2014挑战中考数学压轴题_1.6因动点产生的面积问题
中考数学压轴题:由动点引出的几种面积问题

中考数学压轴题:由动点引出的几种面积问题动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点。
解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”。
即把动态问题变为静态问题,变为我们所熟知的模型来解。
基本方法:铅锤法!即利用“铅垂高、水平宽”求三角形面积.类型一、一次函数由动点问题引出的面积问题【分析】(1)Rt△AOH中利用勾股定理即可求得菱形的边长;(2)根据(1)即可求得OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;(3)根据S△ABC=S△AMB+SBMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.【点评】本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.类型二、二次函数由动点问题引出的面积问题【分析】(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x^2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q 的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣1.5x^2﹣1.5x+3,再利用二次函数的性质,即可解决最值问题;【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图像上点的坐标特征、一次函数图像上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣1.5x^2﹣1.5x+3;(3)利用二次函数图像的对称性结合两点之间线段最短找出点M的位置.类型三、利用相似三角形求解由动点问题引出的面积问题【分析】(1)利用待定系数法即可;(2)①分别用t表示PE、PQ、EQ,用△PQE∽△QNC表示NC及QN,列出矩形PQNM面积与t的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M坐标,分别讨论M、N、Q在抛物线上时的情况,并分别求出t值.【点评】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,解答时应注意数形结合和分类讨论的数学思想.类型四、利用转化思想解决由动点问题引出的面积问题【分析】(1)根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得答案;(2)根据勾股定理,可得BC的长,根据等角的正切值相等,可得HO的长,根据待定系数法,可得BE的解析式,根据解方程组,可得E点坐标;(3)由题意△PMN是等腰直角三角形,得PM=PN=1,设M(a,a^2+3a﹣4)则N(a+1,a^2+3a+1)或(a+1,a^2+3a﹣5),代入抛物线的解析式即可求解.【点评】本题考查二次函数的有关知识、一次函数、直角三角形等知识,掌握两个函数的交点问题转化为方程组的解的问题是解题的关键,还要记住一个结论斜边为定值时直角边相等时面积最大.。
因动点产生的面积问题

例21:2011年四川省南充市中考第22题抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q 的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.解答:解:(1)∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3,答:抛物线解析式为y=x2﹣2x﹣3.(2)解:AC=3,AC所在直线的解析式为:y=﹣x﹣1,∠BAC=45°,∵平行四边形ACQP的面积为12,∴平行四边形ACQP中AC边上的高为=2,过点D作DK⊥AC与PQ所在直线相交于点K,DK=2,∴DN=4,∵ACPQ,PQ所在直线在直线ACD的两侧,可能各有一条,∴PQ的解析式或为y=﹣x+3或y=﹣x﹣5,∴,解得:或,,方程无解,即P1(3,0),P2(﹣2,5),∵ACPQ是平行四边形,A(﹣1,0),C(2,﹣3),∴当P(3,0)时,Q(6,﹣3),当P(﹣2,5)时,Q(1,2),∴满足条件的P,Q点是P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2)答:点P,Q的坐标是P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2).(3)解:设M(t,t2﹣2t﹣3),(﹣1<t<3),过点M作y轴的平行线,交PQ所在直线雨点T,则T(t,﹣t+3),MT=(﹣t+3)﹣(t2﹣2t﹣3)=﹣t2+t+6,过点M作MS⊥PQ所在直线于点S,MS=MT=(﹣t2+t+6)=﹣(t﹣)2+,∴当t=时,M(,﹣),△PQM中PQ边上高的最大值为,答:△PQM 的最大面积是,,点M 的坐标是(,﹣).点评:本题主要考查对用待定系数法求二次函数的解析式,二次函数的最值,平行四边形的性质,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度.例22:2010年广东省湛江市中考第28题如图,在平面直角坐标系中,点B 的坐标为(-3,-4),线段OB 绕原点逆时针旋转后与x 轴的正半轴重合,点B 的对应点为点A .(1)直接写出点A 的坐标,并求出经过A 、O 、B 三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点C ,使BC +OC 的值最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)点P 是抛物线上的一个动点,且在x 轴的上方,当点P 运动到什么位置时,△PAB 的面积最大?求出此时点P 的坐标和△PAB 的最大面积.解:(1)A(5,0) ………1分由抛物线经过点O ,可设抛物线的解析式为bx ax y +=2…2分⎩⎨⎧=-=+4390525b a b a 解得⎪⎪⎩⎪⎪⎨⎧=-=6561b a …………………………4分 ∴抛物线的解析式为x x y 65612+-=…………………………5分 (2)如图,由(1)得抛物线的对称轴是直线25=x ,点O 、A 关于直线25=x 对称,连接AB 交直线25=x 于点C ,则点C 使BC+OC 的值最小………………………6分设直线AB 的解析式为b kx y +=,得⎩⎨⎧-=+-=+4305b k b k ,解得⎪⎪⎩⎪⎪⎨⎧-==2521b k∴直线的解析式为2521-=x y ………………………8分把25=x 代入2521-=x y ,得45-=y ,∴点C 的坐标为)45,25(-………………9分(3)如图,过点P 作y 轴的平行线交AB 于点D ,设点P 的横坐标为x ,得)6561,(2x x x P +-, )2521,(-x x D ………………10分∴PAD PBD PAB S S S ∆∆∆+==)(21B A x x PD -∙=))((21B A D p x x y y --=[])3(5)2521()6561(212--⨯⎥⎦⎤⎢⎣⎡--+-x x x =1034322++-x x =332)1(322+--x ∴当1=x 时,PAB S ∆的最大值为332………………12分 把1=x 代入x x y 65612+-=,得32=y ,∴此时点P 的坐标为)32,1(………………13分例23:2012年广东省广州市中考数学模拟第25题平面直角坐标系中,平行四边形ABOC 如图放置,点A 、C 的坐标分别为(0,3)、(1-,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形'''A B OC 。
2014年中考数学压轴题动点问题(学生)

2014年中考数学压轴题动点问题(学生)1. (2014上海市14分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.2. (2014福建南平14分)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)3. (2014甘肃兰州12分)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=23x2+bx+c经过点B,且顶点在直线x=52上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD 的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M 点的坐标;若不存在,说明理由.4. (2014广东省9分)如图,抛物线213y=x x 922--与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).5. (2014贵州毕节16分)如图,直线l 1经过点A (-1,0),直线l 2经过点B(3,0), l 1、l 2均为与y 轴交于点C(0,,抛物线2y=a x+bx+c(a 0)≠经过A 、B 、C 三点。
中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。
2014年中考数学压轴题专题之面积、相切、线段和差问题

1.6 因动点产生的面积问题例1、如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.图1例2、如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.图1例3、如图1,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m . ①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值; ②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.图1例4、如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p>1)作x 轴的平行线分别交曲线m y x =(x >0)和my x=-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.图1例5、如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1例6、如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图例7、如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q 以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1 图21.7 因动点产生的相切问题例1、如图1,已知⊙O的半径长为3,点A是⊙O上一定点,点P为⊙O上不同于点A 的动点.(1)当1A=时,求AP的长;tan2(2)如果⊙Q过点P、O,且点Q在直线AP上(如图2),设AP=x,QP=y,求y关于x的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4A=时(如图3),存在⊙M与⊙O相内切,同时与⊙Qtan3相外切,且OM⊥OQ,试求⊙M的半径的长.图1 图2 图3例2、如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.图1例3、如图1,菱形ABCD的边长为2厘米,∠DAB=60°.点P从A米的速度沿AC向C作匀速运动;与此同时,点Q也从点A出发,以每秒1厘米的速度沿射线作匀速运动.当点P到达点C时,P、Q都停止运动.设点P运动的时间为t秒.(1)当P异于A、C时,请说明PQ//BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?1.8 因动点产生的线段和差问题例1、在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2例2、如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.图1例3、如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P 的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1。
2014挑战中考数学压轴题(题目)

第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1例2 2012年苏州市中考第29题如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1例3 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C1:1(2)()y x x mm=-+-(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1例4 2010年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例5 2009年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1例6 2008年苏州市中考第29题图11.2因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC 交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图例2 2012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例3 2012年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1例4 2011年盐城市中考第28题如图1,已知一次函数y=-x+7与正比例函数43y x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1例5 2010年南通市中考第27题如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1例 6 2009年江西省中考第25题如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB 交折线ADC于N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1 图2 图31.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1例2 2012年广州市中考第24题如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1例3 2012年杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B(-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随x 增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.例4 2011年浙江省中考第23题设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1例5 2010年北京市中考第24题在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.例6 2009年嘉兴市中考第24题如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1例 7 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例8 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图11.4 因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题如图1,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点. (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.图1例2 2012年福州市中考第21题如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2例3 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1例4 2011年上海市中考第24题已知平面直角坐标系xOy (如图1),一次函数334y x =+的图象与y轴交于点A,点M在正比例函数32y x=的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数334y x=+的图象上,且四边形ABCD是菱形,求点C的坐标.图1 例5 2011年江西省中考第24题将抛物线c1:2y=x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x 轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.图1例6 2010年山西省中考第26题在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图2例7 2009年江西省中考第24题如图1,抛物线322++-=xxy与x轴相交于A、B两点(点A在点B的左侧),与y 轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系.图11.5 因动点产生的梯形问题例1 2012年上海市松江区中考模拟第24题已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.图1例2 2012年衢州市中考第24题如图1,把两个全等的Rt △AOB 和Rt △COD 方别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y =ax 2+bx +c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上的一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图1例 4 2011年义乌市中考第24题已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2例5 2010年杭州市中考第24题如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1例7 2009年广州市中考第25题如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图11.6 因动点产生的面积问题例1 2013年苏州市中考第29题如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.图1例 2 2012年菏泽市中考第21题如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.图1例 3 2012年河南省中考第23题如图1,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.图1例 4 2011年南通市中考第28题如图1,直线l经过点A(1,0),且与双曲线myx=(x>0)交于点B(2,1).过点(,1)P p p-(p>1)作x轴的平行线分别交曲线myx=(x>0)和myx=-(x<0)于M、N两点.(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.图1例5 2010年广州市中考第25题如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1).点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1例 6 2010年扬州市中考第28题如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .(1)求线段AD 的长;(2)若EF ⊥AB ,当点E 在斜边AB 上移动时,①求y 与x 的函数关系式(写出自变量x 的取值范围); ②当x 取何值时,y 有最大值?并求出最大值.(3)若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.图1 备用图例7 2009年兰州市中考第29题如图1,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.(4)如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.图1 图21.7 因动点产生的相切问题例 1 2013年上海市杨浦区中考模拟第25题如图1,已知⊙O 的半径长为3,点A 是⊙O 上一定点,点P 为⊙O 上不同于点A 的动点.(1)当1tan 2A =时,求AP 的长;(2)如果⊙Q 过点P 、O ,且点Q 在直线AP 上(如图2),设AP =x ,QP =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4tan 3A =时(如图3),存在⊙M 与⊙O 相内切,同时与⊙Q相外切,且OM ⊥OQ ,试求⊙M 的半径的长.图1 图2 图3例2 2012年河北省中考第25题如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA =90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.图1例3 2012年无锡市中考模拟第28题如图1,菱形ABCD的边长为2厘米,∠DAB=60°.点P从A的速度沿AC向C作匀速运动;与此同时,点Q也从点A出发,以每秒1厘米的速度沿射线作匀速运动.当点P到达点C时,P、Q都停止运动.设点P运动的时间为t秒.(1)当P异于A、C时,请说明PQ//BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?图一1.8 因动点产生的线段和差问题例1 2013年天津市中考第25题在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2例2 2012年滨州市中考第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.例3 2012年山西省中考第26题如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P 的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1第二部分函数图象中点的存在性问题2.1 由比例线段产生的函数关系问题例1 2013年宁波市中考第26题如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由. 图1例2 2012年上海市徐汇区中考模拟第25题在Rt △ABC 中,∠C =90°,AC =6,53sinB ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3例3 2012年连云港市中考第26题如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行; (2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1例4 2011年上海市中考第25题在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图2.2 由面积产生的函数关系问题例1 2013年菏泽市中考第21题如图1, △ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图像与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形.(1)试求b 、c 的值,并写出该二次函数的解析式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,由PQ ⊥AC ?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?图1例2 2012年广东省中考第22题。
中考压轴题分类专题讲解6---因动点产生的面积问题

x2 + x + 2
所以 S四边形PB' A'D = S PB'O + S PBO = x2 + 2x+2
甚至我们可以更大胆地根据抛物线的对称性直接得到点 P
作△A OB 关于抛物线的对称轴对称的△BOE,那么点 E 的坐标为(1,2)
而矩形 EB OD 与△A OB 、△BOP 是等底等高的,所以四边形 EB A B 的面积是△A B O
3 8
(x
+ 2)(x
9 2
x
4)
=
3 4
整理,得 x2-4x+3=0
解得 x=1,或 x=3
所以点 K 的坐标为 (1,
287) 或 (3,
15 8
)
图2
图3
图4
考点伸展
第 3 题也可以这样思考
由 S△CBK
S△PBQ=5
2,S△PBQ=
9 10
,得
S△CBK=
9 4
如图 5,过点 K 作 x 轴的垂线交 BC 于 F 设点 K 的坐标为 (x, 3 x2
2 S△A B O=1
如果 S 四边形 PB A B=4 S△A B O=4,那么 S 四边形 PB OB=3 S△A B O=3
如图 2,作 PD⊥OB,垂足为 D
设点 P 的坐标为 (x,-x2+x+2)
S梯形PB 'OD
=
1 2
DO(B 'O
+
PD)
=
1 2
x(2
x2 + x + 2) =
1 2
所以 x +1 = (x +1)(x + 2c) 因此 x = 1 2c 所以 E(1 2c,1 c)
中考数学压轴试题复习第一部分专题五因动点产生的面积问题

§1.5 因动点产生的面积问题课前导学面积的存在性问题常见的题型和解题策略有两类:第一类,先根据几何法确定存在性,再列方程求解,后检验方程的根.第二类,先假设关系存在,再列方程,后根据方程的解验证假设是否正确.如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6例 32 2014年湖南省常德市中考第25题如图1,已知二次函数的图象过点O(0,0)、A(4,0)、B(),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求点P 的坐标;(3)将抛物线在轴下方的部分沿轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连结CM,CM与翻折后的曲线OB′A交于点D,若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出点C的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“14常德25”,拖动点P在抛物线上运动,可以体验到,当四边形PQAM是平行四边形时,也恰好是菱形.拖动点C在抛物线上运动,还可以体验到,△MCA与△MDA是同底三角形,它们的面积比等于对应高的比.思路点拨1.设交点式或顶点式求抛物线的解析式都比较简便.2.先确定四边形PQAM是平行四边形,再验证它是菱形.3.把△CDA与△MDA的面积比,转化为△MCA与△MDA的面积比,进而转化为点C与点D的纵坐标的比.图文解析(1)因为抛物线与x轴交于O(0,0)、A(4,0)两点,设y=ax(x-4).代入点B(),得.解得.所以.(2)如图2,由A(4,0),M是OA的中点,可知OA=4,MA=2,M(2, 0).如果四边形PQAM是菱形,已知PQ//OA,首先要满足PQ=2,再必须MP=2.因为抛物线的对称轴是直线x=2,P、Q关于x=2对称,所以点P的横坐标为1,故点P的坐标为.由M(2, 0)、P,可得MP=2.所以当点P的坐标为时,四边形PQAM是菱形.(3)如图3,作CE⊥x轴于E,作DF⊥x轴于F.我们把面积进行两次转换:如果△CDA的面积是△MDA面积的2倍,那么△MCA的面积是△MDA面积的3倍.而△MCA与△MDA是同底三角形,所以高的比CE∶DF=3∶1,即y C∶y D=3∶1.因此ME∶MF=3∶1.设MF=m,那么ME=3m.原抛物线的解析式为,所以翻折后的抛物线的解析式为.所以D,C.根据y C∶y D=3∶1,列方程.整理,得3m2=4.解得.所以.所以点C的坐标为(如图3),或(如图4).图2 图3 图4考点伸展第(1)题可以设抛物线的顶点式:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6 因动点产生的面积问题例1 2013年苏州市中考第29题如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.图1动感体验请打开几何画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个.请打开超级画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个.思路点拨1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD .3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方. 4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值.满分解答(1)b =12c +,点B 的横坐标为-2c . (2)由2111()(1)(2)222y x c x c x x c =+++=++,设E 1(,(1)(2))2x x x c ++.过点E 作EH ⊥x 轴于H .由于OB =2OC ,当AE //BC 时,AH =2EH .所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --.当C 、D 、E 三点在同一直线上时,EH CO DH DO =.所以1212c cc --=--. 整理,得2c 2+3c -2=0.解得c =-2或12c =(舍去).所以抛物线的解析式为213222y x x =--.(3)①当P 在BC 下方时,过点P 作x 轴的垂线交BC 于F . 直线BC 的解析式为122y x =-. 设213(,2)22P m m m --,那么1(,2)2F m m -,2122FP m m =-+. 所以S △PBC =S △PBF +S △PCF =221()24(2)42B C FP x x FP m m m -==-+=--+.因此当P 在BC 下方时,△PBC 的最大值为4.当P 在BC 上方时,因为S △ABC =5,所以S △PBC <5. 综上所述,0<S <5.②若△PBC 的面积S 为正整数,则这样的△PBC 共有11个.考点伸展点P 沿抛物线从A 经过C 到达B 的过程中,△PBC 的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0).当P 在BC 下方,S =4时,点P 在BC 的中点的正下方,F 是BC 的中点.例 2 2012年菏泽市中考第21题如图1,在平面直角坐标系中放置一直角三角板,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90°,得到三角形A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出它的两条性质.图1动感体验请打开几何画板文件名“12菏泽21”,拖动点P 在第一象限内的抛物线上运动,可以体验到,当四边形PB ′A ′B 是等腰梯形时,四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍.请打开超级画板文件名“12菏泽21”,拖动点P 在第一象限内的抛物线上运动,可以体验到,当四边形PB ′A ′B 是等腰梯形时,四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍.思路点拨1.四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍,可以转化为四边形PB ′OB 的面积是 △A ′B ′O 面积的3倍.2.联结PO ,四边形PB ′OB 可以分割为两个三角形.3.过点向x 轴作垂线,四边形PB ′OB 也可以分割为一个直角梯形和一个直角三角形.满分解答(1)△AOB 绕着原点O 逆时针旋转90°,点A ′、B ′的坐标分别为(-1, 0) 、(0, 2). 因为抛物线与x 轴交于A ′(-1, 0)、B (2, 0),设解析式为y =a (x +1)(x -2), 代入B ′(0, 2),得a =1.所以该抛物线的解析式为y =-(x +1)(x -2) =-x 2+x +2. (2)S △A ′B ′O =1.如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3. 如图2,作PD ⊥OB ,垂足为D . 设点P 的坐标为 (x ,-x 2+x +2).232'1111(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形. 2321113(2)(2)22222PDBS DB PD x x x x x ∆=⨯=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ∆=+=-+四边形梯形. 解方程-x 2+2x +2=3,得x 1=x 2=1.所以点P 的坐标为(1,2).图2 图3 图4(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.考点伸展第(2)题求四边形PB ′OB 的面积,也可以如图4那样分割图形,这样运算过程更简单.'11'222PB O P S B O x x x ∆=⋅=⨯=. 22112(2)222PBOP S BO y x x x x ∆=⋅=⨯-++=-++. 所以2'''2+2PB O PBO PB A D S S S x x ∆∆=+=-+四边形.甚至我们可以更大胆地根据抛物线的对称性直接得到点P :作△A ′OB ′关于抛物线的对称轴对称的△BOE ,那么点E 的坐标为(1,2).而矩形EB ′OD 与△A ′OB ′、△BOP 是等底等高的,所以四边形EB ′A ′B 的面积是△A ′B ′O 面积的4倍.因此点E 就是要探求的点P .例 3 2012年河南省中考第23题如图1,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12河南23”,拖动点P在直线AB下方的抛物线上运动,可以体验到,PD随点P运动的图象是开口向下的抛物线的一部分,当C是AB的中点时,PD 达到最大值.观察面积比的度量值,可以体验到,左右两个三角形的面积比可以是9∶10,也可以是10∶9.思路点拨1.第(1)题由于CP//y轴,把∠ACP转化为它的同位角.2.第(2)题中,PD=PC sin∠ACP,第(1)题已经做好了铺垫.3.△PCD与△PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比.4.两个三角形的面积比为9∶10,要分两种情况讨论.满分解答(1)设直线112y x=+与y轴交于点E,那么A(-2,0),B(4,3),E(0,1).在Rt△AEO中,OA=2,OE=1,所以AE=sin AEO∠=.因为PC//EO,所以∠ACP=∠AEO.因此sin ACP∠=将A (-2,0)、B (4,3)分别代入y =ax 2+bx -3,得4230,1643 3.a b a b --=⎧⎨+-=⎩解得12a =,12b =-. (2)由211(,3)22P m m m --,1(,1)2C m m +,得221111(1)(3)42222PC m m m m m =+---=-++.所以221sin 4)1)2PD PC ACP m m m =∠==-++=-+所以PD (3)当S △PCD ∶S △PCB =9∶10时,52m =; 当S △PCD ∶S △PCB =10∶9时,329m =.图2考点伸展第(3)题的思路是:△PCD 与△PCB 是同底边PC 的两个三角形,面积比等于对应高DN 与BM 的比.而211cos cos 4)(2)(4)25DN PD PDN PD ACP m m m m =∠=∠=-++=-+-,BM =4-m .①当S △PCD ∶S △PCB =9∶10时,19(2)(4)(4)510m m m -+-=-.解得52m =.②当S △PCD ∶S △PCB =10∶9时,110(2)(4)(4)59m m m -+-=-.解得329m =.例 4 2011年南通市中考第28题如图1,直线l经过点A(1,0),且与双曲线myx=(x>0)交于点B(2,1).过点(,1)P p p-(p>1)作x轴的平行线分别交曲线myx=(x>0)和myx=-(x<0)于M、N两点.(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11南通28”,拖动点P 在射线AB 上运动,可以体验到,当直线MN 经过(0,2)点时,图形中的三角形都是等腰直角三角形;△AMN 和△AMP 是两个同高的三角形,MN =4MP 存在两种情况.思路点拨1.第(2)题准确画图,点的位置关系尽在图形中.2.第(3)题把S △AMN =4S △AMP 转化为MN =4MP ,按照点M 与线段NP 的位置关系分两种情况讨论.满分解答(1)因为点B (2,1)在双曲线my x =上,所以m =2.设直线l 的解析式为y kx b =+,代入点A (1,0)和点B (2,1),得0,2 1.k b k b +=⎧⎨+=⎩ 解得1,1.k b =⎧⎨=-⎩所以直线l 的解析式为1y x =-.(2)由点(,1)P p p -(p >1)的坐标可知,点P 在直线1y x =-上x 轴的上方.如图2,当y =2时,点P 的坐标为(3,2).此时点M 的坐标为(1,2),点N 的坐标为(-1,2).由P (3,2)、M (1,2)、B (2,1)三点的位置关系,可知△PMB 为等腰直角三角形. 由P (3,2)、N (-1,2)、A (1,0)三点的位置关系,可知△PNA 为等腰直角三角形. 所以△PMB ∽△PNA .图2 图3 图4(3)△AMN 和△AMP 是两个同高的三角形,底边MN 和MP 在同一条直线上. 当S △AMN =4S △AMP 时,MN =4MP .①如图3,当M 在NP 上时,x M -x N =4(x P -x M ).因此222()4(1)x x x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭.解得x =或x =P 在x 轴下方,舍去).此时p = ②如图4,当M 在NP 的延长线上时,x M -x N =4(x M -x P ).因此222()4(1)x x x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭.解得x =x =P 在x 轴下方,舍去).此时p =考点伸展在本题情景下,△AMN能否成为直角三角形?情形一,如图5,∠AMN=90°,此时点M的坐标为(1,2),点P的坐标为(3,2).情形二,如图6,∠MAN=90°,此时斜边MN上的中线等于斜边的一半.不存在∠ANM=90°的情况.图5 图6例5 2010年广州市中考第25题如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1动感体验请打开几何画板文件名“10广州25”,拖动点D由C向B运动,观察S随b变化的函数图象,可以体验到,E在OA上时,S随b的增大而增大;E在AB上时,S随b的增大而减小.双击按钮“第(3)题”,拖动点D由C向B运动,可以观察到,E在OA上时,重叠部分的形状是菱形,面积不变.双击按钮“第(2)题”可以切换.思路点拨1.数形结合,用b表示线段OE、CD、AE、BE的长.2.求△ODE的面积,要分两种情况.当E在OA上时,OE边对应的高等于OC;当E 在AB边上时,要利用割补法求△ODE的面积.3.第(3)题中的重叠部分是邻边相等的平行四边形.4.图形翻着、旋转等运动中,计算菱形的边长一般用勾股定理.满分解答(1)①如图2,当E在OA上时,由12y x b=-+可知,点E的坐标为(2b,0),OE=2b.此时S =S △ODE =112122OE OC b b ⋅=⨯⨯=. ②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE=32b -,BE =52b -.此时S =S 矩形OABC -S △OAE - S △BDE -S △OCD =1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯- 252b b =-+.(2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形.作DH ⊥OA ,垂足为H .由于CD =2b -2,OE =2b ,所以EH =2.设菱形DMEN 的边长为m .在Rt △DEH 中,DH =1,NH =2-m ,DN =m ,所以12+(2-m )2=m 2.解得54m =.所以重叠部分菱形DMEN 的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC 绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7例 6 2010年扬州市中考第28题如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF ⊥AB ,当点E 在斜边AB 上移动时,①求y 与x 的函数关系式(写出自变量x 的取值范围); ②当x 取何值时,y 有最大值?并求出最大值.(3)若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.图1 备用图动感体验请打开几何画板文件名“10扬州28”,拖动点E 在AB 上运动,从y 随x 变化的图象可以体验到,当F 在AC 上时,y 随x 的增大而增大;当F 在BC 上时,y 随x 变化的图象是开口向下的抛物线的一部分,y 的最大值对应抛物线的顶点.双击按钮“第(3)题”,我们已经设定好了EF 平分△ABC 的周长,拖动点E ,观察图象,可以体验到,“面积AEF ”的值可以等于3,也就是说,存在直线EF 将△ABC 的周长和面积同时平分.双击按钮“第(2)题”可以切换。