判别式和根与系数关系

合集下载

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用【主体知识归纳】1.一元二次方程的根的判别式:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax2+bx+c=0(a≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.3.如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,b那么x1+x2=-ac,x1x2=a4. 如果关于x的一元二次方程x2+px+q=0(a≠0)的两个根是x1,x2,那么x1+x2=-p,x1x2=q【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系22.根的判别式是指Δ=b2-4ac,而不是指Δ=.b4ac3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b2-4ac≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b2-4ac≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。

【例题罗列】根的判别式类型1:不解方程,判别下列方程的根的情况:(1)3x2-2x-1=0;(2)y2=2y-4;(3)(2k2+1)x2-2kx+1=0;(4)9x2-(p+7)x+p-3=0.(系数中有字母的情况)解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y2-2y+4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k)2-4(2k2+1)×1=-4k2-4<0,∴原方程无实数根.(4)Δ=[-(p+7)]2-4×9×(p-3)=(p-11)2+36,∵不论p取何实数,(p-11)2均为非负数,∴(p-11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.升级:如果关于x的方程x2+2x=m+9没有实数根,试判断关于y的方程y2+my-2m+5=0的根的情况.这是一类需要自己找出隐含条件的题解:∵x2+2x-m-9=0没有实数根,∴Δ1=22-4(-m-9)=4m+40<0,即m<-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根.类型2:1.已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时,(1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <且k ≠1时,方程有两个不相等23的实数根;(2)当-8k +12=0,且k -1≠0,即k =时,方程有两个相等的实数根;23(3)当-8k +12<0,且k -1≠0,即k >时,方程没有实数根.23说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.2.已知a 、b 、c 是△ABC 的三边,且方程a(1+x 2)+2bx-c(1-x 2)=0有两个相等的实数根,则此三角形为( )A 、等腰三角形 B 、等边三角形 C 、直角三角形 D 、斜三角形 看到有两个相同的实数根立即判断 应用根的判别式解:原方程可化为(a+c )x 2+2bx +a-c =0,Δ=(2b)2-4(a +c )(a -c )=0得到a 2=b 2+c 2,因此此三角形为直角三角形。

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用【主体知识归纳】1.一元二次方程的根的判别式:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax2+bx+c=0(a≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.3.如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=-ab,x1x2=ac4. 如果关于x的一元二次方程x2+px+q=0(a≠0)的两个根是x1,x2,那么x1+x2=-p,x1x2=q【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系2.根的判别式是指Δ=b2-4ac,而不是指Δ=acb42 .3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b2-4ac≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b2-4ac≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。

【例题罗列】根的判别式类型1:不解方程,判别下列方程的根的情况:(1)3x2-2x-1=0;(2)y2=2y-4;(3)(2k2+1)x2-2kx+1=0;(4)9x2-(p+7)x+p-3=0.(系数中有字母的情况)解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y2-2y+4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k)2-4(2k2+1)×1=-4k2-4<0,∴原方程无实数根.(4)Δ=[-(p+7)]2-4×9×(p-3)=(p-11)2+36,∵不论p取何实数,(p-11)2均为非负数,∴(p-11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.升级:如果关于x的方程x2+2x=m+9没有实数根,试判断关于y的方程y2+my-2m+5=0的根的情况.这是一类需要自己找出隐含条件的题解:∵x2+2x-m-9=0没有实数根,∴Δ1=22-4(-m-9)=4m+40<0,即m<-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20 当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根. 类型2:1.已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时, (1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <23且k ≠1时,方程有两个不相等的实数根;(2)当-8k +12=0,且k -1≠0,即k =23时,方程有两个相等的实数根;(3)当-8k +12<0,且k -1≠0,即k >23时,方程没有实数根.说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.2.已知a 、b 、c 是△ABC 的三边,且方程a(1+x 2)+2bx-c(1-x 2)=0有两个相等的实数根,则此三角形为( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、斜三角形 看到有两个相同的实数根立即判断 应用根的判别式解:原方程可化为(a+c )x 2+2bx +a-c =0,Δ=(2b)2-4(a +c )(a -c )=0得到a 2=b 2+c 2,因此此三角形为直角三角形。

二次方程的根与系数的关系

二次方程的根与系数的关系

二次方程的根与系数的关系
二次方程是数学中常见的一种方程形式,它的一般形式为$ax^2 + bx + c = 0$,其中 $a$、$b$、$c$ 是方程的系数。

对于二次方程 $ax^2 + bx + c = 0$,我们可以通过求解它的根来解决方程。

根据二次方程的求根公式,我们可以得到如下的根与系数之间的关系:
1. 判别式:二次方程的判别式 $D = b^2 - 4ac$ 可以用来判断方程的根的情况。

根据判别式的值,我们可以得到以下结论:- 当 $D > 0$ 时,方程有两个不相等的实根;
- 当 $D = 0$ 时,方程有两个相等的实根(也称为重根);
- 当 $D < 0$ 时,方程没有实根,而是两个共轭复数根。

2. 根的求解:根据二次方程的求根公式,我们可以得到方程的两个根为:
- 根1:$x_1 = \frac{-b + \sqrt{D}}{2a}$
- 根2:$x_2 = \frac{-b - \sqrt{D}}{2a}$
3. 关系总结:根据上述公式和结论,我们可以得到以下关系:
- 二次方程的判别式 $D$ 决定了方程的根的情况;
- 方程的两个根与系数 $a$、$b$、$c$ 之间的关系是通过求根公式得到的。

这就是二次方程的根与系数的关系。

通过对方程的系数进行求解,我们可以确定方程的根的情况,并进一步解决方程的问题。

在实际应用中,这一关系常常被用来解决与二次方程相关的数学和物理问题。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系
1.一元二次方程根的判别式
一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即
(1)当△>0时,一元二次方程有2个不相等的实数根;
(2)当△=0时,一元二次方程有2个相等的实数根;
(3)当△<0时,一元二次方程没有实数根.
2.一元二次方程的根与系数的关系
如果一元二次方程的两个实数根是,
那么,. 注意它的使用条件为a ≠0, Δ≥0.
要点诠释:
1.一元二次方程
的根的判别式正反都成立.利用其可以解决以下问题:
(1)不解方程判定方程根的情况;
(2)根据参系数的性质确定根的范围;
(3)解与根有关的证明题.
2. 一元二次方程根与系数的应用很多:
(1)已知方程的一根,不解方程求另一根及参数系数;
)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆)0(02≠=++a c bx ax 21x x ,a b
x x -=+21a
c x x =21
(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;
(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.。

一元二次方程根的判别式及根与系数关系的应用

一元二次方程根的判别式及根与系数关系的应用

2023年9月下半月㊀学习指导㊀㊀㊀㊀一元二次方程根的判别式及根与系数关系的应用◉云南省曲靖市马龙区第三中学㊀刘㊀陈㊀㊀摘要:结合五则典例,探讨一元二次方程根的判别式及根与系数的关系在判断三角形的形状㊁求代数式的值㊁构造倍根方程㊁求代数式的最值㊁求参数的值等方面的运用,帮助学生积累数学活动经验,发展学生核心素养.关键词:一元二次方程;判别式;数学活动经验;核心素养㊀㊀一元二次方程根的判别式及根与系数的关系,可用来判断三角形的形状,求代数式的值,构造倍根方程,求代数式的最值,求参数的值等,这些应用一方面体现了根的判别式及根与系数关系的价值,另一方面也使学生体会到了不同数学知识之间的联系,有利于加深学生对这一部分数学知识的理解与掌握.1判断三角形的形状当一元二次方程的系数或它的两个根是三角形的边长时,一元二次方程和三角形之间就有了联系,利用一元二次方程根的情况可以判断三角形的形状[1].例1㊀已知әA B C的三边长分别为a,b,c,方程(a+c)x2+2b x+(a-c)=0是关于x的一元二次方程.(1)当x=-1时,你能确定әA B C的形状吗?为什么?(2)当方程有两个相等的实根时,你能确定әA B C的形状吗为什么?解析:(1)由题意,把x=-1代入方程,得a+c-2b+a-c=0,整理得a=b.因为a,b,c分别为әA B C 三边的长,所以әA B C为等腰三角形.(2)由题意,Δ=(2b)2-4(a+c)(a-c)=0,整得得b2+c2=a2.因为a,b,c分别为әA B C三边的长,所以由勾股定理的逆定理,得әA B C为直角三角形.评注:当三角形的三边为一元二次方程的系数时,三角形的形状与一元二次方程根的情况也有了联系,本题设置的两个问题对此做了很好的诠释.2求代数式的值当m,n是一元二次方程a x2+b x+c=0的两个根时,根据韦达定理,得m+n=-ba,m n=c a.根据方程根的定义,得a m2+b m+c=0,a n2+b n+c=0;反之,aʂ0时,当m,n满足等式a m2+b m+c=0,a n2+b n+c=0时,则m,n是一元二次方程a x2+b x+c=0的两个根.例2㊀问题情境:小明在学习中遇到了这样一道题 已知字母a,b满足a2-2a-1=0,b2-2b-1=0,且aʂb,试求1a+1b的值.小明的解答为:因为字母a,b满足的两个方程形式一致,所以a,b可以看作方程x2-2x-1=0的两根,根据根与系数的关系,得a+b=2,a b=-1,所以1a+1b=a+b a b=2-1=-2.根据小明的解答过程,请解决下列问题:(1)已知不互为倒数的两个字母a,b分别满足2a2+11a+12=0,12b2+11b+2=0,求b a的值.(2)已知x1,x2是方程(m-1)x2+2m x+2=0的两个根,且满足x2x1+x1x2+x1+x2=2.若a,b,c是әA B C的三边长,且c=23,m2+a2m-8a=0.m2+b2m-8b=0.试求m的值以及әA B C的面积.解析:(1)将12b2+11b+2=0两边都除以b2,得2(1b)2+11ˑ1b+12=0.又因为2a2+11a+12=0,所以a与1b为方程2x2+11x+12=0的两根,根据根与系数,得a1b=6.故ba=16.(2)因为x1,x2是方程(m-1)x2+2m x+2=0的两个根,所以x1+x2=-2m m-1,x1x2=2m-1,16Copyright©博看网. All Rights Reserved.学习指导2023年9月下半月㊀㊀㊀m ʂ1.由x 2x 1+x 1x 2+x 1+x 2=2,整理得m 2-3m +2=0,解得m 1=2,m 2=1(舍去).因此可得a 2-4a +2=0,b 2-4b +2=0,则a ,b 为方程x 2-4x +2=0的两根,于是a +b =4,a b =2,所以a 2+b 2=(a +b )2-2a b =12=c 2,根据勾股定理的逆定理,得әA B C 为直角三角形,故S әA B C =12a b =1.所以m 的值为2,әA B C 的面积为1.评注:本题第(2)小题以m 作为联系的纽带,根据第一个方程中根与系数的关系求出m 的值,然后代入关于a ,b 的方程中消去m ,从而显现出a ,b 的本质,再与勾股定理的逆定理结合,使问题转化为几何问题[2].3求代数式的最值利用一元二次方程根与系数的关系可以求与两根有关的代数式的值,也可以求代数式的最值.当一元二次方程有实数根时,根的判别式大于或等于0,可以据此求得字母的取值范围,当所求代数式化为含有该字母的代数式时,就可以求得它的最值.例3㊀一元二次方程根与系数的关系反映了一元二次方程两根之和㊁两根之积与系数之间的数量关系,相应的命题被称为韦达定理,根据韦达定理解决下面问题:(1)已知m ,n 是一元二次方程2x 2-3x +1=0的两个根,试计算m +n 与m n 的值;(2)如果实数m ,n (m ʂn )分别满足方程m 2-m -1=0,n 2-n -1=0,求代数式1m +1n的值;(3)设方程2x 2+4x +m =0的两个根分别是x 1,x 2,你能求出x 21+x 22的最小值吗?解析:(1)由韦达定理,得m +n =32,m n =12.(2)因为实数m ,n 满足m 2-m -1=0,n 2-n -1=0且m ʂn ,所以m ,n 可看作方程x 2-x -1=0的两根.根据韦达定理,得m +n =1,m n =-1.故1m +1n =m +nm n =-1.(3)因为x 1,x 2是方程2x 2+4x +m =0的两个根,所以Δ=42-4ˑ2ˑm ȡ0,即m ɤ2.根据题意,可得x 1+x 2=-2,x 1x 2=m 2,则x 21+x 22=(x 1+x 2)2-2x 1x 2=4-m .由m ɤ2,得4-m ȡ2,所以x 21+x 22的最小值为2.评注:当a ȡb (b 为常数)时,a 有最小值,且最小值为b ;当a ɤb (b 为常数)时,a 有最大值,且最大值为b .4探讨代数式的值能否为定值对于与一元二次方程的根有关的代数式的值能否为定值这类问题,应先假设这个代数式的值能为定值,从而建立方程求得字母的值,然后检验这个值能否满足原方程有实根,使原方程有实根的值就是符合题意的值.例4㊀已知关于x 的方程k x 2+(1-k )x -1=0.(1)若该方程有两个不等实根,求k 的取值范围.(2)设x 1,x 2是方程k x 2+(1-k )x -1=0的两个根,记S =x 2x 1+x 1x 2+x 1+x 2,试问S 的值能为4吗?若能,求出此时k 的值,并说明理由.解:(1)根据一元二次方程的定义和判别式的意义,得k ʂ0且Δ=(1-k )2-4k ˑ(-1)>0,整理,得(1+k )2>0,解得k ʂ0且k ʂ-1.(2)根据题意,得x 1+x 2=-1-k k ,x 1x 2=-1k.假设S =x 21+x 22x 1x 2+x 1+x 2=(x 1+x 2)2-2x 1x 2x 1x 2+x 1+x 2=4,可得(x 1+x 2)2-6x 1x 2+x 1x 2(x 1+x 2)=0,即(1-k )2k2-6(-1k )+(-1k ) (-1-kk )=0,整理得k 2+3k +2=0,解得k 1=-1,k 2=-2.因为k ʂ0且k ʂ-1,所以当k =-2时,S 的值能为4.评注:一元二次方程根与系数的关系是在方程有实根的情况下进行讨论的,所以利用根与系数关系得到的字母的值,一定要看这个值是否在方程有实根时求得的字母取值范围之内.只有在这个取值范围之内的值才是符合题意的值.积累数学活动经验是数学教学的目标之一.以上四种类型有关根的判别式及根与系数关系的应用,有利于学生明白二者之间的依存关系,以及如何利用这两个工具解答相关问题,也有利于学生积累解题经验,促进学生核心素养的发展.参考文献:[1]黄细把.一元二次方程 联姻 三角形[J ].今日中学生,2015(Z 6):25G26.[2]朱亚邦.勾股定理(逆定理)应用的几种场景[J ].中学生数理化(八年级数学)(配合人教社教材),2017(3):16G17.Z 26Copyright ©博看网. All Rights Reserved.。

第02讲根的判别式、根与系数关系-新九年级数学暑假(苏科版)(学生版)

第02讲根的判别式、根与系数关系-新九年级数学暑假(苏科版)(学生版)

第02讲根的判别式、根与系数关系(核心考点讲与练)【基础知识】一.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.二.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2,反过来也成立,即(x1+x2),x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【考点剖析】一.根的判别式(共4小题)1.(2022•东坡区校级模拟)一元二次方程2x2﹣7x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定2.(2022•兴化市模拟)已知一元二次方程ax2+bx+c=0(a≠0),当a+b+c=0时,方程有两个相等的实数根,则下列结论正确的是()A.b=c≠a B.a=b≠c C.a=c≠b D.a=b=c3.(2022•南京一模)若关于x的一元二次方程x2+3(m﹣2)x+2c﹣1=0有两个相等的实数根,则c的最小值是.4.(2022•邗江区校级开学)已知关于x的方程x2﹣(3k+1)x+2k2+2k=0.(1)求证:无论k取何值,方程总有实数根;(2)若等腰三角形的底边长3,另两边长恰好是这个方程的两根,求此三角形的周长.二.根与系数的关系(共6小题)5.(真题•泰兴市期末)已知x2﹣2x﹣5=0的两个根为x1、x2,则x1+x2的值为()A.﹣2 B.2 C.﹣5 D.56.(2022•工业园区校级模拟)已知关于x的一元二次方程x2+2x+1﹣m=0的一个根为2,则另一个根是.7.(真题•鼓楼区期末)已知关于x的一元二次方程ax2+bx+c=0(a、b、c是常数,a≠0)的两个实数根分别为x1,x2,证明:x1+x2,x1•x2.8.(真题•东台市期末)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)当该方程的一个根为﹣1时,求m的值及方程的另一根.9.(真题•南关区校级期末)已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.10.(2022春•宜秀区校级月考)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若满足|x1﹣x2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x2﹣4x﹣5=0;②2x2﹣2x+1=0;(2)已知关于x的方程x2+2ax=0是“差根方程”,求a的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,请探索a与b之间的数量关系式.三.一元二次方程的整数根与有理根(共3小题)11.小明到商场购买某个牌子的铅笔x支,用了y元(y为整数).后来他又去商场时,发现这种牌子的铅笔降价20%,于是他比上一次多买了10支铅笔,用了4元钱,那么小明两次共买了铅笔支.12.若关于x的方程rx2﹣(2r+7)x+r+7=0的根是正整数,则整数r的值可以是.13.(2020•仪征市一模)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根均为整数,称该方程为“全整方程”,规定T(a,b,c)为该“全整方程”的“全整数”.(1)判断方程x2x﹣1=0是否为“全整方程”,若是,求出该方程的“全整数”,若不是,请说明理由;(2)若关于x的一元二次方程x2﹣(2m﹣3)x+m2﹣4m﹣5=0(其中m为整数,且满足5<m<22)是“全整方程”,求其“全整数”.【过关检测】一.选择题(共5小题)1.(2019秋•苏州期末)关于x的一元二次方程ax2﹣2ax﹣b=0有一个实数根x=1,则下面关于该方程根的判别式△的说法正确的是()A.Δ>0 B.Δ=0 C.Δ<0 D.无法确定2.(真题•仪征市期末)关于x的一元二次方程ax2﹣2x+1=0有两个不相等实数根,则整数a最大是()A.2 B.1 C.0 D.﹣13.(真题•宝应县期末)方程x2﹣x=﹣2的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.(真题•仪征市期末)已知方程(x﹣b)(x﹣c)﹣x=1的根是x1=m,x2=n,且m<n.若b<﹣1<0<c,则下列式子中一定正确的是()A.m<b<n<c B.b<m<n<c C.m<n<b<c D.m<b<c<n5.(2020•南通模拟)已知数m满足6<m<20,如果关于x的一元二次方程mx2﹣(2m﹣1)x+m﹣2=0有有理根,求m的值()A.11 B.12C.m有无数个解D.13二.填空题(共10小题)6.(2019•京口区校级开学)已知关于x的方程x2+px+q=0的两根为﹣4和﹣1,则p=,q=.7.(2022•秦淮区一模)若x2﹣4x+3=0,y2﹣4y+3=0,x≠y,则x+y﹣2xy的值是.8.(2022•鼓楼区一模)已知关于x的方程2x2+mx+n=0的根是﹣1和3,则m+n=.9.(真题•东西湖区期中)设x1,x2是一元二次方程x2﹣5x﹣1=0的两实数根,则x1+x2的值为.10.(2021•栖霞区开学)若x1、x2是一元二次方程x2﹣4x+3=0的两个实数根,则x1+x2﹣x1x2=.11.(真题•姜堰区期中)若关于x的一元二次方程2ax2﹣(a+4)x+2=0有一个正整数解,则正整数a=.12.(2022春•崇川区校级月考)已知α,β是方程x2+2021x+1=0的两个根,则(α2+2022α+1)(β2+2022β+1)=.13.(2022•海安市模拟)一元二次方程x2﹣3x﹣1=0的两实根是x1,x2,则x1+x2﹣x1•x2的值是.14.(2021•栖霞区二模)已知关于x的方程kx2﹣(3k+1)x+2k+2=0根都是整数;若k为整数,则k的值为.15.(2020春•崇川区校级月考)使得关于x的一元二次方程mx2﹣4x+4=0与x2﹣4mx+4m2﹣4m﹣5=0的根都是整数的整数m值是.三.解答题(共9小题)16.(2020春•张家港市期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.17.(真题•沭阳县期末)关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于2,求k的取值范围.18.(真题•鼓楼区校级月考)已知关于x的方程x2+(m+2)x+2m﹣1=0(1)求证:无论m取任何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=2,求m的值.19.(真题•海州区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根.20.(真题•梁溪区校级期中)已知关于x的方程x2+ax+a﹣1=0.(1)求证:不论a取何实数,该方程都有两个实数根;(2)若该方程的一个根为2,求a的值及该方程的另一根.21.(真题•阜宁县期末)定义新运算:对于任意实数m,n都有m★n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3★2=(﹣3)2×2+2=20.根据以上知识解决问题:(1)若(x+1)★3=15,求x的值.(2)若2★a的值小于0,请判断关于x的方程:2x2﹣bx+a=0的根的情况.22.(真题•大丰区期末)已知关于x的一元二次方程:x2﹣(2k+2)x+k2+2k=0.(1)当k=2时,求方程的根;(2)求证:这个方程总有两个不相等的实数根.23.(真题•东台市月考)已知关于x的一元二次方程x2﹣(k+3)x+2k+2=0有实数根.(1)求证:方程总有两个实数根;(2)若x1+x2﹣3x1x2=2,求k的值.24.(真题•东海县期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.请解决下列问题:(1)若一元二次方程x2﹣9x+c=0是“倍根方程”,则c=;(2)若(x﹣1)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式的值.。

根的判别式与根与系数的关系

根的判别式与根与系数的关系
回顾与反思
我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0) 的根的判别式,通常用△表示. 判别式定理 当b2-4ac>0时,方程有两个 不相等的实数根 当b2-4ac=0时,方程有两个 相等的实数根 当b2-4ac<0时,方程没有实数根 当b2-4ac≥0时,方程有两个 实数根
回顾与反思
c a
.
知识源于悟
例3 设x1,x2是方程3x2-4x=-1的两根,不解方程 求下列各式的值
(1) ∣x1-x2∣
(2)9x13+13x2
知识源于悟
例4
已知方程( 5 1)x2+( 5 5)x-4=0的一个
根为-1,设另一个根为a,求a3-2a2-4a的值.
小试牛刀
已知关于x的方程x2-(2k-1)x+k2-k=0的 两个根恰好等于斜边为5的直角三角形 的两条直角边的长,求实数k的值.
2x2-(m+2)+2m-2=0有两个相等的实数根? 求出这时方程的根.
小试牛刀
说明不论m取何值,关于x的方程
(x-1)(x+2)=m2总有两个不相等的实数根.
回顾与反思 一元二次方程根与系数的关系 设x1,x2是一元二次方程ax2+bx+c=0(a≠0)
的两个根,则有
x1+x2=
b a
,
x1x2=
灵感
智慧
已知关于x的方程kx2+(2k-1)x+k-1=0
(k为整数) ①只有整数根,且关于y的一
元二次方程(k-1)y2-3y+m=0 ②有两个实
数根y1和y2,试确定k的值.


1.根的判别式及根与系数关系 的应用 2.通过这节课你增长了….

根与系数关系及判别式带答案

根与系数关系及判别式带答案
7、关于x的一元二次方程x2-3x+m=0有两个不相等的实数根,则实数m的取值范围为()
A.m> B.m< C.m= D.m<-
8、已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()
A.4B.-4C.1D.-1
9、一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是()
7、若关于x的一元二次方程x2-4(m+1)x+4m-1=0两根互为相反数,则m的值是()
A.m=- B.m> C.m>- 且m≠0 D.m=-1
8、已知关于x的方程x2+mx-6=0的一个根为2,则这个方程的另一个根是_______。
9、已知关于x的方程x2-mx+n=0的两个实根是0和-3,则m=_______,n=________。
(4)x12-3x1x2+x22(5)(x1-2)(x2-2).
【自检自测】
1、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()
A.k>-1 B.k<1且k≠0 C.k≥-1且k≠0 D.k>-1且k≠0
2、关于x的一元二次方程x2-mx+(m-2)=0的根的情况是()
2、若方程x2-4x+m=0的根的判别式的值为4,则m=_____,方程的根为__________。
考点2:一元二次方程根的情况
3、一元二次方程x2-4x+5=0的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
4、下列一元二次方程中,有两个相等的实数根的是()
5、不解方程,求下列各方程的两根之和与两根之积:
(1)x2+3x+ =0 (2)3x2-2x-1=0 (3)2x2+3=7x2+x(4)5x-5=6x2-4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判别式和根与系数关系专题复习
1.若关于x 的一元二次方程2210x x -+=有实数根,则m 的取值范围是( )
A.1m <
B. 1m <且0m ≠
C.m ≤1
D. m ≤1且0m ≠
2. 一元二次方程2210x x --=的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
3.已知关于x 的一元二次方程2410x x m ++-=.请你为m 选取一个合适的整数,当m =____________时,得到的方程有两个不相等的实数根;
4.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.
5.若关于x 的方程227(21)04
x k x k +-+-
=有两个相等的实数根,求k 的取值范围。

6、已知关于x 的方程2(2)2(1)10m x m x m ---++=,当m 为何非负整数时:
(1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个不等的实数根.
7、求证:关于x 的方程2(21)10x k x k +++-=有两个不相等的实数根。

8、 证明:不论a ,b ,c 为任何实数,关于x 的方程0)()(22=+---c ab x b a x 都有实数
根.
9、求证:方程074)1(3222=--+-+m m x m x 对于任何实数m ,永远有两个不相等的实数根;(15分)
10、已知方程222(9)(34)0x k x k k +-+++=有两个相等的实数根,求k 值,并求出方程的根。

11、 已知关于x 的一元二次方程22
23840x mx m m --+-=.
(1)求证:原方程恒有两个实数根;
(2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围.
12、关于x 的一元二次方程22
430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=⋅,求k 的值.
13、当m 为什么值时,关于x 的方程01)1(2)1(22=+++-x m x m
有实根。

14、已知关于x 的方程222(2)40x m x m +-++=两根的平方和比两根的积大21,求m 的值
15、对于关于x 一元二次方程 x 2+kx+6=0 两根X 1 X 2 有如下关系X 1 - X 2 =1 求此方程的两
根为多少.
16、对于关于x 的一元二次方程 x 2+ 5x + c = 0 的两根 X 1 X 2 有如下关系
13x x 2
221=+ 求此方程的两根为多少。

相关文档
最新文档