案例9 区域八邻接点种子填充算法

合集下载

案例10 扫描线种子填充算法

案例10  扫描线种子填充算法

程序代码
PointTemp.x=xleft;PointTemp.y=PointTemp.y-2; //处理下一条扫描线 while(PointTemp.x<xright) { bSpanFill=FALSE; while(pDC->GetPixel(Round(PointTemp.x),Round(PointTemp.y))!=BoundaryClr && pDC->GetPixel(Round(PointTemp.x),Round(PointTemp.y))!=SeedClr) { bSpanFill=TRUE; PointTemp.x++; } if(bSpanFill) { if(PointTemp.x==xright && pDC->GetPixel(Round(PointTemp.x), Round(PointTemp.y))!=BoundaryClr && pDC->GetPixel(Round(PointTemp.x),Round(PointTemp.y))!=SeedClr) PopPoint=PointTemp; else PopPoint.x=PointTemp.x-1;PopPoint.y=PointTemp.y; Push(PopPoint); bSpanFill=FALSE; } while((pDC->GetPixel(Round(PointTemp.x),Round(PointTemp.y))==BoundaryClr && PointTemp.x<xright) || (pDC->GetPixel(Round(PointTemp.x),Round(PointTemp.y)) ==SeedClr && PointTemp.x<xright)) PointTemp.x++; } }

实验2:多边形区域扫描线填充或种子填充

实验2:多边形区域扫描线填充或种子填充

实验2:多边形区域扫描线填充或种子填充计科102 蓝广森 1007300441一、实验目的通过实验,进一步理解和掌握几种常用多边形填充算法的基本原理掌握多边形区域填充算法的基本过程掌握在C/C++环境下用多边形填充算法编程实现指定多边形的填充。

二、实验内容及要求实现多边形区域扫描线填充的有序边表算法,并将实现的算法应用于任意多边形的填充,要求多边形的顶点由键盘输入或鼠标拾取,填充要准确,不能多填也不能少填。

要求掌握边形区域扫描线填充的有序边表算法的基本原理和算法设计,画出算法实现的程序流程图,使用C或者VC++实现算法,并演示。

三、实验原理种子填充算法又称为边界填充算法。

其基本思想是:从多边形区域的一个内点开始,由内向外用给定的颜色画点直到边界为止。

如果边界是以一种颜色指定的,则种子填充算法可逐个像素地处理直到遇到边界颜色为止。

种子填充算法常用四连通域和八连通域技术进行填充操作。

四向连通填充算法:a)种子像素压入栈中;b)如果栈为空,则转e);否则转c);c)弹出一个像素,并将该像素置成填充色;并判断该像素相邻的四连通像素是否为边界色或已经置成多边形的填充色,若不是,则将该像素压入栈;d)转b);e)结束。

扫描线填充算法的基本过程如下:当给定种子点(x,y)时,首先填充种子点所在扫描线上的位于给定区域的一个区段,然后确定与这一区段相连通的上、下两条扫描线上位于给定区域内的区段,并依次保存下来。

反复这个过程,直到填充结束。

区域填充的扫描线算法可由下列四个步骤实现:(1)初始化:堆栈置空。

将种子点(x,y)入栈。

(2)出栈:若栈空则结束。

否则取栈顶元素(x,y),以y作为当前扫描线。

(3)填充并确定种子点所在区段:从种子点(x,y)出发,沿当前扫描线向左、右两个方向填充,直到边界。

分别标记区段的左、右端点坐标为xl和xr。

(4)并确定新的种子点:在区间[xl,xr]中检查与当前扫描线y上、下相邻的两条扫描线上的象素。

案例9 区域八邻接点种子填充算法

案例9  区域八邻接点种子填充算法

总结
八邻接点种子填充算法的种子像素可以位于区域的上方 多边形内或下方多边形内,填充过程不同,但都可以获得一 致的填充效果。
(a)多边形
(b)连接点放大效果图 图9-1八连通域
效果图
图9-2 效果图
原理算法
(1)调用颜色对话框读取填充色。 (2)绘制多边形区域。 (3)设置默认边界色为黑色,默认种子色为蓝色。 (4)鼠标选择种子的像素的坐标(x0,y0)位置,执行x=x0±1与 y=y0±1操作,判断x或y是否到达客户区边界。如果x或y到达客户区边 界,给出“种子不在图形之内”的警告信息,重新选择种子像素的位 置。 (5)将多边形区域内的种子像素入栈。 (6)如果栈不为空,将栈顶像素出栈,用种子色绘制出栈像素。 (7)按左、左上、上、右上、右、右下、下、左下顺序搜索出栈像素 的八个邻接点像素。如果相邻像素的颜色不是边界色并且不是种子色 ,将其入栈,否则丢弃。 (8)重复步骤(6),直到栈为空。
程序代码
填充函数 while(pHead->pNext!=NULL)//如果栈不为空 { CP2 PopPoint; Pop(PopPoint); pDC->SetPixelV(Round(PopPoint.x),Round(PopPoint.y),SeedClr); Left.x=PopPoint.x-1;//搜索出栈结点的左方像素 Left.y=PopPoint.y; PixelClr=pDC->GetPixel(Round(Left.x),Round(Left.y)); if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)//不是边界色并且未置成填充色 Push(Left);//左方像素入栈 LeftTop.x=PopPoint.x-1; LeftTop.y=PopPoint.y+1;//搜索出栈结点的左上方像素 PixelClr=pDC->GetPixel(Round(LeftTop.x),Round(LeftTop.y));

基本图形的光栅化算法

基本图形的光栅化算法

基本图形的光栅化算法如何在指定的输出设备上根据坐标描述构造基本⼆维⼏何图形(点、直线、圆、椭圆、多边形域、字符串及其相关属性等)。

图形⽣成的概念图形的⽣成:是在指定的输出设备上,根据坐标描述构造⼆维⼏何图形。

图形的扫描转换:在光栅显⽰器等数字设备上确定⼀个最佳逼近于图形的象素集的过程。

直线段的扫描转换直线的绘制要求(1)直线要直;(2)直线的端点要准确,⽆定向性⽆断裂;(3)直线的亮度、⾊泽要均匀;(4)画线的速度要快;(5)具有不同的⾊泽、亮度、线型等。

解决的问题:给定直线两端点P0(x0,y0)和P1(x1,y1),画出该直线。

逐点⽐较法:数值微分法(DDA法):增量算法直观、易实现不利于⽤硬件实现x(i+1) = x(i) + 1y(i+1) = y(i) + k中点Bresenhan算法:算法原理:根据直线的斜率确定或选择变量在x或y⽅向上每次递增⼀个单位,⽽另⼀⽅向的增量为1或0,它取决于实际直线与相邻象素点的距离,这⼀距离称为误差项。

中点Bresenham算法——算法步骤输⼊直线的两端点P0(x0,y0)和P1(x1,y1)。

计算初始值△x、△y、D=△x-2△y、x=x0、y=y0。

绘制点(x,y)。

判断D的符号。

若D<0,则(x,y)更新为(x+1,y+1),D更新为D+2△x-2△y;否则(x,y)更新为(x+1,y), D更新为D-2△y。

当直线没有画完时,重复上⼀步骤,否则结束。

改进的Bresenhan算法——算法步骤1.输⼊直线的两端点P0(x0,y0)和P1(x1,y1)。

2.计算初始值△x、△y、e=-△x、x=x0、y=y0。

3.绘制点(x,y)。

4.e更新为e+2△y,判断e的符号。

若e>0,则(x,y)更新为(x+1,y+1),同时将e更新为e-2△x;否则(x,y)更新为(x+1,y)。

5.当直线没有画完时,重复步骤3和4。

否则结束。

圆的扫描转换解决的问题:绘出圆⼼在原点,半径为整数R的圆x2+y2=R2。

用A算法解决八数码问题

用A算法解决八数码问题

用A*算法解决八数码问题一、 题目:八数码问题也称为九宫问题。

在3×3的棋盘,有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。

棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。

要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。

二、 问题的搜索形式描述状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。

初始状态:任何状态都可以被指定为初始状态。

操作符:用来产生4个行动(上下左右移动)。

目标测试:用来检测状态是否能匹配上图的目标布局。

路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。

现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍三、 解决方案介绍1.A*算法的一般介绍A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。

对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--;这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。

明显优于盲目搜索策略。

A star算法在静态路网中的应用2.算法伪代码创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。

算起点的估价值,将起点放入OPEN表。

while(OPEN!=NULL){从OPEN表中取估价值f最小的节点n;if(n节点==目标节点){break;}for(当前节点n 的每个子节点X){算X的估价值;if(X in OPEN){if( X的估价值小于OPEN表的估价值 ){把n设置为X的父亲;更新OPEN表中的估价值; //取最小路径的估价值}}if(X inCLOSE){if( X的估价值小于CLOSE表的估价值 ){把n设置为X的父亲;更新CLOSE表中的估价值;把X节点放入OPEN //取最小路径的估价值}}if(X not inboth){把n设置为X的父亲;求X的估价值;并将X插入OPEN表中; //还没有排序}}//end for将n节点插入CLOSE表中;按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。

计算机图形学总复习

计算机图形学总复习

第一章:(蓝色字体为部分答案)●计算机图形学的定义?计算机图形学是研究通过计算机将数据转换为图形,并在专门显示设备上显示的原理、方法和技术的学科。

●计算机图形学常见的应用领域有哪些?(应用领域的标题)●计算机图形学的相关学科有哪些?和计算机图形学互逆的学科是?●CRT中为什么需要刷新?刷新频率是什么?由于荧光物质存在余晖时间,为了让荧光物质保持一个稳定的亮度值,电子束必须不断的重复描绘出原来的图形,这个过程叫做刷新刷新频率:每秒钟重绘屏幕的次数(次/秒、HZ)●彩色CRT和单色CRT的区别:⏹在荧光屏的内表面安装一个影孔板,用于精确定位像素的位置⏹CRT屏幕内部涂有很多组呈三角形的荧光粉,每一组由三个荧光点,三色荧光点由红、绿、蓝三基色组成(一组荧光点对应一个像素)⏹三支电子枪, 分别与三基色相对应●光栅扫描显示器中帧缓存是什么?位面是什么?⏹存储用于刷新的图像信息。

也就是存储屏幕上像素的颜色值。

⏹帧缓存的单位是位面。

⏹光栅扫描显示器屏幕上有多少个像素,该显示器的帧缓存的每个位面就有多少个一位存储器●1024×1024像素组成的24位真彩色光栅扫描显示器所需要的最小帧缓存是多少?第二章●什么是CDC?在微软基类库MFC中,CDC类是定义设备上下文对象的基类,所有绘图函数都在CDC基类中定义。

⏹简述CDC的4个派生类的名称,以及作用CClientDC类:显示器客户区设备上下文类CClientDC只能在窗口的客户区(不包括边框、标题栏、菜单栏以及状态栏的空白区域)进行绘图CMetaFileDCCMetaFileDC封装了在一个Windows图元文件中绘图的方法CPaintDC类该类一般用在响应WM_PAINT消息的成员函数OnPaint()中使用CWindowDC类整个窗口区域的显示器设备上下文类,包括客户区和非客户区(即窗口的边框、标题栏、菜单栏以及状态栏)⏹什么是映射模式?映射模式定义了Windows如何将绘图函数中指定的逻辑坐标映射为设备坐标输出到显示器或者打印机上。

计算机图形学基础实验指导书

计算机图形学基础实验指导书

计算机图形学基础实验指导书目录实验一直线的生成 ............................................................... -..2.-实验二圆弧及椭圆弧的生成........................................................ -..3 -实验三多边形的区域填充 ......................................................... - (4)-实验四二维几何变换 ............................................................. -..5.-实验五裁剪算法 ................................................................. -..6.-实验六三维图形变换 ............................................................. -..7.-实验七BEZIER 曲线生成......................................................... -..8.-实验八交互式绘图技术实现........................................................ -..10-实验一直线的生成一、实验目的掌握几种直线生成算法的比较,特别是Bresenham 直线生成算法二、实验环境实验设备:计算机实验使用的语言: C 或Visual C++ 、OpenGL三、实验内容用不同的生成算法在屏幕上绘制出直线的图形,对不同的算法可设置不同的线形或颜色表示区别。

四、实验步骤直线Bresenham 生成算法思想如下1)画点(x i, y i), dx=x2-x i, dy=y2-y i,计算误差初值P i=2dy-dx , i=1;2)求直线下一点位置x i+i=x i+i 如果P i>0,贝U y i+i=y i+i,否则y i+i=y i;3)画点(x i+i ,y i+i );4)求下一个误差P i+i 点,如果P i>0,贝U P i+i=P i+2dy-2dx,否则P i+i=P i+2dy;i=i+i ,如果i<dx+i 则转步骤2,否则结束操作。

图形学复习大纲

图形学复习大纲

图形学复习大纲计算机图形图像学复习大纲:第一章1.关于计算机图形学的含义(填空、选择、判断)2.关于图形分类及举例3.关于图形的表示方法(两种)<概念、区别>4.图形与图像的区别5.图形学的另一种解释6.阴极射线管组成(五部分)7.什么是分辨率及特性8.习题3(图形、图像含义)第二章1.什么是CDC类(P31下)设备上下文对象的基类2.例2.4、例2.5(P35、P38)第三章1.什么是直线的扫描转换2.程序:利用中点Bresenham绘直线第四章1.多边形定义及分类,三种。

(P73)2.多边形表示方法有哪两种(顶点、点阵)及其概念3.什么是多边形扫描转换4.什么是多边形填充5.有效边表填充原则(下闭上开、左闭右开)6.什么是有效边、有效边表7.分析题:分析某个多边形关于某条扫描线的有效边表8.什么是桶表(又名边表)9.什么是边缘填充?[P80]10.什么是种子填充算法?11.什么是四/八邻接点(连通域)。

简答第五章二维变换和裁剪1.什么是图形几何变换?分为几种?2.什么是(规范化)齐次坐标?点的表达式3.三维变换矩阵的形式,和子矩阵功能:T1、T2、T3、T4形式、作用4.二维图形基本几何变换5.什么是平移(比例)变换,概念和过程?6.如何使用比例变换改变图形形状(P92中)7.什么是旋转变换(概念、结论)8.什么是反射变换(概念、3个结论矩阵)9.错切变换(概念)10.例1、例2(P95、97)11.什么是用户、观察、设备、规格化设备坐标系12.窗口、视区的关系,概念13.什么是裁剪、算法原理14.习题1.2.4(P106)第六章三维变换和投影1.三维几何变换矩阵2.平移、比例矩阵3.什么是平行投影,特点和分类?4.什么是三视图、哪三个,加以区分5.透视投影的特点6.什么是透视投影、视心、视点、视距7.透视变换坐标区包含3个(区别)8.什么是灭点、性质是什么?P1259.什么是主灭点、性质?10.什么是一、二、三点透视第七章自由变换曲线和曲面1.什么是样条曲线/面2.曲线曲面的表示形式3.什么是拟合、逼近4.什么是Bezier曲线及性质?P1375.一次、二次、三次Bezier的形状?6.Bezier性质(简答)第九章动态消隐1.什么是消隐?P1872.什么是图形的几何信息、拓扑信息?3.线框、表面实体模型的区别4.什么是消隐图5.消隐算法分类6.隐线算法原理(简答)7.隐线算法的特性8.凸面体的性质第十章真实感图形1.什么是颜色2.颜色的三要素和概念3.三刺激理论4.三原色性质5.常用颜色模型6.灰度和彩色的区分7.颜色渐变的方法8.关于直线的渐变9.三角形颜色渐变10.什么是材质第一章导论1.关于计算机图形学的含义(填空、选择、判断)?计算机图形学是一种使用图形生成原理和算法将二维或三维图形转化为光栅化的计算机显示的学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Push(RightTop); //右上方像素入栈
程序代码
Right.x=PopPoint.x+1;//搜索出栈结点的右方像素 Right.y=PopPoint.y; PixelClr=pDC->GetPixel(Round(Right.x),Round(Right.y)); if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)
计算机图形学实践教程(VisualC++版)(第2版)
案例9 区域八邻接点种子填充算法
孔令德 太原工业学院计算机工程系
2017.1.10
知识点
八邻接点种子填充算法。 判断种子像素位于多边形之内的方法。 种子像素八邻接点的访问方法。 堆栈操作函数。
案例描述
图9-1(a)所示多边形由两个正方形连接而成,在连接点 处留有一个像素的缝隙,如图9-1(b)所示。图9-1所示的多 边形为八连通域。请使用八邻接点种子算法填充多边形。
Push(LeftTop); //左上方像素入栈
Top.x=PopPoint.x;
Top.y=PopPoint.y+1;//搜索出栈结点的上方像素
PixelClr=pDC->GetPixel(Round(Top.x),Round(Top.y));
if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)
Push(Bottom);//下方像素入栈
程序代码
LeftBottom.x=PopPoint.x-1; LeftBottom.y=PopPoint.y-1;//搜索出栈结点的左下方像素 PixelClr=pDC->GetPixel(Round(LeftBottom.x),Round(LeftBottom.y)); if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)

Push(Top);
//上方像素入栈
RightTop.x=PopPoint.x+1;
RightTop.y=PopPoint.y+1;//搜索出栈结点的右上方像素
PixelClr=pDC->GetPixel(Round(RightTop.x),Round(RightTop.y));
if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)
Push(RightBottom);//右下方像素入栈 Bottom.x=PopPoint.x; Bottom.y=PopPoint.y-1;//搜索出栈结点的下方像素 PixelClr=pDC->GetPixel(Round(Bottom.x),Round(Bottom.y)); if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)
(a)多边形
(b)连接点放大效果图 图9-1八连通域
效果图
图9-2 效果图
原理算法
(1)调用颜色对话框读取填充色。 (2)绘制多边形区域。 (3)设置默认边界色为黑色,默认种子色为蓝色。 (4)鼠标选择种子的像素的坐标(x0,y0)位置,执行x=x0±1与 y=y0±1操作,判断x或y是否到达客户区边界。如果x或y到达客户区边 界,给出“种子不在图形之内”的警告信息,重新选择种子像素的位 置。 (5)将多边形区域内的种子像素入栈。 (6)如果栈不为空,将栈顶像素出栈,用种子色绘制出栈像素。 (7)按左、左上、上、右上、右、右下、下、左下顺序搜索出栈像素 的八个邻接点像素。如果相邻像素的颜色不是边界色并且不是种子色 ,将其入栈,否则丢弃。 (8)重复步骤(6),直到栈为空。
Push(Left);//左方像素入栈 LeftTop.x=PopPoint.x-1; LeftTop.y=PopPoint.y+1;//搜索出栈结点的左上方像素 PixelClr=pDC->GetPixel(Round(LeftTop.x),Round(LeftTop.y));
程序代码
if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)
程序代码
填充函数 while(pHead->pNext!=NULL)//如果栈不为空 {
CP2 PopPoint; Pop(PopPoint); pDC->SetPixelV(Round(PopPoint.x),Round(PopPoint.y),SeedClr); Left.x=PopPoint.x-1;//搜索出栈结点的左方像素 Left.y=PopPoint.y; PixelClr=pDC->GetPixel(Round(Left.x),Round(Left.y)); if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)//不是边界色并且未置成填充色
Push(Right);//右方像素入栈 RightBottom.x=PopPoint.x+1;//搜索出栈结点的右下方像素 RightBottom.y=PopPoint.y-1; PixelClr=pDC->GetPixel(Round(RightBottom.x),Round(RightBottom.y)); if(BoundaryClr!=PixelClr && SeedClr!=PixelClr)
Push(LeftBottom);//左下方像素入栈 } delete pHead; pHead = NULL; }
总结
八邻接点种子填充算法的种子像素可以位于区域的上方 多边形内或下方多边形内,填充过程不同,但都可以获得一 致的填充效果。
谢谢观看! 2020
相关文档
最新文档