有机介质中酶促有机化学反应

合集下载

酶催化在手性药物合成中的应用

酶催化在手性药物合成中的应用

酶催化在手性药物合成中的应用摘要:近几年我国在生物技术发展迅速,其中酶在有机合成中的应用越加广泛,利用酶催化的不对称性可以合成许多手性分子,即利用酶促反应的高度立体、活性和区域选择性将前体化合物不对称合成各种复杂的手性化合物。

而当前我国市售的数千种合成药物中有30%以上为手性药物,由此可见酶催化作用在我国医药行业中发挥着十分重要的现实意义。

基于此,本文就酶催化在手性药物合成中的应用进行了分析。

关键词:酶催化;手性药物;合成引言酶催化反应是在常温、常压、近中性的条件下进行的一种生化反应,反应选择性强并且极为迅速,几乎没有副反应发生,催化效率极高,与工业催化相比,酶催化反应效率高出一千万甚至十万亿倍,因此其在手性药物的合成中也具有较高的优势。

一、有机介质中酶催化的基本原理生物酶的催化活性可以在水溶液、有机溶剂中发挥作用,据研究,当酶在有机溶剂中发生反应可以确保其蛋白质的天然折叠结构,同时,其在有机溶剂与在水溶液中的催化反应机理基本相同,即“酰基一酶”的催化机理。

但是就催化活性来说,包括其稳定性、专一性等方面则会根据溶剂的不同有着较大的差别。

据分析,酶的活性主要是受到酶分子上的水分的影响,因此溶剂中的水含量并不会影响其活动,由于酶的带电基团会和部分极性基团之间发生相互作用,所以在无水的情况下酶分子会形成一种非活性的刚性结构,其中微量的水分作为润滑剂,与这些功能团之间形成氢键,降低蛋白质多肽链折叠结构里带电基团之间的静电作用以及极性基团之间的偶极一偶极相互作用,最终可以有效的提高蛋白质结构的柔韧性和极化性。

二、酶催化在手性合物成中的应用(一)酶催化的不对称还原反应酶催化的不对称还原反应主要是还原分子中的酮基或碳碳双键,并以此形成特定结构型化合物,在其反应期间还需要有辅酶参与,比如NDA(H)及其相应的酸NADP(H)。

例如C=C双键的还原,以延胡索酸加成合成L一田东氨酸为例(图1):图1(二)酶催化的不对称水解反应酶催化的不对称水解反应是手性药物合成中较为常见的一种防范,其可以通过控制立体选择性创造光学活性体,比如酯类化合物、环氧化合物的合成等方面。

生物催化合成与有机化学合成相结合的新方法

生物催化合成与有机化学合成相结合的新方法

生物催化合成与有机化学合成相结合的新方法随着生物技术和有机化学技术的不断进步发展,生物催化合成和有机化学合成相结合作为一种新型合成方法,引起了广泛关注。

生物催化合成是利用生物催化剂催化合成化学物质的过程,具有高效、绿色等优点。

而有机化学合成作为传统的化学合成方法,具有高度可控性和灵活性等特点。

将两者相结合,既可以有效地提高合成效率和可控性,也可以大大减少合成过程中对环境的影响。

本文将介绍生物催化合成与有机化学合成相结合的新方法。

一、酶促反应合成有机物生物催化合成的主要工具是酶,它可以高效地催化有机反应,具有底物选择性、产物选择性高等特点。

酶催化合成有机物的反应途径多样,常见的反应有酯化反应、转移反应、脱羧化反应等。

通过在反应过程中加入有机化学试剂,如氨基丙酸甲脱氧酶和醛酮还原酶等,可以将酶催化反应和有机化学反应相结合,从而得到一些新型化合物。

例如,葡萄糖酸和1-氨基环己-1-烯可以在转移酶的催化下发生氨基化反应,得到1-氨基环己-1-烯甲酸酯。

而这种化合物在药物研究和医学上有着广泛的应用前景。

另外,一些分子内酶催化反应也可以用于合成有机化合物,如木糖激酶通过催化苯甲酸羧化-酰胺化反应,可以得到一种新型化合物。

酶催化合成有机物的研究还处于起步阶段,未来还有广阔的发展空间。

二、生物合成新型化合物从自然界中提取化合物在医学上或农业上有着极高的价值。

许多有机化合物在自然界中是通过生物合成方式产生的。

生物合成是指利用微生物、真菌、植物等生物体的生长代谢产物来合成新型化合物的过程。

由于生物合成法具有选择性、电子效应控制、底物特异性等优点,因此可以用于合成一些传统有机合成法难以合成的化合物。

例如,由于传统有机合成方法合成汉默根碱的效率极低,因此科学家利用生物合成方法,将拟南芥的生长代谢产物转移到到人工合成有机前体上,通过微生物的代谢作用,成功地合成了汉默根碱。

这种方法不仅使得化合物的产量成倍增长,还能大幅度降低生产成本和减少产生垃圾的量。

有机介质中的酶催化名词解释

有机介质中的酶催化名词解释

有机介质中的酶催化名词解释
有机介质中的酶催化是指酶在有机介质中催化生物化学反应的过程。

有机介质是指由有机化合物构成的溶剂,如乙醇、甲醇、丙酮等。

酶是一种特殊的蛋白质,能够加速化学反应的速率并降低反应所需的能量。

在有机介质中,酶的活性和稳定性与在水中不同,因此需要对酶的反应条件进行调整。

有机介质中的酶催化具有以下优点:
1. 扩大了酶反应的适用范围,使得一些水溶性的酶可以应用于有机反应中。

2. 由于有机介质具有较小的极性,因此可避免水分子的竞争,使得酶催化反应的效率更高。

3. 有机介质中的酶催化可以降低反应温度和反应时间,提高反应产物的纯度。

但是,有机介质中的酶催化也存在一些限制和挑战,如:
1. 有机介质的溶解度和毒性可能会影响酶的活性和稳定性,因此需要进行优化和评估。

2. 酶的选择和修饰需要考虑有机介质的特性和反应条件,以提高催化效率和选
择性。

综上所述,有机介质中的酶催化是一种有潜力的生物催化技术,可以扩大酶催化反应的适用范围和提高反应效率,但仍需要进一步研究和优化。

酶工程4

酶工程4
• а w 是一个强质性质的物理量,在平衡状态时,反应体系中各
组分(酶、溶剂、底物和产物)的а
• 最佳水活度与溶剂的极性几乎无关
w
是相同的。
华东理工大学 ECUST
表征必需水作用的参数---热力学水活度
华东理工大学 ECUST
获得恒定水活度的方法:
• 向反应体系中直接加水。 ×
• 用一个饱和盐水溶液分别预平衡底物溶液和酶制剂。 • 直接向反应体系加入水合盐:Na2HPO4(二、七、十 二水合盐)
华东理工大学 ECUST
3 专一性
枯草杆菌蛋白酶催化在水溶液中催化N-乙酰-L-丝氨酸乙酯和N-乙酰-L
苯丙氨酸乙酯与丙醇的转酯反应,在二氯甲烷或苯中:丝氨酸>苯丙氨
酸;在吡啶或季丁醇中:苯丙氨酸>丝氨酸 原因:溶剂改变底物分配系数
有些在水中不能实现的反应途径,在有机介质中却成为主 导反应。
华东理工大学 ECUST
华东理工大学 ECUST
酶活性丧失的可能原因:
有机溶剂与底物或产物相互作用
• 直接作用:氯仿显著减少过氧化物酶催化苯酚的氧化,原因在于氯仿 是苯酚基的淬灭剂; • 影响底物或产物的分配
华东理工大学 ECUST
2 活性
在反向微团体系中,微团效应使某些酶活性增加 超活性:凡是高于水溶液中所得酶活性值的活性称为超活性 (Super-activity)。 表面活性剂刚性壳层能缓冲酶结构波动性,保证酶结构的稳定; 保护酶避免与有机溶剂直接接触; 为酶催化反应提供巨大相界面,减小传质阻力
剂(如吡啶或二甲基甲酰胺) 例:在己烷中聚苯酚氧化酶的催化反应,极性的苯醌产物不溶于己烷,
导致在酶周围的水层发生不需要的聚合,该聚合物缠住酶,降低酶活,

酶催化

酶催化

一、酶的特性
酶反应优点
效率高 速率快 专一性 降低活化能
酶反应缺点
提取工艺复杂 价格非常昂贵 反应容易失活 不能重复使用
二、酶的分类
1961年国际酶学委员会(Enzyme Committee, EC)根 据酶所催化的反应类型和机理,把酶分成6大类:
六大类酶的特征
1、氧化还原酶 Oxidoreductase
2、转移酶 Transferase
• 转移酶催化基团转移反应,即将一个底物分子 的基团或原子转移到另一个底物的分子上。
A· + B X A +B· X
• 根据X分类:转移碳基、酮基或醛基、酰基、糖 基、烃基、含氮基、含磷基和含硫基的酶。 • 例如, 谷丙转氨酶催化的氨基转移反应。
CH3CHCOOH HOOCCH2CH2CCOOH NH2 CH3CCOOH O O HOOCCH2CH2CHCOOH NH2
2. 高效性
反应速度是无酶催化/普通人造催化剂催 化反应速度的106-1016倍。
且无副反应
酶的催化
mol/mol.S
双氧水裂解
(血红蛋白) (过氧化氢酶)
Hale Waihona Puke 用α-淀粉酶催化淀粉水解,1克结晶酶在 65°C条件下可催化2吨淀粉水解。
例如,过氧化氢的分解,在 无催化剂存在时,该分解反应的 活化能为75.31kJ/mol,在用过氧 化氢酶催化时,该分解反应的活 化能仅为8.37kJ/mol。
低水含量的油包水(W /O )微乳液。
——反胶束溶液:透明的、热力学稳定。
——反胶束极性内核中的水与常态水物理性质不同:黏度
较高,酸度与极性低。 “水池”中的水可溶解某些原本
不溶的物质,如脂肪酶等生物活性物质。

第七章有机介质中的酶反应

第七章有机介质中的酶反应
定义:在一定温度和压力下,反应体系中的水蒸汽压与
相同条件下纯水的蒸气压之比。该参数直接反应酶分子上 水分的多少,与体系中水含量及所用溶剂无关。
含义:水在体系中的固相(酶,载体),液相(含底物
的溶剂)和气相(液面上部的空间)之间进行分配,达到 平衡时各相水活度相等。
26
溶解在溶剂中的水
结合在酶分 子上的水
例:
当枯草杆菌蛋白酶从含有竞争性抑制剂(N-Ac-Tyr-NH2) 的水溶液中冻干出来后,再将抑制剂除去,该酶在辛烷中催 化酯化反应的速度比不含抑制剂的水溶液中冻干出来的酶高 100倍,但这样处理的酶在水溶液中其活性与未处理的酶相 同。
22
第二节 有机介质中酶促反应的条件
酶分子只有在空间构象完整的状态下,才具有 催化功能。在无水的条件下,酶的空间构象被 破坏,酶将变性失活。故此,酶分子需要一层 水化层,以维持其完整的空间构象-必需水 (essential water)。
太多的水会使酶积聚成团,导致疏水性底物较难进入 酶的活性部位,引起传质阻力。
37
二. 酶的选择
1. 酶种类的选择
应具有对抗有机介质变性的潜在能力,在有机 介质中能保持其催化活性构象。
2.酶形式的选择
(1)酶粉:
例如:有人研究a-胰凝乳蛋白酶在酒精中转酯反应, 发现催化活性随反应体系中酶量的减少而显著增加。
2.可提高酶的稳定性
8. 酶易于实现固定化。
3.能催化在水中不能进行的反 9.酶和产物易于回收。

10.可避免微生物污染。
4.可改变反应平衡移动方向
5.可控制底物专一性
6.可防止由水引起的副反应
10
三. 有机相酶反应具备条件
1. 保证必需水含量。 2. 选择合适的酶及酶形式。 3. 选择合适的溶剂及反应体系。 4. 选择最佳pH值。

有机溶剂中酶催化活性研究进展

有机溶剂中酶催化活性研究进展

有机溶剂中酶催化活性研究进展摘要:酶在有机溶剂中催化作用的研究日益受到重视,其应用范围也越来越广。

本文就有机介质中酶催化的影响因素进行了探讨,并归纳出提高酶活性的一系列方法,最后简要介绍了有机溶剂中酶的应用。

关键词:有机溶剂;酶催化一直以来,人们认为“生物催化必须在水溶液中进行”、“有机溶剂是酶的变性剂、失活剂”,而1984年,Klibanov[1]提出:“只要条件合适,酶在非生物体系的有机溶剂中同样具有催化功能”的理论使酶学概念发生了革命性的改变,并由此开创了非水相生物催化(非水酶学)的新时代。

1 有机溶剂中酶催化反应的优势研究表明,有机溶剂中的酶和水溶液中的酶一样具有高度的底物选择性。

此外,还有以下一些特点[2, 3]: (1)绝大多数有机化合物在非水系统内溶解度很高;(2)根据热力学原理,一些在水中不可能进行的反应,有可能在非水系统内进行;(3)有机溶剂可促使热力学平衡向合成方向(如酯合成、肽合成等)移动,如脂肪酶在水中催化脂肪水解,而在有机溶剂中则催化酯合成;(4)在有机溶剂中,所有有水参与的副反应(如酸酐水解)将受到抑制;(5)在有机溶剂中酶的热稳定性显著提高,可通过提高温度加速催化反应进行;(6)从非水系统内回收反应产物比水中容易;(7)在非水系统内酶很容易回收和反复使用,不需要进行固定化;(8)在有机溶剂中不易发生微生物污染;(9)更为重要的是,低水环境可用于稳定具有未知催化性质的构象异构体,以及在水中寿命极短的酶反应中间体。

目前,有机溶剂中酶催化的上述优势使得非水酶学研究成为生物化学、有机化学、生物工程等多种学科交叉的研究热点。

迄今发现能在有机溶剂中发挥催化功能的酶有十几种,主要集中于脂肪酶研究,催化的反应类型包括氧化、还原、酯合成和酯交换、脱氧、酞胺化、甲基化、羟化、磷酸化、脱氨、异构化、环氧化、开环聚合、侧链切除、缩合及卤代等。

2 影响酶催化活性的因素一直以来有机相酶催化的研究非常活跃,但到目前为止仍处于实验研究阶段,离工业化应用还有一定的距离,最大的原因就是酶在有机溶剂中活性较低。

酶催化反应研究进展

酶催化反应研究进展

1 绪论酶作为生物催化剂,具有专一性、高效性、反应条件温和等优点,是一种具有特殊三维空间构象的蛋白质,它们在体内几乎参与了所有的转变过程, 催化生物分子的转化。

同时, 它们也催化许多体内存在的物质发生变化, 使人体正常的新陈代谢得以运行。

因此受到人们的普遍关注。

近年来, 特别是随着生化技术的进展, 酶催化反应越来越多地被有机化学家作为一种手段应用于有机合成, 特别是催化不对称合成反应。

光学活性化合物或天然产物的合成, 已应用于医药、农药、食品添加剂、香料、日用化学品等精细有机合成领域。

酶催化不会污染环境, 经济可行, 符合绿色化学的方向, 具有广阔的前景。

2 酶催化与有机合成反应对于酶催化反应在有机合成中的应用, 有机合成工作者做了大量工作。

随着科技进步的日新月异, 酶催化反应越来越多地被有机化学家作为一种手段用于有机合成特别是不对称合成反应, 进行光学活性化合物或天然产物的合成时, 能为天然或非天然产物的合成提供丰富的手性源, 其应用前景将是难以估量的。

2.1 不同反应体系中的酶促反应2.1.1 有机介质中的酶促反应酶在有机介质中不但能保持其活性,还表现出一些特殊性质,并具有如下优越性:有利于疏水性底物的反应;产物和酶易于回收;可改变反应平衡移动的方向;可控制底物专一性;可防止由水引起的副反应;可扩大反应pH值的适应性;可提高酶稳定性;可避免微生物污染等。

在保证必需含水量;选择合适的酶及酶形式;选择合适的溶剂;选择最佳pH值;选择合适的反应体系的条件下,则在有机介质中酶可显示很高的催化活性。

目前在有机介质中已成功用酶进行了氧化、、脱氢、脱氨、还原、羟基化、甲基化、环氧化、酯化、酰胺化、磷酸化、开环反应、异构化、侧链切除、缩合及卤化等反应。

过去人们认为酶在有机介质不稳定,但研究发现大多数酶在低水有机介质中比在水介质中更稳定。

一是表现在热稳定性提高。

在有机介质中,在不同温度下保温脉酶,发现热处理导致酶活性增加,而且酶在温度远超过其在水溶液中最适温度的情况下也不失活。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机介质中的酶促有机反应摘要:综述了有机介质中酶促有机化学反应的优点,反应的条件,有机介质对酶反应的影响,以及有机介质酶促反应在有机反应及药物合成中的应用。

关键词:有机介质酶促反应有机化学反应药物合成Abstract:Review introduces the advantages of enzymatic organic chemical reactions in organic medium, reaction conditions, organic media's influence on the enzyme reaction, and organic medium enzymatic reaction in organic chemistry and the application of the drug synthesis.Key words:organic medium enzymatic reaction organic chemical reactions drug synthesis1.有机介质中的酶促反应概述1.1有机介质酶促反应的优点传统观念认为[1] [3],酶促反应是在水溶液中进行的,又知道水是极性分子,酶只能在极性溶剂中反应,有机溶剂是酶的变性剂,使用有机溶剂时应尽可能短时间内去除,再把酶溶于水中,以防止酶的变性。

随着酶应用技术研究的深入,酶作为一种高效催化剂逐渐向更广泛的应用方面发展,1984年猪胰脂肪酶应用于有机溶剂中进行催化反应,结果发现其具有较高的催化活性和极高的热稳定性,这一发现开辟了有机相酶促反应这一新的领域。

从此酶的应用环境从水介质扩展到有机介质。

酶在有机溶剂中不仅保持其生物活性,而且还有许多突出的优点[1]:(1)增加某些有机底物的溶解度从而提高底物浓度和产物浓度;(2)有机溶剂影响反应的平衡, 可控制反应向产物合成方向移动;(3)减少水介质可能带来的副反应;(4)酶在有机介质中的热稳定性增加。

在有机介质中脂肪酶可催化许多类型的反应,包括酯化反应、酯交换反应、内酯化反应、多肽合成、聚酯合成、外消旋化合物的动力学拆分及前手性化合物的合成等。

1.2 有机介质酶促反应的条件1.2.1必需水[1] [2]1.概念紧紧吸附在酶分子表面,维持酶催化活性所必需的最少量水,亦称结合水或者束缚水2.含量[1]一般因酶分子本身,或溶剂系统不同而有所不同。

如脂肪酶有几个水分子,胰凝乳蛋白酶几十个水分子,多酚氧化酶几百个水分子。

另外同一个酶在不同溶剂系统中含水量也不同。

如胰凝乳蛋白酶在甲苯中含水0.5%,在氯仿等系统中,含水1.0%,酶活性最高。

3.重要性水是保证酶催化反应的必需条件,酶活性构象的维系与水分子的氢键效应密切相关,与酶分子紧密结合的一单层水分子对催化作用非常重要,而其他的水则没那么重要,也就是说只要必需水不丢失,其他大部分水可由有机溶剂代替。

有机介质中的酶反应从微观上说就是水的酶反应。

1.2.2酶的选择1、酶种类的选择:脂肪酶、蛋白酶、次黄嘌呤氧化酶、过氧化氢酶、过氧化物酶等。

除与酶有关,还与酶-底物、产物-溶剂间关系有关。

2、酶形式的选择(1)酶粉例如:有人研究a-胰凝乳蛋白酶在酒精中转酯反应,发现催化活性随反应体系中酶量的减少而显著增加。

(2)化学修饰酶例如:SOD酶经糖脂修饰后变成脂溶性,它对温度、pH、蛋白酶水解的稳定性均高于天然SOD。

(3)固定化酶把酶吸附在不溶性载体上(如硅胶、硅藻土、玻璃珠等)制成固定化酶,其对抗有机介质变性的能力、反应速度、热稳定性等都可提高。

1.2.3 溶剂及反应体系的选择1.水溶性有机溶剂:甲醇、乙醇、丙醇、正丁醇、甘油、丙酮、乙晴等。

2.水不溶性的有:石油醚、己烷、庚烷、苯、甲苯、四氯化碳、氯仿、乙醚、戊醚等。

3.酶促反应有机介质体系:(1)单相共溶剂体系(水/水溶性有机熔剂)(2)两相体系(水/水不溶性有机溶剂)(3)低水有机溶剂体系(有机溶剂体系)(4)反胶束体系1.2.4 pH选择和离子强度的影响[3](1)pH选择:在有机溶剂的环境中,不会发生质子化及脱质子化的现象。

酶在水相的pH值可在有机相中保持,同一种酶不同来源,对pH值敏感程度大不相同。

(2)离子强度影响随冻干时用的缓冲溶液离子强度增大,酶活性会增大。

1.3 有机介质对酶性质的影响1.3.1 稳定性在低水有机溶剂体系中,酶的稳定性与含水量密切相关。

一般在低于临界含水量范围内,酶很稳定,含水量超出临界含水量后酶稳定性随含水量的增加而急剧下降。

1.3.2 活性(1)单相共溶剂体系中,有机溶剂直接作用于酶。

有些酶的活性会随着某些有机溶剂浓度升高而增大,在某一浓度(最适浓度)达到最大值;若浓度再升高,则活性下降。

(2)低水有机溶剂体系中,大部分酶活性得以保存,但也有某些酶活性亦变化。

例有人对吸附在不同载体上的胰凝乳蛋白酶或乙酸脱氢酶在各种水活度下的酶活性研究表明,酶活性随水活度大小而变化,在一定水活度下,酶活性随载体不同而变化。

(3)在反向微团体系中,微团效应使某些酶活性增加。

1.3.3 专一性某些有机介质可能使某些酶的专一性发生变化,这是酶活性中心构象刚性增强的结果。

有些在水中不能实现的反应途径,在有机介质中却成为主导反应。

2.有机介质酶促反应在有机化学反应中的应用2.1 酯合成在有机介质中进行酶促酯化反应有着传统化学方法无可比拟的优点。

为了解决维生素A在空气中易氧化变质的问题,人们采用了酯化法将维生素A进行修饰,但是酯化过程中产生的副产物较多、收率不高。

而在有机溶剂中进行酶催化酯化,则克服了上述缺点。

宋欣[4]等利用自制的丝孢酵母脂肪酶在正己烷中利用长链不饱和亚油酸和油醇合成了亚油酸油醇酯,这是一种可用作高级润滑剂的酯蜡。

而传统的化学合成方法不但需要高温高压及强酸等苛刻条件,副反应多,产物的分离纯化困难,生产成本高,而且对于长链脂肪酸和醇之间的反应难度增大。

2.2 酯交换反应酯交换反应(又称转酯化反应)是一类有重要应用价值的酯化反应, 主要被用于油脂工业中来改良天然油脂的组成和物理性质。

为了获得具有一定物理和化学性质的油脂, 需要改变一些天然油脂的部分组成, 即去掉某些脂肪酸残基, 而引入某些所需的脂肪酸, 实现酰基间的交换。

丁永学[5]等在多种有机溶剂中利用脂肪酶催化消旋化的环戊烯酮与乙酸乙烯酯的转酯反应,由于只有R型环戊烯酮参与反应,从而得到了旋光度很高的S型环戊烯酮。

最后,经进一步的化学反应得到了光学纯的丙烯菊酯,丙烯菊酯是一种高效、低毒杀虫剂,其S 型旋光异构体的药效比R型高2~5倍。

2.3高分子聚合物的合成根据酶在生物体内可以催化合成多糖、蛋白质等生物大分子,近年来人们研究了酶在体外状态下催化合成高分子聚合物。

国内外利用生物酶催化合成高分子的研究已有很多报道,如过氧化酶中的辣根酶、酚氧化酶中的漆酶、酪氨酸酶可以催化芳香胺、酚或取代酚类化合物聚合合成高分子,脂肪酶可催化合成聚酯,糖苷酶可催化合成聚糖等。

从目前的发展来看,利用生物酶催化聚合合成高分子化合物是高分子学科的前沿领域之一。

2.4 肽合成在自然界,大多数蛋白质与活性肽是由一个氨基酸的α羧基与另一氨基酸α氨基形成肽键。

在无水第三戊醇中,用枯草杆菌酶作催化剂,当氨基组分为赖氨酸时,α-氨基不参与反应,只有ε-氨基参与肤键的形成得到纯的ε-异体。

在无水甲苯或四氢吠喃中,猪胰脂肪酶可以催化肽键的形成,肽的N-端也可以是D-构型的氮基酸。

[1]2.5 其它除了上述的典型反应,酶在有机介质中还能催化其它类型的反应。

猪胰脂肪酶和Candidacylindracea 脂肪酶在四氯化碳中可以催化对甲氧基苯胺与丙炔酸乙酯反应制备丙炔酰胺。

而常规化学合成会在三键上发生Michaels加成反应。

另外, 脂肪酶还能够催化过氧化氢氧化羧酸形成过氧酸,因而就可以将脂肪酶催化的过氧酸酸形成反应与由过氧酸促成的烯烃环氧化相偶联, 反应可以烯烃本身为溶剂,脂肪酶和羧酸均只需极少量即可。

例如,环己烯在脂肪酶、过氧化氢及少量长链或中链脂肪酸的作用下即可发生环氧化。

另外长链末端烯烃也可发生类似的环氧化形成某些有重要工业价值的烯烃化合物。

3.有机介质酶促反应在药物合成中的应用3.1 手性药物的拆分3.1.1背景制备光学活性化合物一直是有机合成的难题。

药物的药理作用与其结构有着密切的关系,许多药物必须具有光学纯的形态才能发挥疗效,对手性药物而言,不同对映体的药效、代谢过程及副作用程度存在着很大差异。

近年来酶法拆分光学异构体得到了迅速发展,利用酶的高度立体选择性在有机相中进行生物转化的研究越来越多,并已成为制备光学活性化合物的重要途径。

脂肪酶、蛋白酶等在有机溶剂中对某些手性化合物表现出高度的立体选择性及高转化率。

3.1.2 有机介质中的酶促酯化或转酯反应制备手性药物有机介质中的酶促酯化或转酯反应过程中,根据热力学原理,反应物醇或酸的一种对映体容易参与反应,而另一种对映体的醇或酸不容易参与反应从而实现光学拆分。

(1)转酯反应拆分手型药物2-氨基丙醇是合成左旋氧氟沙星的中间体,其(S)(+)型异构体才具有药理活Et 对氨基进行保护,然后在乙酸乙酯中利用胰脂酶作性。

韦丽红[6]等先用ClCO2为催化剂进行转酯反应,控制反应使R型异构体的酯交换速率远远大于S型异构体,最后经处理得到(S)(+)2-氨基丙醇,收率达97%。

无论是从经济角度还是从实用角度来讲,这一结果都非常可观,是化学催化剂不可比拟的。

有机相酶催化转酯化反应拆分西酞普兰中间体[7],抗抑郁药物西酞普兰(citalopram) 是新一代5-羟色胺(5-HT) 再摄取抑制剂(SSRIs)与其它的SSRIs相比,对5-HT 的再摄取抑制性强、选择性高。

研究表明,S型西酞普兰的活性是R型的100 倍以上。

(S)-4-[4-(二甲基氨基)-1-(4-氟苯基)-1-羟基丁基]-3-(羟基甲基)苄腈是合成(S)-西酞普兰的重要中间体,其季碳手性中心上连接有一个叔醇,目前可通过化学法和酶法拆分二醇得到S型单一对映体,进一步反应得到(S)-西酞普兰。

化学法例如诱导结晶和手性色谱分离存在成本高、所得产品旋光纯度低、收率低等问题。

与化学法相比,酶法拆分具有反应条件温和、高度的选择性等优点, 酶促拆分手性药物在光学纯化合物的制备方面显示出巨大的开发潜力及广阔的应用前景。

脂肪酶催化选择性催化伯醇与仲醇反应已得到广泛应用,由于空间位阻作用,只有少量酶对含有季碳手性中心的叔醇有选择性。

研究表明,来源于南极洲假丝酵母(Candia antarctica)和洋葱假单胞菌(Pseudomonas cepacia)的脂肪酶可通过催化距离季碳手性中心四个化学键的伯羟基发生转酯化或水解反应远程拆分二醇,且具有较好的选择性。

相关文档
最新文档