一页 下一页 节首
上一页 下一页 节首
ห้องสมุดไป่ตู้
例 2 1 mol H2O (l) 在 正常沸点100℃下恒温 气化为 101325 Pa 的水蒸气。
解:(1) p外=101325 Pa
这是一个 ( )T , p,W '0 的可逆过程
GT , p,W 0 0 \ G 0 G 可作为可逆性判据。
上一页 下一页 节首
例 2 1 mol H2O (l) 在正常沸点 100℃下恒温 气化为 101325 Pa 的水蒸气。 若(1) p外=101325 Pa、(2) p外<101325 Pa,它 们的ΔG 分别是多少?两过程是否都可用ΔG 作为平衡判据?
上一页 下一页 节首
解:这是一个 ( )T 的过程
AT W 0 W 0 AT 0
AT U (TS ) U TS
U T H U H T
( pV ) pVg 0
∴该过程是一个不可逆过程。
上一页 下一页 节首
例 2 1 mol H2O (l) 在 正常沸点100℃下恒温 气化为 101325 Pa 的水蒸气。 若(1) p外=101325 Pa、(2) p外<101325 Pa,它 们的ΔG 分别是多少?两过程是否都可用ΔG 作为可逆性判据?
亥姆霍兹自由能和吉布斯自由能

定义式
H=U+PV A=U-TS G=U+pV-TS=A+pV
一、热力学基本数学关系式-热力学基本方程(4-8-4)
推导 条件:封闭体系,可逆过程
热一律:dU=Q-pdV- wr 热二律: Q=TdS
dU= TdS -pdV- wr (1)
H=U+PV, dH=dU+pdV+Vdp= TdS -pdV +pdV+Vdp - wr dH=TdS+Vdp - wr (2)
W =0, -d (U+pV-TS) 0
定义:吉布斯自由能: G U+pV-TS H-TS
具有能量量纲 具有容量性质 为状态函数,绝对值不知
2. Gibbs自由能判据
封闭体系,等T,p过程中G的减少,
-d G W W 0, -G W
可逆过程中,等于体系所作的最大WR 不可逆过程中,大于体系对外做的W
A=U-TS, dA=dU-TdS-SdT= TdS -pdV -TdS-SdT - wr
G=H-TS, dG=dH-TdS-SdT
dA= -SdT -pdV - wr (3) dG=-SdT+Vdp - wr (4)
当 wr =0 dU= TdS -pdV
dH=TdS+Vdp
(4)
dA= -SdT -pdV
§2-4 亥姆霍兹自由能和吉布斯自由能 一. 第一、第二定律的联合表达式
第
一 定
dU = Q - p外dV - W 或 Q = dU + p外dV + W
律
第 二
Q
dS
定
T源
律
或: Q T源dS
联
T源dS dU + p外dV + W
亥姆霍兹自由能和吉布斯自由能的区别

亥姆霍兹自由能(Helmholtz free energy): F=U-TS,U 是系统的内能,T 是温度,S 是熵。
(注意与吉布斯自由能的区别)吉布斯自由能(Gibbs free energy): G=H-TS ,H为焓,S为熵,T为当前温度由于吉布斯自由能G 可以表示为G = F + pV,另有G = μN,所以F = μN –pV;亥姆霍兹自由能的微分形式是:dF = - SdT - PdV + μdN其中P 是压强,V 是体积,μ是化学势在统计物理学中,亥姆霍兹自由能是一个最常用的自由能,因为它和配分函数Z直接关联:F = -kTlnZ吉布斯自由能的微分形式是:dG = − SdT + Vdp + μdN,其中μ是化学势,也就是说每个粒子的平均吉布斯自由能等于化学势;ΔG叫做吉布斯自由能变(吉布斯自由能判据)吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。
吉布斯自由能改变量。
表明状态函数G是体系所具有的在等温等压下做非体积功的能力。
反应过程中G的减少量是体系做非体积功的最大限度。
这个最大限度在可逆途径得到实现。
反应进行方向和方式判据。
(功函判据)亥姆霍兹函数是一个重要的热力学参数,等于内能减去绝对温度和熵的乘积:两个状态差值的负数等于一个可逆等温等容过程的最大功输出。
亥姆霍兹自由能是等温下做所有功的能力,亦称功函吉布斯自由能是等温等压下除体积功以外的功的能力玻尔兹曼常数(Boltzmann constant)(k 或kB)是有关于温度及能量的一个物理常数:记为“K”,数值为:K=1.3806488(13)×10^-23J/K理想气体常数等于玻尔兹曼常数与阿伏伽德罗常数的乘积:R=kN;熵函数熵可以定义为玻尔兹曼常数乘以系统分子的状态数的对数值:S=k㏑Ω;焓变熵变焓焓是物体的一个热力学能状态函数,即热函:一个系统中的热力作用,等于该系统内能加上其体积与外界作用于该系统的压力的乘积的总和(Enthalpy is a combination of internal energy and flow work.)。
亥姆霍兹自由能和吉布斯自由能

吉布斯自由能
另外,亥姆霍兹自由能和吉布斯自由能还与量子力学中的波函数和概 率密度分布函数有关。在量子力学中,波函数可以描述粒子的状态和 行为,而概率密度分布函数则描述了粒子在空间中的分布概率。通过 将波函数或概率密度分布函数引入到亥姆霍兹自由能和吉布斯自由能 的定义中,我们可以得到一些有趣的结果,例如量子系统中的热力学 定律和黑洞的热力学性质等
吉布斯自由能
这个概念的提出者是美国物 理化学家约瑟夫·威廉·吉
布斯
总的来说,亥姆霍兹自由能 和吉布斯自由能分别在等温 等容和等温等压条件下描述 了系统的热力学状态。它们 都是重要的热力学函数,被 广泛应用于物理化学、化学 工程、生物工程和环境科学
等领域
在研究化学反应和相变等过 程中,亥姆霍兹自由能和吉 布斯自由能提供了重要的理 论基础。这些概念的应用有 助于我们更好地理解物质的 热力学性质以及化学反应的 平衡状态。通过研究这些热 力学函数的变化,我们可以 预测和解释许多化学现象, 进一步推动相关领域的发展
总之,亥姆霍兹自由能和吉布斯自由能作为热力学中的重要概念,不 仅在化学、物理化学、化学工程等领域有着广泛的应用,还涉及到更 广泛的科学问题,如信息熵、量子力学等。对这些问题的深入研究将 有助于我们更好地理解物质的本质和变化规律,推动相关领域科学的 发展
9
-
感谢观看
20XX年XX月
总之,亥姆霍兹自由能和吉布 斯自由能作为热力学函数的重 要组成部分,在理论和应用方 面都具有重要意义。它们不仅 是物理化学、化学工程等领域 的基础知识,还涉及到更广泛 的科学问题,为人类探索物质 世界提供了有力工具
此外,亥姆霍兹自由能和吉布 斯自由能还与信息熵有着密切 的联系。信息熵是描述随机变 量不确定性的一个度量,也可 以被看作是系统混乱度或随机 度的量度。在某些情况下,亥 姆霍兹自由能和吉布斯自由能 可以被解释为信息熵的某种形 式,这有助于我们更好地理解 这些热力学函数的内在含义和 性质
亥姆霍兹函数和吉布斯函数解读

自发 / dAT ,V 0 恒温、恒 容 、 W 0 平衡 自发 / 或 AT ,V 0 恒温、恒 容、 W 0 平衡
§3.7 亥姆霍兹函数和吉布斯函数
• 7.1 亥姆霍兹函数
(5)相关重要公式 ★恒温可逆过程: 即:恒温可逆过程系统亥姆霍兹函数变化等于过程的可逆功,又 称恒温过程系统的亥姆霍兹函数变化表示了系统发生恒温变化时 具有的作功能力 ★恒温恒容可逆过程:
§3.7 亥姆霍兹函数和吉布斯函数
• 7.1 亥姆霍兹函数
(1)导出过程 根据熵判据公式:
熵判据公式必须在隔离系统 中才能使用,非隔离系统则 涉及环境熵变的计算。对于 常见的封闭系统发生的恒温 恒容或恒温恒压及非体积功 为零的过程,能否有更为方 便的判据呢?亥姆霍斯函数 和吉布斯函数的引入可以解 决这个问题 (U-TS)是状态 函数的组合,仍 然具有状态函数 的性质,定义它 自发 为一个新的辅助 平衡 状态函数--亥姆 霍兹函数
☆列出题目给定的始、终态 ☆找出已知的可逆相变化 ☆加上辅助的可逆的pVT变化 苯
(l,268.2K,760mmHg)
Δ S1 恒温可逆
(3)答案: 20.1mmHg
Δ S系
苯
(s,268.2K,760mmHg)
Δ S5 恒温可逆
(2)一些近似处理方法
固
气
S1 0 S5 0 S2 S 4 蒸发 H 凝华 H T T 液 熔化 H 凝固 H T T
§3.7 亥姆霍兹函数和吉布斯函数
• 7.1 亥姆霍兹函数
(2)定义
A U TS
def
A 即为亥姆霍兹函数,又曾被称为亥姆霍兹自由能或自由能, 也曾用F 表示
第六章 热力学第二定律第六节 亥姆霍兹函数和吉布斯函数

——说明
•应用此判据时,需注意适用的条件
•A是系统的广度性质,单位:J
2023/2/20
3
二、吉布斯函数G(Gibbs function)
●定义
G=H-TS=U+pV-TS=A+pV
●应用
由G=H-TS =U+pV-TS
G=U+(pV)- (TS)=Q-psurrdV+W’+ (pV)-(TS) 定温定压下 GT,p=Qp-p V +W’+p V- TS = Qp+W’- TS 代热二律SQ/T入
的ΔA和ΔG。
解:不可逆相变过程,需设计可逆过程计算。在例6.2中已求出-
10℃,101.325 kPa时,水凝固成冰的ΔS=-20.59 J·K-1,ΔH=-5643 J。 故
●说明 过程定温定压,ΔG<0,说明在题给条件下,过冷水能
自发地凝固成冰
2023/2/20
11
5. 掌握热力学基本方程;理解吉布斯——赫姆霍兹方程及其应用
6. 掌握偏摩尔量和化学势的概念;了解逸度、活度及标准态的概 念;理解化学势在处理平衡问题和研究多组分系统性质中的作用。
7.202了3/2解/20 稀溶液的依数性。
1
第六节 亥姆霍兹函数和吉布斯函数
一、亥姆霍兹函数A( Helmholz function)
——在定温定压及不做非体积功时条件下,吉氏函数的值总自发 地向减小的方向变化,当G之值不再减小后,系统即达平衡状态, 在此条件下时吉氏函数增大是不可能的——吉氏函数判据
——应用此判据时,也需注意适用的条件
化学变化和相变化大多在恒温恒压条件下进行。因此,吉氏函数 应用得更广泛
●注意 A和G皆为系统的容量性质,其绝对数值不知,乃辅助
第7节 亥姆霍兹函数与吉布斯函数

所以 dG Q W Vdp - TdS - SdT f
Wf,max
( dT 0, dp 0, 可逆)
或
(dG)T,p,R Wf,max
即:等温、等压、可逆过程中,体系对外所作
的最大非膨胀功等于体系吉布斯函数的减少值。若 是不可逆过程,体系所作的功小于吉布斯函数的减 少值。
§2.7 亥姆霍兹函数与吉布斯函数
一、定温定容的系统-亥姆霍兹函数A的引出
不等号的引入 dS
Q
Tamb
0
根据第一定律 Q dU W 代入得: - W dU TambdS
当T1 T2 T环,即体系的始、终态温度与环境温度相 等, 得 - W dU TS (这就是定义A的出发点)
把A称为功函(Work Function)。若是不可逆
过程,体系所作的功小于A的减少值。
二、定温定压系统-吉布斯函数G的引出
dG dH - TdS - SdT
因为
dH dU d( pV )
Q We Wf pdV Vdp
Q Wf Vdp
(We pdV )
即
W dA
dA dU TdS SdT
Q W TdS SdT (dU Q W )
Wmax
(等温,可逆 Q TdS )
或
dAT ,R Wmax
即:等温、可逆过程中,体系对
亥姆霍兹自由能和吉布斯自由能

=0 可发生可逆过程 <0 不可发生的过程
二、亥姆霍兹(helmholz)自由能,功函, A(F)
T源dS -dU - p外dV W
1. 定义:满足T1=T2=T源=常数, V=常数 则 p外dV=0 T源dS d(TS)
dTS -dU=-d( U - TS) W
W =0, -d( U - TS) 0
(3). 一般情况下, W =0, 则A<0, 自发进行, A=0,可逆,
平衡, A>0, 该条件下,不能自动发生。
3. 讨论
(1). A为容量性质,状态函数,是体系性质, A只决定于体系 的始终态,与途径无关
(2). A是在等T,V条件下推出的函数,但并非只有等T,V过程 才有A,任何变化过程均有A,但不能作为过程的判据, 不能与W’联系。
2. 孤立体系(dU=0, dV=0) (S)U,V 0
3. 等T,V体系 (A)T,V 0
<0 自发 =0 平衡 >0 不自,V 0
<0 自发 =0 平衡 >0 不自发 >-W’ 不能进行
作业:p102, 22, 23
§2-6 热力学函数关系式及其应用
(3). 在恒T条件下有: T源dS dU + W总 W总= W彭+ W
dTS dU + W总 -d(U-TS)= -dAT W总
- A W总
在一个等T过程中,体系对外所作的总功不可能大于体系功函的 降低值,可逆过程,体系对外所作的总功等于功函的降低值; 不可逆过程,体系对外所作的总功小于功函降低值
W = 0,
-d G 0
-G 0
封闭体系等T, p过程中, 可逆过程G不变。 不可逆过程中G总是减少至该条件下 G最小达到平衡为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。