西电电子管手册259A

合集下载

UDN2595A中文资料

UDN2595A中文资料

8-CHANNELSATURATED SINK DRIVERAlways order by complete part number:Part Number Package UDN2595A 18-Pin DIPA2595SLW20-Lead Wide-Body SOICABSOLUTE MAXIMUM RATINGS at 25°C Free-Air Temperaturefor any one driver (unless otherwise noted)Output Voltage, V CE ...................... 20 V Supply Voltage, V S ........................ 20 V Input Voltage, V IN ......................... 20 V Output Current, l C .................... 200 mA Ground Terminal Current, I GND ... 1.6 A Package Power Dissipation,P D ................................. See Graph Operating Temperature Range,T A ......................... -20°C to +85°C Storage Temperature Range,T S ........................ -55°C to +150°CData Sheet 29320B2595Developed for use with low-voltage LED and incandescent dis-plays requiring low output saturation voltage, the UDN2595A and A2595SLW meet many interface needs, including those exceeding the capabilities of standard logic buffers. The eight non-Darlingtonoutputs of each driver can continuously and simultaneously sink load currents of 100 mA at ambient temperatures of up to +75°C.The eight-channel driver’s active-low inputs can be driven directly from TTL, Schottky TTL, DTL, 5 to 16 V CMOS, and NMOS logic.All input connections are on one side of the package, output connec-tions on the other, for simplified printed wiring board layouts.These drivers are packaged in plastic DlPs (suffix A) or surface-mountable wide-body SOlCs (suffix LW), and are rated for operation over the temperature range of -20°C to +85°C. The A2595SLW is also available for operation to -40°C. To order, change the suffix from ‘SLW’ to ‘ELW’.FEATURESI Non-Inverting Function(Input Low = Output ON)I 200 mA Current RatingI 100 mA Continuous and Simultaneous(All outputs) to +85°C I Low Saturation Voltage I TTL, CMOS, NMOS Compatible I Efficient Input/Output Pin Format I DIP or SOIC PackagingUDN2595A25958-CHANNELSATURATED SINK DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-500050751001251502.50.5A L L O W AB L E P AC K A G E P O W E RD I S S I P A T I O N I N W A T T SAMBIENT TEMPERATURE IN °C2.01.51.025Dwg. GS-009-1SUFFIX 'A', R = 60°C/W θJASUFFIX 'LW', R = 70°C/WθJANOCONNECT.NOCONNECT.Dwg. PP-064-1GROUND +V SA2595SLWFUNCTIONAL BLOCK DIAGRAMONE OF EIGHT DRIVERS25958-CHANNELSATURATED SINK DRIVERCurrentVoltage LimitsCharacteristic Symbol Test ConditionsMin.Max.Units Output Leakage I CEX V IN ≥ 4.5 V, V OUT = 20 V, T A = 25°C —50µA V IN ≥ 4.6 V, V OUT = 20 V, T A = 70°C —100µA Output Saturation V CE(SAT)V IN = 0.4 V, I OUT = 50 mA —0.5V V IN = 0.4 V, I OUT = 100 mA —0.6V Input CurrentI lN(ON)V IN = 0.4 V, I OUT = 100 mA—-1.6mA V IN = 0.4 V, I OUT = 100 mA, V S = 15 V—-5.0mA Input VoltageV IN(ON)I OUT = 100 mA, V OUT ≤ 0.6 V —0.4V V IN(OFF)I OUT = 100 µA, T A = 70°C4.6—V Input Capacitance C IN —25pF Supply Currentl SV IN = 0.4 V, I OUT = 100 mA— 6.0mA V IN = 0.4 V, I OUT = 100 mA, V S = 15 V —20mANOTES: 1.Negative current is defined as coming out of the specified device pin.2.The V IN(ON) voltage limit guarantees a minimum output sink current per the specified conditions.3.l S is measured with any one of eight drivers turned ON.ELECTRICAL CHARACTERISTICS at T A = +25°C, V S = 5.0 V (unless otherwise noted).25958-CHANNELSATURATED SINK DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000Dwg. MA-001-18A mmUDN2595ADimensions in Inches (controlling dimensions)Dimensions in Millimeters (for reference only)NOTES: 1.Exact body and lead configuration at vendor’s option within limits shown.2.Lead spacing tolerance is non-cumulative.3.Lead thickness is measured at seating plane or below.Dwg. MA-001-18A in25958-CHANNEL SATURATED SINK DRIVERDwg. MA-008-20 mm1.27BSCA2595SLWDimensions in Inches(for reference only)Dimensions in Millimeters(controlling dimensions)NOTES: 1.Exact body and lead configuration at vendor’s option within limits shown.2.Lead spacing tolerance is non-cumulative.25958-CHANNELSATURATED SINK DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000The products described here are manufactured under one or more U.S. patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may berequired to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsi-bility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.25958-CHANNELSATURATED SINK DRIVERThis page is intentionally left blank25958-CHANNELSATURATED SINK DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000POWER SINK DRIVERSIN ORDER OF 1) OUTPUT CURRENT, 2) OUTPUT VOLTAGE, 3) NUMBER OF DRIVERSOutput Ratings *Features Serial Latched Diode Internal mAV #Input DriversClampOutputsProtectionPart Number†75178X X –constant current –62751716X X –constant current –627610020 8–––saturated –25953032X X –––58334032X X –saturated –583250 8addressable decoder/driver DMOS –6B25950 8–X –DMOS –6B27350 8X X –DMOS –6B59525050 8addressable decoder/driver DMOS –625950 8–X –DMOS –627350 8X X –DMOS –6595135 7––X ––700330045 1–Hall sensor/driver X –X 514050 7––X ––200350 8––X ––280350 8––X saturated –259660 4––X saturated X 255795 7––X ––202395 8––X ––282335050 4–X X ––580050 7––X ––200450 8––X ––280450 8–X X ––580150 8X X –––582150 8X X X ––584150 8addressable decoder/driver DMOS –6A25950 8X X –DMOS –6A59580 8X X –––582280 8X X X ––584295 7––X ––202495 8––X ––28244503028dual 4- to 14-line decoder/driver ––681760060 4–––saturated X 254760 4––X saturated X 254970060 4––X saturated X 2543 and 255975050 8––X saturated –259790014 2–Hall sensor/driver X saturated X 362526 2–Hall sensor/driver X saturated X 3626100046 4stepper motor controller/driver MOS –7024 and 7029120046 4microstepping controller/driver MOS –7042125050 4stepper motor translator/driver –X 580450 4––X ––2064 and 2068150080 4––X ––2065 and 2069180050 4––X ––254450 4––X ––2540300046 4stepper motor controller/driver MOS –702646 4microstepping controller/driver MOS –7044400050 4––X ––287880 4––X ––2879over-current protection voltage limits.†Complete part number includes additional characters to indicate operating temperature range and package style.。

电子管数据手册共116页文档

电子管数据手册共116页文档

电子管数据手册资料名称:自命名国产电子管1A2型号:说明:类型:直热式阴极七极管主要用途:变频(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;第二四栅极电压(Ug2g4)=45V;第三栅极电压(Ug3)=0V;第一栅极电压(Ug1)=0V;阳极电流(Ia)=0.7±0.3mA;第二四栅极电流(Ig2g4)=1.1±0.5mA;第一栅极电流(Ig1)=130±35μA;变频跨导(Sc)≥0.17mA/V;振荡跨导≥0.65mA/V;第一栅极电阻(Rg1)=51kΩ.(极间电容)输入电容(Cin)=5.1pF;输出电容(Cout)=6.3pF;过渡电容(Cag)≤0.6pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二四栅极电压(Ug2maxp、Ug4max)=7.5V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=3mA;最大阴极电流峰值(Ikmax)=9mA;最大阳极耗散功率(Pamax)=0.3W.型号:说明:类型:直热式阴极二极-五极管主要用途:检波和低频电压放大(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=0.9±0.4mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.35mA;跨导(S)=0.2~0.55mA;内阻(Ri)=1MΩ.(极间电容)输入电容(Cin)=1.85pF;输出电容(Cout)=2.1pF;过渡电容(Cag)=0.27pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2max)=75V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=2mA;最大阳极耗散功率(Pamax)=0.15W.型号:说明:类型:直热式阴极遥截止五极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=1.35±0.5mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)=0.35+0.15mA;跨导(S)=0.25~0.7mA;内阻(Ri)=1.5MΩ.(极间电容)输入电容(Cin)=3pF;输出电容(Cout)=4.9pF;过渡电容(Cag)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2max)=75V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=3.5mA;最大阳极耗散功率(Pamax)=0.3W.型号:说明:类型:旁热式阴极二极管主要用途:用于110o电视机行扫描逆程脉冲电压的整流(基本数据)灯丝电压(Uf)=1.4V;灯丝电流(If)=0.5±0.055A;阳极电压(Ua)=100V;阳极电流(Ia)≥8mA.(极间电容)阳极与阴极间电容(Cak)=1.55pF.(极限运用数据)最大灯丝电压(Ufmax)=1.54V;最小灯丝电压(Ufmin)=1.26V;最大整流电流(Ikmax)=0.5mA;最大反向电压峰值①(Upmax)=22kV;最大滤波电容(Cmax)=2000pF.注:①最大占空比=22%,最大脉宽=18μs时.型号:说明:类型:直热式阴极高压整流二极管主要用途:在电视机接收中作行扫描逆程电压整流(基本数据)灯丝电压(Uf)=0.7V;灯丝电流(If)=0.2A;阳极交流电压(Ua~)=100V;阳极电流(Ia)≥2mA;行扫描频率(fH)≥16kHz.(极限运用数据)最大灯丝电压(Ufmax)=0.77V;最小灯丝电压(Ufmin)=0.63V;最大反向电压峰值(Upmax)=8kV;最大整流电流(Ikmax)=3mA;最大阳极耗散功率(Pamax)=0.6W.型号:说明:类型:直热式阴极高压脉冲整流二极管主要用途:在专用无线电设备中作高频脉冲整流用(基本数据)灯丝电压(Uf)=1.25V;灯丝电流(If)=0.2±0.04A;阳极反向电压峰值(Up)≥30kV;阴极放射电流①(Ia)≥4mA;注:①Ua=100V时.(极间电容)阳极与阴极间电容(Cak)=1.2±0.5pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=1.1V;最大反向电压峰值(Upmax)=30kV;最大整流电流(Ikmax)=2mA;最大脉冲频率(fmax)=300kHz.型号:说明:类型:直热式阴极二极管主要用途:电视机接收中作行扫描逆程脉冲电压整流用(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.2A;阳极电压(Ua)=100V;阳极电流(Ia)≥4mA.(极间电容)阳极与阴极间电容(Cak)=1pF.(极限运用数据)最大灯丝电压(Ufmax)=1.32V;最小灯丝电压(Ufmin)=1.08V;最大整流电流(Ikmax)=300μA;最大反向电压峰值(Upmax)=20kV;最小行扫描频率(fmin)=12kHz.型号:说明:类型:旁热式阴极二极管主要用途:在分米波段作检波用(基本数据)灯丝电压(Uf)=2.3V;灯丝电流(If)=0.2±0.05A;阳极电压(Ua)=5V;阳极电流(Ia)≥1.6mA.(极间电容)阳极与阴极间电容(Cak)=0.1~0.4pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.2V;最大整流电流(Ikmax)=0.1mA;最大反向电压峰值(Upmax)=100V;最大阳极耗散功率(Pamax)=0.01W;最大阴极和灯丝间电压(Ufkmax)=±25V; 最高工作频率(fmax)=3GHz.型号:说明:类型:直热式阴极锐截止五极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.06A;阳极电压(Ua)=90V;阳极电流(Ia)=1.9±0.6mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.8mA;第三栅极电压(Ug3)=0V;跨导(S)=1.25±0.25mA/V.(极间电容)输入电容(Cin)≤4.5pF;输出电容(Cout)≤6.0pF;过渡电容(Cag)≤0.015pF;阳极与阴极间电容(Cak)≤0.03pF.(极限运用数据)最大灯丝电压(Ufmax)=2.5V;最小灯丝电压(Ufmin)=1.8V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2maxp)=90V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=0.5W.最大第二栅极耗散功率(Pg2max)=0.13W.型号:说明:类型:直热式阴极锐截止五极管主要用途:小功率放大及高频振荡(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.057A;阳极电压(Ua)=120V;阳极电流(Ia)=1.9±0.6mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.5mA;第三栅极电压(Ug3)=0V;跨导(S)=1.25±0.25mA/V;内阻(Ri)≥0.7MΩ.(极间电容)输入电容(Cin)≤5.3pF;输出电容(Cout)≤4.9pF;阳极与阴极间电容(Cak)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2max)=120V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=1.0W;最大第二栅极耗散功率(Pg2max)=0.3W.???型号:说明:类型:直热式阴极五极管主要用途:低频功率放大(基本数据)灯丝电压(Uf)=1.2/2.4V;灯丝电流(If)=0.06/0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=3.5±1.2mA;第一栅极电压(Ug1)=﹣3.5V;第二栅极电压(Ug2)=60V;第二栅极电流(Ig2)≤1.2mA;跨导(S)≥0.9mA/V;输出功率(PO)=50mW;非线性失真度系数(THD)≤10%.(极间电容)输入电容(Cin)=3.7pF;输出电容(Cout)=3.8pF;过渡电容(Cag)=0.4pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V/2.8V;最小灯丝电压(Ufmin)=0.9/1.8V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2maxp)=90V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V; 最大阴极电流(Ikmax)=7mA;最大阴极电流峰值(Ikmax)=10mA;最大阳极耗散功率(Pamax)=0.4W.型号:说明:类型:直热式阴极束射四极管主要用途:功率输出(基本数据)灯丝电压(Uf)=1.4/2.8V;灯丝电流(If)=0.2/0.1A;阳极电压(Ua)=135V;阳极电流(Ia)=16±4mA;第一栅极电压(Ug1)=﹣7.5V;第二栅极电压(Ug2)=90V;第二栅极电流(Ig2)≤3.1mA;输出功率(PO)≥0.15W;非线性失真度系数(THD)≤10%.(极间电容)输入电容(Cin)=4.8pF;输出电容(Cout)=4.2pF;过渡电容(Cag)≤0.34pF.(极限运用数据)最大灯丝电压(Ufmax)=1.54/3.08V;最小灯丝电压(Ufmin)=1.26/2.52V;最大阳极电压(Uamax)=150V;最大第二栅极电压(Ug2maxp)=135V;最大阴极电流(Ikmax)=23mA;最大阳极耗散功率(Pamax)=2.0W;最大第二栅极耗散功率(Pg2max)=0.5W.?????型号:说明:类型:直热式阴极五极管主要用途:功率放大(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.1A;阳极电压(Ua)=120V;阳极电流(Ia)=7.6±2.2mA;第一栅极电压(Ug1)=﹣5V;第二栅极电压(Ug2)=90V;第二栅极电流(Ig2)≤3.5mA;第三栅极电压(Ug3)=0V;跨导(S)≥1.7mA/V.(极间电容)输入电容(Cin)≤4.5pF;输出电容(Cout)≤7pF;过渡电容(Cag)≤0.03pF;阳极与阴极间电容(Cak)≤0.05pF.(极限运用数据)最大灯丝电压(Ufmax)=2.5V;最小灯丝电压(Ufmin)=1.8V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=130V;最大阴极电流(Ikmax)=15mA;最大阳极耗散功率(Pamax)=1W;最大第二栅极耗散功率(Pg2max)=0.35W.型号:说明:类型:直热式阴极五极管主要用途:小功率发射(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.11A;阳极电压(Ua)=120V;阳极电流(Ia)≥2.7mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤1.2mA;第三栅极电压(Ug3)=0V;跨导(S)≥1.5mA/V.(极间电容)输入电容(Cin)=4.85pF;输出电容(Cout)=2pF;阳极与阴极间电容(Cak)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=120V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=1W;最大第二栅极耗散功率(Pg2max)=0.3W.型号:说明:类型:直热式阴极五极管主要用途:功率放大及高频振荡(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.12A;阳极电压(Ua)=160V;阳极电流(Ia)=10mA;第一栅极电压(Ug1)=﹣5.5±1.7V;第二栅极电压(Ug2)=120V;第二栅极电流(Ig2)≤2.0mA;第三栅极电压(Ug3)=0V;跨导(S)=2.05±0.25mA/V;输出功率(PO)=1.2W.(极间电容)输入电容(Cin)=4.3pF;输出电容(Cout)=5.6pF;过渡电容(Cag)=0.055pF;阳极与阴极间电容(Cak)=0.03pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=150V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.0W;最大第二栅极耗散功率(Pg2max)=0.7W; 最高工作频率(fmax)=120MHz.型号:说明:类型:旁热式阴极高压整流二极管主要用途:高压整流(基本数据)灯丝电压(Uf)=2.5V;灯丝电流(If)=1.75±0.2A;平均整流电流(Icp)≥6.8mA;变压器次级线圈交流电压有效值(Urms)=4500V;滤波电容①(C)=0.06μF.注:①当选用大于此值的滤波电容时必须加入充电限流电阻,以免滤波电容充电峰值电流超出上述规定.(极限运用数据)最大灯丝电压(Ufmax)=2.75V;最小灯丝电压(Ufmin)=2.25V;最大阳极交流电压有效值(Urms)=4500V;最大反向电压峰值(Upmax)=12.5kV;最大整流电流(Ikmax)=7.5mA.型号:说明:类型:旁热式阴极锐截止五极管主要用途:小功率放大及高频振荡(基本数据)灯丝电压(Uf)=4.2V;灯丝电流(If)=0.225A;阳极电压(Ua)=150V;阳极电流(Ia)=1.4~3.1mA;第一栅极电压(Ug1)=﹣2.3V;第二栅极电压(Ug2)=75V;第二栅极电流(Ig2)=0.2~0.9mA;第三栅极电压(Ug3)=0V;跨导(S)=1.2~2.1mA/V;内阻(Ri)≥1MΩ;输出功率(PO)≥0.5W.(极间电容)输入电容(Cin)=4.0pF;输出电容(Cout)=4.2pF;过渡电容(Cag)≤0.007pF.(极限运用数据)最大灯丝电压(Ufmax)=4.8V;最小灯丝电压(Ufmin)=3.6V;最大阳极电压(Uamax)=250V;最大第二栅极电压(Ug2maxp)=225V;最大灯丝与阴极间电压(Ufkmax)=100V;最大阴极电流(Ikmax)=11mA;最大阳极耗散功率(Pamax)=2W;最大第二栅极耗散功率(Pg2max)=0.7W.型号:说明:类型:直热式阴极五极管主要用途:振荡及功率放大(基本数据)灯丝电压(Uf)=4.2V;灯丝电流(If)=0.325A;阳极电压(Ua)=150V;阳极电流(Ia)=60±20mA;第一栅极电压(Ug1)=﹣3.5V;第二栅极电压(Ug2)=150V;第二栅极电流(Ig2)≤6.5mA;第三栅极电压(Ug3)=0V;跨导(S)=6±1.5mA/V;输出功率(PO)≥4.2W.(极间电容)输入电容(Cin)=8.5pF;输出电容(Cout)=9.4pF;过渡电容(Cag)≤0.1pF.(极限运用数据)最大灯丝电压(Ufmax)=4.7V;最小灯丝电压(Ufmin)=3.9V;最大阳极电压(Uamax)=250V;最大第二栅极电压(Ug2maxp)=250V; 最大阴极电流(Ikmax)=50mA;最大阳极耗散功率(Pamax)=7.5W;最大第二栅极耗散功率(Pg2max)=1.5W.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=2±0.4A;平均整流电流(Icp)=125mA;变压器次级线圈交流电压有效值①(Urms)=2x500V; 变压器次级线圈交流电压有效值②(Urms)=2x350V; 滤波电容(C)=4μF;滤波电感(L)=10H.注:①滤波电路为电感输入时;②滤波电路为电容输入时.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1.4kV.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=2±0.2A;平均整流电流(Icp)=125mA;变压器次级线圈交流电压有效值(Urms)=2x400V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1.4kV.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=3±0.3A;平均整流电流(Icp)≥230mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=250mA;最大反向电压峰值(Upmax)=1550V.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=1.8~2.2A;平均整流电流(Icp)≥122mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1350V.型号:说明:类型:旁热式阴极双阳极整流二极管主要用途:全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=5±0.75A;平均整流电流(Icp)≥400mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=420mA;最大反向电压峰值(Upmax)=1700V;最大阳极耗散功率(Pamax)=30W.型号:说明:类型:旁热式阴极双阳极整流二极管主要用途:全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=3±0.3A;平均整流电流(Icp)≥190mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=205mA;最大反向电压峰值(Upmax)=1700V;最大阳极耗散功率(Pamax)=12W.型号:说明:类型:旁热式阴极七极管主要用途:变频(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=250V;阳极电流(Ia)=3±1mA;第二四栅极电压(Ug2g4)=100V;第三栅极电压(Ug3)=﹣1.5V;第二四栅极电流(Ig2g4)=7.0±2.1mA;第一栅极电阻(Rg1)=20kΩ;变频跨导(Sc)≥0.3mA/V;振荡跨导≥4.5mA/V.(极间电容)输入电容(Cin)≤8.8pF;输出电容(Cout)≤10.1pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=330V;最大第二四栅极电压(Ug2g4max)=110V;最大第三栅极电压(Ug3max)=﹣50V;最大第一栅极电流(Ig1max)=0.5mA;最大阴极电流(Ikmax)=14mA;最大灯丝与阴极间电压(Ufkmax)=100V;最大阳极耗散功率(Pamax)=1.1W;最大第二四栅极耗散功率(Pg2g4max)=1.1W.型号:说明:类型:旁热式阴极七极变频管主要用途:变频(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=250V;阳极电流(Ia)=3.5±1mA;第二四栅极电压(Ug2g4)=100V;第三栅极电压(Ug3)=0V;第一栅极电流(Ig1)=0.51±0.13mA;第二四栅极电流(Ig2g4)=9±2.5mA;变频跨导(Sc)=0.45±0.15mA/V;振荡跨导=4.7±1.2mA/V.(极间电容)输入电容(Cin)=11±3pF;输出电容(Cout)=11±3pF;过渡电容(Cag)=0.7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=330V;最大第二四栅极电压(Ug2g4max)=110V;最大第一栅极电流(Ig1max)=0.5mA;最大阴极电流(Ikmax)=15.5mA;最大灯丝与阴极间电压(Ufkmax)=100V;最大阳极耗散功率(Pamax)=1.1W;最大第二四栅极耗散功率(Pg2g4max)=1.1W.型号:说明:类型:旁热式阴极双二极-五极管主要用途:作高频和低频电压放大、检波和自动音量控制(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;(双二极管部分)平均整流电流(Icp)≥220μA;(五极管部分)阳极电压(Ua)=250V;阳极电流(Ia)=7.3~13mA;第一栅极电压(Ug1)=﹣3V;第二栅极电压(Ug2)=125V;第二栅极电流(Ig2)=2.45+1.05mA;跨导(S)=1.32~1.6mA/V.(极间电容)输入电容(Cin)=3.9~4.15pF;输出电容(Cout)=11±2pF;过渡电容(Cag)≤0.008pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=27.5V;最大第二栅极电压(Ug2maxp)=140V;最大每只二极管整流电流(Ikmax)=1mA;最大阳极耗散功率(Pamax)=4W;最大第二栅极耗散功率(Pg2max)=0.3W;最大灯丝与阴极间电压(Ufkmax)=100V.型号:说明:类型:旁热式阴极三极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.15A;阳极电压(Ua)=250V;阳极电流(Ia)=6.1±2.5mA;栅极电压(Ug)=﹣7V;跨导(S)=2.65±0.65mA/V;内阻(Ri)=8.4~14.8kΩ.(极间电容)输入电容(Cin)=0.95~1.8pF;输出电容(Cout)=0.75~1.45pF;过渡电容(Cag)=1.0~1.8pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=275V;最大灯丝与阴极间电压(Ufkmax)=﹣90V; 最大阳极耗散功率(Pamax)=1.8W.型号:说明:类型:旁热式阴极三极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=16±4mA;阴极电阻(Rk)=100Ω;跨导(S)=19.5±4.5mA/V;放大系数(μ)=50±15.(极间电容)输入电容(Cin)=5.5pF;输出电容(Cout)=0.85pF;过渡电容(Cag)≤2.4pF;灯丝与阴极间电容(Cfk)=7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=160V;最大灯丝与阴极间电压(Ufkmax)=+100V(-160V); 最大阳极耗散功率(Pamax)=3W;最大阴极电流(Ikmax)=35mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:宽频带高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=16±4mA;阴极电阻(Rk)=100Ω;跨导(S)=19.5±4.5mA/V;放大系数(μ)=50±15.(极间电容)输入电容(Cin)≤13.3pF;输出电容(Cout)≤0.17pF;过渡电容(Cag)≤3.75pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=160V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3W;最大阴极电流(Ikmax)=35mA;最大栅极电阻(Rgmax)=1MΩ.?????�型号:说明:类型:旁热式阴极三极管主要用途:作分米和厘米波段的小功率振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.7±0.07A;阳极电压(Ua)=250V;阳极电流(Ia)=8~23A;跨导(S)=5±1.5mA/V;放大系数(μ)=40±10.(极间电容)输入电容(Cin)=1.9~2.8pF;输出电容(Cout)≤0.05pF;过渡电容(Cag)=1.15~1.5pF.(极限运用数据)最大灯丝电压(Ufmax)=6.6V;最小灯丝电压(Ufmin)=6.0V;最大阳极电压(Uamax)=300V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=6.5W;最高振荡频率(fmax)=3370MHz.型号:说明:类型:旁热式阴极三极管主要用途:检波和低频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=﹣8V;阳极电流(Ia)=8±3mA;跨导(S)=2.2±0.5mA/V;内阻(Ri)=9kΩ;放大系数(μ)=20±2.(极间电容)输入电容(Cin)=3.8±0.9pF;输出电容(Cout)=7.4~13.4pF;过渡电容(Cag)=2±0.6pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=350V;最大灯丝与阴极间电压(Ufkmax)=100V; 最大阳极耗散功率(Pamax)=2.75W.型号:说明:类型:旁热式阴极三极管主要用途:低频电压放大及高频振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.2A;阳极电压(Ua)=120V;阳极电流(Ia)=9.0±2.7mA;阴极电阻(Rk)=220Ω;跨导(S)=4~6.3mA/V;放大系数(μ)=25.(极间电容)输入电容(Cin)=2.5pF;输出电容(Cout)=2.5pF;过渡电容(Cag)≤1.58pF;灯丝与阴极间电容(Cfk)≤7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大灯丝与阴极间电压(Ufkmax)=150V; 最大阳极耗散功率(Pamax)=1.4W;最大栅极电阻(Rgmax)=1MΩ;最高频率(fmax)=500MHz.??型号:说明:类型:旁热式阴极三极管主要用途:低频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.2A;阳极电压(Ua)=250V;阳极电流(Ia)=4.5±0.9mA;阴极电阻(Rk)=400Ω;跨导(S)=4±0.9mA/V;放大系数(μ)=65.(极间电容)输入电容(Cin)=2.5pF;输出电容(Cout)=2.65pF;过渡电容(Cag)≤1.0pF;灯丝与阴极间电容(Cfk)≤7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=300V;最大灯丝与阴极间电压(Ufkmax)=±150V; 最大阳极耗散功率(Pamax)=1.45W;最大阴极电流(Ikmax)=7mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:高频脉冲振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=300V;阳极电流(Ia)=8~14.5mA;跨导(S)=3±0.6mA/V;放大系数(μ)=20±2.(极间电容)输入电容(Cin)=2.2±0.4pF;输出电容(Cout)=0.65±0.15pF;过渡电容(Cag)=3.6±0.72pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=500V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3.6W.�?型号:说明:类型:旁热式阴极三极管主要用途:超高频振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.17A;阳极电压(Ua)=120V;阳极电流(Ia)=20mA;跨导(S)=4.5mA/V;放大系数(μ)=16.(极间电容)输入电容(Cin)=1.8±0.4pF;输出电容(Cout)=0.7±0.3pF;过渡电容(Cag)=1.6±0.3pF;灯丝与阴极间电容(Cfk)=2.5pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=275V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3.5W;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:在栅地电路中作低噪超高频放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.17mA;阳极电压(Ua)=160V;阳极电流(Ia)=12±3mA;跨导(S)=13±3mA/V;放大系数(μ)=65.(极间电容)输入电容(Cin)=3.7±0.5pF;输出电容(Cout)=1.5±0.5pF;过渡电容(Cag)=0.08±0.02pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=175V;最大灯丝与阴极间电压(Ufkmax)=100V; 最大阳极耗散功率(Pamax)=2W;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极高跨导、低噪声三极管主要用途:宽频带电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=24mA;阴极电阻(Rk)=60Ω;跨导(S)=24mA/V.(极间电容)输入电容(Cin)=10pF;输出电容(Cout)=1pF;过渡电容(Cag)=3pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电流(Iamax)=30mA;最大灯丝与阴极间电压(Ufkmax)=150V;最大阳极耗散功率(Pamax)=4W.?????型号:说明:类型:旁热式阴极大功率三极管主要用途:稳压器调整管、OTL功放(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=1±0.07A;阳极电压(Ua)=110V;栅极电压(Ug)=﹣7V;阳极电流(Ia)=105±25mA;阴极电阻(Rk)=130Ω;跨导(S)=7.5±1.5mA/V;内阻(Ri)=300Ω.(极间电容)输入电容(Cin)=6.5pF;输出电容(Cout)=2.5pF;过渡电容(Cag)=8.0pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极耗散功率(Pamax)=11W;最大栅极电阻(Rgmax)=0.5MΩ;最大阳极电压①(Uamax)Pa≤7W时350V,Pa≤11W时200V;最大灯丝与阴极间电压(Ufkmax)=±250V;最大栅极电压(Ugmax)=﹣1.5V.注:①指管子在冷态时插入500V.(推荐甲类功放参数)阳极电压(Ua)=190V; 栅极电压(Ug)=﹣67V;阳极电流(Ia)=45mA;阴极自给偏压电阻(Rk)=1.5kΩ;最大阳极耗散功率(Pamax)=8.5W;负载阻抗(ZL)=1.25kΩ;输出功率(PO)=7W;非线性失真度(THD)=0.75%(1W),7%(7W).型号:说明:类型:旁热式阴极三极管主要用途:电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.22A;阳极电压(Ua)=50V;阳极电流(Ia)=40±10mA;跨导(S)=20±6mA/V;放大系数(μ)>13.(极间电容)输入电容(Cin)=4.1±1.0pF;输出电容(Cout)≤1.5pF;过渡电容(Cag)=3.8±1.0pF;灯丝与阴极间电容(Cfk)≤5.5pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=100V;最大灯丝与阴极间电压(Ufkmax)=±200V; 最大阳极耗散功率(Pamax)=2.5W;最大阴极电流(Ikmax)=50mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极遥截止三极管主要用途:电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.165A;阳极电压(Ua)=200V;阳极电流(Ia)=3.0±1.3mA;阴极电阻(Rk)=280Ω;跨导(S)=3.5±1.3mA/V;放大系数(μ)=70~140.(极间电容)输入电容(Cin)=3.0±0.7pF;输出电容(Cout)=0.65±0.35pF;过渡电容(Cag)≤1.2pF;灯丝与阴极间电容(Cfk)≤6.0pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大灯丝与阴极间电压(Ufkmax)=150V;最大阳极耗散功率(Pamax)=4.5W;最大阴极电流(Ikmax)=10mA;最大栅极电阻(Rgmax)=2MΩ.型号:说明:类型:旁热式阴极三极管主要用途:作分米波振荡(基本数据)灯丝电压(Uf)=12.6V;灯丝电流(If)=0.09A;阳极电压(Ua)=100V;阳极电流(Ia)=30.2±12.5mA;跨导(S)=2.2~4.2mA/V;放大系数(μ)=8~17;输出功率①(PO)≥275mA.注:①Ua=130V;f≥7.5x108Hz时.(极间电容)输入电容(Cin)=1.55±0.55pF;输出电容(Cout)=0.65±0.15pF;过渡电容(Cag)=1.15±0.25pF.(极限运用数据)最大灯丝电压(Ufmax)=14.5V;最小灯丝电压(Ufmin)=10.8V;最大阳极电压(Uamax)=300V;最大栅极电压(Ugmax)=50V;最小栅极电压(Ugmin)=﹣250V;最大阳极耗散功率(Pamax)=5W;最大栅极耗散功率(Pgmax)=0.25W;最小输出功率(POmin)=275mW;最大阴极电流峰值(Ikmax)=200mA;最大灯丝与阴极间电压(Ufkmax)=100V.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;荧光屏电压(UL)=250V;阳极电压(Ua)=100V;栅极电压(Ug)=0~﹣15V;阳极电阻(Ra)=0.5MΩ;栅极电阻(Rg)=0.1MΩ;荧光屏扇形指示角(θL)=5o~55o.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大荧光屏电压(ULmax)=250V;最大阳极电压(Uamax)=250V;最大阳极耗散功率(Pamax)=0.2W;最大栅极电阻(Rgmax)=3MΩ.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.03A;阳极电流①(Ia)=2±0.5mA;栅极截止电压②(Ugj)=﹣10±5V;阳极电源电压(Ea)=250V;荧光屏电压(UL)=250V;荧光屏电流①(IL)=1mA;跨导(S)≥0.5mA/V;阳极内阻(Ri)=100kΩ;栅极电阻(Rg)=3MΩ;放大系数(μ)≥20.注:①Ug=0V时;②荧光屏光带闭合时.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大荧光屏电压(ULmax)=250V;最小荧光屏电压(ULmin)=200V;最大阳极电源电压(Eamax)=250V;最大阳极耗散功率(Pamax)=0.5W;最大栅极电阻(Rgmax)=3MΩ;最大灯丝与阴极间电压(Ufmax)=±100V.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=250V;荧光屏电压(UL)=250V;栅极电压(Ug)=﹣4V;阳极电流(Ia)=5.3±1.9mA;荧光屏电流(IL)≤5mA;跨导(S)=1.2±0.4mA/V;放大系数(μ)=24±2;荧光屏扇形阴影闭合时栅极电压(UgL)=﹣7.5±2V. (极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大荧光屏电压(ULmax)=250V;最大灯丝与阴极间电压(Ufmax)=100V.型号:说明:类型:旁热式阴极三极-五极管主要用途:变频或高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.417A;(三极管部分)阳极电压(Ua)=100V;阳极电流(Ia)=13±5mA;栅极电压(Ug)=﹣2V;跨导(S)=5±1.5mA/V;放大系数(μ)=20;(五极管部分)阳极电压(Ua)=170V;阳极电流(Ia)=6~15mA;第二栅极电压(Ug2)=170V;第二栅极电流(Ig2)≤4.5mA;跨导(S)=6.2±2.2mA/V;内阻(Ri)=0.4MΩ.(极间电容)(三极管部分)输入电容(Cin)=2.5pF;输出电容(Cout)=0.3pF;过渡电容(Cag)=1.45pF;(五极管部分)输入电容(Cin)=5.5pF;输出电容(Cout)=3.4pF;过渡电容(Cag)≤0.025pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大灯丝与阴极间电压(Ufkmax)=100V; (三极管部分)最大阳极电压(Uamax)=250V; 最大阴极电流(Ikmax)=14mA;最大阳极耗散功率(Pamax)=1.5W;最大栅极电阻(Rgmax)=0.5MΩ;(五极管部分)最大阳极电压(Uamax)=250V; 最大第二栅极电压(Ug2maxp)=175V;最大阴极电流(Ikmax)=14mA;最大阳极耗散功率(Pamax)=2.5W;最大第二栅极耗散功率(Pg2max)=0.7W;最大第一栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极-五极管主要用途:振荡、混频及高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.45±0.05A;(三极管部分)阳极电压(Ua)=150V;阳极电流(Ia)=13±5mA;阴极电阻(Rk)=56Ω;跨导(S)=8.5mA/V;内阻(Ri)=5kΩ;放大系数(μ)=40;(五极管部分)阳极电压(Ua)=250V;阳极电流(Ia)=10±3mA;第二栅极电压(Ug2)=110V;第二栅极电流(Ig2)≤5.5mA;阴极电阻(Rk)=68Ω;跨导(S)=5.2mA/V;内阻(Ri)=400kΩ.(极间电容)(三极管部分)输入电容(Cin)=2.5pF;输出电容(Cout)=0.4pF;过渡电容(Cag)=1.8pF;(五极管部分)输入电容(Cin)=5pF;输出电容(Cout)=2.6pF;过渡电容(Cag)=0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大灯丝与阴极间电压(Ufkmax)=±90V; (三极管部分)最大阳极电压(Uamax)=300V; 最大栅极电压(Ugmax)=0V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.7W;最大栅极电阻(Rgmax)=1MΩ;(五极管部分)最大阳极电压(Uamax)=300V; 最大第一栅极偏压(Ug1max)=0V;最大第二栅极电压(Ug2maxp)=300V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.8W;最大第二栅极耗散功率(Pg2max)=0.5W.。

全极低功耗霍尔开关SS259使用手册

全极低功耗霍尔开关SS259使用手册

Packages Features and Benefits– Operation down to 2.5V– Micropower consumption for batterypowered applications– High sensitivity for direct reed switchreplacement applications– Omnipolar, output switches with absolutevalue of North or South pole from magnet 3 pin SOT23 (suffix SO) 3 pin SIP (suffix UA)Functional Block Diagram Application Examples–Solid-state switch– Handheld Wireless Handset Awake Switch – Lid close sensor for battery powered devices –Magnet proximity sensor for reed switch replacement in low duty cycle applicationsGeneral Description:The SS259 Omnipolar Hall effect sensor IC is fabricated from mixed signal CMOS technology. It incorporates advanced chopper-stabilization techniques to provide accurate and stable magnetic switch points.The circuit design provides an internally controlled clocking mechanism to cycle power to the Hall element and analog signal processing circuits. This serves to place the high current-consuming portions of the circuit into a “Sleep” mode. Periodically the device is “Awakened” by this internal logic and the magnetic flux from the Hall element is evaluated against the predefined thresholds. If the flux density is above or below the B OP /B RP thresholds then the output transistor is driven to change states accordingly. While in the “Sleep” cycle the output transistor is latched in its previous state. The design has been optimized for service in applications requiring extended operating lifetime in battery powered systems.The output transistor of the SS259 will be latched on (B OP ) in the presence of a sufficiently strong South or North magnetic field facing the marked side of the package. The output will be latched off (B RP ) in the absence of a magnetic field.Typical Application CircuitSEC's pole-independent sensing technique allows for operation with either a north pole or south pole magnet orientation, enhancing the manufacturability of the device. The state-of-the-art technology provides the same output polarity for either pole face.It is strongly recommended that an external bypass be connected (in close proximity to the Hall sensor) between the supply and ground of the device to reduce both external noise and noise generated by the chopper-stabilization technique. This is especially true due to the relatively high impedance of battery supplies.Internal Timing CircuitPin Definitions and DescriptionsSOT Pin №SIP Pin №Name Type Function1 1 VDD Supply Supply Voltage pin2 3 OUT Output Open Drain Output pinGroundpin3 2 GNDGroundTable 1: Pin definitions and descriptionsAbsolute Maximum RatingsParameter Symbol Value UnitsSupply Voltage (operating) V DD 6 VmASupply Current I DD 5Output Voltage V OUT 6 VOutput Current I OUT 5mA85°CtoOperating Temperature Range T A -40150°CStorage Temperature Range T S -50toESD Sensitivity - 4000 VTable 2: Absolute maximum ratingsExceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.DC Electrical CharacteristicsDC Operating Parameters: T A = 25℃, V DD= 2.75V.Parameter Symbol Test Conditions Min Typ Max UnitsOperating Voltage V DD Operating 2.5 3 5.5 VSupply Current I DD Average 5 µAmA Output Current I OUT 1.0 Saturation Voltage V SAT I OUT = 1mA 0.4 VAwake mode time T AW Operating 175µSmS Sleep mode time T SL Operating 70Table 3: DC electrical characteristicsMagnetic CharacteristicsOperating Parameters: T A = 25°C, V DD = 2.75V DCSS259Parameter Symbol Min Type Max Units Operating Point B OP- +/-35 +/-60 Gs Release Point B RP+/-5 +/-21 - Gs Hysteresis B HYST- 14 - Gs Table 4: Magnetic SpecificationsESD ProtectionHuman Body Model (HBM) tests according to: Mil. Std. 883F method 3015.7Limit ValuesUnit Notes Parameter SymbolMin MaxESD Voltage V ESD 4 kVPerformance CharacteristicsUnique FeaturesCMOS Hall IC TechnologyThe chopper stabilized amplifier uses switched capacitor techniques to eliminate the amplifier offset voltage, which, in bipolar devices, is a major source of temperature sensitive drift. CMOS makes this advanced technique possible. The CMOS chip is also much smaller than a bipolar chip, allowing very sophisticated circuitry to be placed in less space. The small chip size also contributes to lower physical stress and less power consumption.Installation CommentsConsider temperature coefficients of Hall IC and magnetic, as well as air gap and life time variations. Observe temperature limits during wave soldering. Typical IR solder-reflow profile:– No Rapid Heating and Cooling.– Recommended Preheating for max. 2minutes at 150°C– Recommended Reflowing for max. 5seconds at 240°CESD PrecautionsElectronic semiconductor products are sensitive to Electro Static Discharge (ESD).Always observe Electro Static Discharge control procedures whenever handling semiconductor products.Package UA, 3-Pin SIP:Package SOT, 3-Pin SOT-23:SOT-23 Package Hall Location:Ordering InformationPart No. Pb-free Temperature Code Package Code PackingSS259ESOT YES -40°C to 85°C SOT-23 7-in. reel, 3000 pieces/reel SS259EUA YES -40°C to 85°C TO-92 Bulk, 1000 pieces/bag SS259KSOT YES -40°C to125°C SOT-23 7-in. reel, 3000 pieces/reel SS259KUA YES -40°C to 125°C TO-92 Bulk, 1000 pieces/bag SS259LSOT YES -40°C to 150°C SOT-23 7-in. reel, 3000 pieces/reel SS259LUA YES -40°C to 150°C TO-92 Bulk, 1000 pieces/bag。

AD-259-359-409(最新-1)简中文

AD-259-359-409(最新-1)简中文

2. 减少服务成本
3. 高产出 4. 宽屏幕触摸式液晶屏 (操作简便) 5. 多种增强产品功能的设备
4
AURORA OA
1. 长寿命部件
长寿命 1. 采用A-Si 鼓 2. 采用磁性单组份显影系统 3. 在显影辊上采用不锈钢套筒 4. 定影热敏电阻采用无纸张路径特定区域控制。
5
AURORA OA
2. 减少服务成本 PM 组件保养 1. 缩短保养时间 保养周期 AD-259:400k, AD-359/409:500k
AD-259-359-409
技术培训
1
AURORA OA
目录
1. 产品特征
2. 规格 3. 安装 4. 基本保养 5. 供纸部分 7. 显影/图象形成部分 8. 定影部分 9. 版本升级 10. 内存
6. 光学部分
11. 选购件
2
AURORA OA
第1章
产品特征
3
AURORA OA
产品特征
1. 长寿命部件
打印件纸张输出部选择 机器内部, 作业分离器, 装订器接纸盘 (下), 邮箱
< 打印件选择独有的出纸部设定 >
在U341模式下, 纸盒可被选定为指定打印件出纸口。 确定选择后, 此纸盒 将无法用于复印和传真。
37
(2) 使用时无需参阅使用手册。 (3) 在初始屏幕上显示常用功能的快捷键。
8
AURORA OA
4.宽屏幕触摸式液晶屏 (1) 根据用户要求改变基本功能屏幕格式。
厂家初始设定 用户设定
可由用户设定的常用功能 • 放大/缩小 •复印密度 • 分页/ 装订 • 原稿尺寸 • 原稿模式 • 双面/分割 *无法改变原稿尺寸
12

电子管代换及说明资料

电子管代换及说明资料

电子管代换及说明常用电压放大级即前级放大胆管代换表6N1ECC85,6AQ8,6H1л6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV4926N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,61896N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,16336H8C 6HM,6F8G,1633,9002,6C8G6J8P 6SJ7,6267,EF86,12AT7ECC81,CV4024,6201,B739,A2900,2025,ECC80156N9P 6SL7,5691,33S29,VT2296F2ECF82,6U86N26H2л电子管代换及说明可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S,B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。

可以直接代用12AX7的管子有:ECC83,ECC803S,B339,E283CC,M8137,CV492,CV4004,CV8156,6057,7729。

7025,5751,7058,6N4。

前级管的选择:12AX7:品牌一:AMPEREX 『橙字』『地球嘜』品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』SYLVANIA 5157。

12AU7:品牌一:AMPEREX『地球嘜』品牌二:MULLARD ecc826922:品牌一:西门子 CCA品牌二:AMPEREX 7308PHILIPS电子管大家族“买Philips电子管?不是真的吧,他们好像只是生产灯泡和光管,其音响用电子管的质素想必好不到哪里吧!”,“Philips电子管?他们根本没有生产音响用电子管,全部都是买别人家的出品回来印牌发售,又谈何Philips电子管的音色呢?”“Amperex电子管?Amperex只是一个商标,并无自己的出品,好像其吹喇叭系列电子管,都是买Philips电子管来印牌发售的”。

IXYS Corporation 电子管数据手册说明书

IXYS Corporation 电子管数据手册说明书

Symbol Test Conditions Characteristic Values(TJ= 25︒C, Unless Otherwise Specified) Min. Typ. Max.VGE(th) IC= 250μA, VCE= VGE3.0 5.0 VI CES VCE= VCES, VGE= 0V 300 μA TJ= 125︒C 5 mAI GES VCE= 0V, VGE= ±20V ±100 nAVCE(sat) IC= 60A, VGE= 15V, Note 1 1.50 1.80 V IC= 120A 1.75 VSymbol Test Conditions Maximum RatingsVCES TJ= 25︒C to 150︒C 600VVCGR TJ= 25︒C to 150︒C, RGE= 1MΩ 600VVGESContinuous±20VVGEMTransient±30VI C25TC= 25︒C80AIC110TC= 110︒C40AIF110TC= 110︒C34AI CM TC= 25︒C, 1ms450ASSOA VGE = 15V, TVJ= 125︒C, RG= 3ΩICM= 240A(RBSOA)Clamped Inductive Load VCE ≤ VCESPC TC= 25︒C200WTJ-55 ... +150︒CTJM150︒CTstg-55 ... +150︒CVISOL50/60 Hz, 1 Minute 2500V~FCMounting Force20..120/4.5..27N/lbTLMaximum Lead Temperature for Soldering300°CTSOLD1.6mm (0.062 in.) from Case for 10s 260 °C Weight5 g VCES= 600V IC110= 40A VCE(sat)≤ 1.80V tfi(typ)= 92nsIXGR72N60B3H1GenX3TM600VIGBT w/ Diode(Electrically Isolated Tab)Me dium Speed Low Vsat PT IGBTfor 5-40 kHz Switching ISOPLUS247TMGCEG = Gate C = CollectorE = EmitterIsolated TabFeatures●Silicon Chip on Direct-Copper Bond(DCB) Substrate●Isolated Mounting SurfaceOptimized for Low Conduction andSwitching Losses●2500V~ Electrical Isolation●Square RBSOA●Anti-Parallel Ultra Fast DiodeAdvantages●High Power Density●Low Gate Drive RequirementApplications●Power Inverters●UPS●Motor Drives●SMPS●PFC Circuits●Battery Chargers●Welding Machines●Lamp BallastsIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Reverse Diode (FRED)(Symbol Test ConditionsCharacteristic Values (T J = 25︒C, Unless Otherwise Specified) Min. Typ. Max.V F I F = 60A, V GE = 0V, Note 12.45 V T J = 150°C 1.40 1.80 VI RM I F = 60A, V GE = 0V, T J = 100°C 8.3A-di F /dt = 200A/μs, V R = 300V t rr I F = 60A, -di/dt = 200A/μs, V R = 300V, T J = 100°C 140nsR thJC0.80°C/WNotes:1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.2. Switching times & energy losses may increase for higher V CE (Clamp), T J or R G .1 - Gate2 - Collector3 - EmitterEAA21 2 3E1D1D2QR Dc 3x b3x e2x b2b4D3A1LWL1IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Fig. 21 Forward Current IF vs. VFFig. 22 Typ. Reverse RecoveryCharge Qrr。

CD74HC259中文资料

CD74HC259中文资料

[ /Title (CD74 HC259 , CD74 HCT25 9) /Subject (High Speed CMOS Logic 8-Bit Addres sable Latch)
Features
Description
• Buffered Inputs and Outputs
• Four Operating Modes

Typical Propagation Delay CL = 15pF, TA = 25oC
of
15ns
at
VCC
=
5V,
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
The Harris CD74HC259 and CD74HCT259 Addressable Latch features the low-power consumption associated with CMOS circuitry and has speeds comparable to low-power Schottky.
115
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
2. Wafer or die for this part number is available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information.

电子管基础设计和结构说明书

电子管基础设计和结构说明书

Tube TopicsSection 1: Basic Tube DesignA vacuum tube consists of a vacuum envelope containing various electronic ele-ments used to emit, control, and collect a flow of electrons. A filament or cathode provides a source of electron emission. Up to three grids; the control, screen, and suppressor grids control the flow of electrons within the tube and a plate or anode collects the electron flow. Electrical energy that is not transferred to the load is converted to heat at the anode.Figure 1 shows the interior elements of a tetrode. These elements are mounted and aligned parallel and concentric with each other but are electrically isolated, as shown in Figure 2. In the example device, each bar and spiral of thescreen grid is “hidden” from the filament by a corresponding control grid bar.(a) (b) (c)Figure 1. The interior of a tetrode: (a) mesh filament, (b) control grid (c) screen gridFigure 2. Interior assembly of a power tetrode.1.1 Electron Emitter TypesThe electron emitters in vacuum tubes are either directly heated or indirectly heated. The tube types we are concerned with in this booklet are directly heated, filamentary tubes.Operating techniques that are proper for filamentary tubes are not necessarily correct for tubes with indirectly heated cathode emitters. In particular, the opera-tion of cathode types at reduced heater voltage can be destructive to the tube.Filament DesignsDirectly heated tubes have either spiral, parallel bar, hairpin, or mesh filament structures. The spiral filament structure consists of one or two strands of wire that are spiral wrapped around a central support rod. They are found in older, lower power designs. Spiral filaments are subject to sagging and shorting between the turns. As illustrated in Figure 3, the filament in (a) is normal while the filament shown in (b) has sagged because of excess filament voltage. These particular tubes operate inverted. Note the shorted turns at the top of (b).(a) (b)Figure 3. 5762/7C24 spiral filaments: (a) normal filament, (b) abnormal filamentThe hairpin structure is found in many power tubes currently installed. It con-sists of a number of parallel elements bent into the shape of a hairpin (thus the name). The current path is up one leg, across the top, and down the adjacent leg. Hairpin filament support structures have built in spring compensation for thermal expansion of the filament (Figure 4.). These filament structures can have all voltages applied without filament warm-up. Tuning will drift slightly because of relative movement of the tube elements as they reach thermal equilibrium, but there is no danger of shorting. Some tube designs require surge current limitation for the filament when initially turned on. This protection should be provided for by the equipment manufacturer and should not be bypassed.Figure 4. The hairpin filament structureFigure 5. Mesh filament structureMesh filaments are composed of filament wires woven to form a basket weave filament structure. (Figure 5.) The wire joints are spotwelded or diffusion bonded at the intersections. Mesh filaments are being designed into most new tube designs on the theory that a mesh filament permits a denser, more closely spaced structure. This allows higher stage gain, increased efficiency and higher frequency operation.The mesh structure relies on thermal expansion of the ridged upper filament support structure to compensate for thermal expansion of the filament. The current path is from the base, up through mesh filament, across top, and down through the center support rod Mesh filaments require slower warm-up as the thin, low mass filament wires come to temperature immediately as voltage is applied. As they heat, they expand, and until the more massive and slower to heat support structures reach their operating temperature to compensate for this expansion, the filament wires warp in and out. A warped filament greatly increases the possibility of a thermal grid-to-filament short circuit. Common precautions for filament operation are detailed in Section 2.5 (“Filament Voltage”). Attention to filament voltage is vital to long life and stable operation of filamentary tubes.1.2 GridsGrid elements are generally formed of wires spotwelded together to form a circular structure that completely surrounds the emitting surface of the filament. The grid controls the flow of electrons from the filament. Grids are coated withvarious materials compounded to manage the emission of electrons from thegrid. If emission of electrons from the grid is uncontrolled, it can result in high distortion or a destructive runaway effect in the tube.1.3 AnodeAnodes are copper cylinders or drawn cups that collect the flow of electrons within a tube. They have air cooling fins, vapor cooling surfaces, or water cooling jackets brazed to their exterior in order to remove the heat generated by the power not transferred to the load.PlatingThe external metal parts of tubes are plated with nickel or silver. Tubes that go into sockets are normally silver plated. The soft silver provides a better contact interface than the much harder nickel; it deforms slightly under contact pressure providing greater contact area. Silver plating has a dull, whitish cast, whereas nickel has a hard metallic appearance.Nickel is resistant to discoloration resulting from heat at normal tube operating temperatures, while silver will tarnish easily. Often, the heat patterns on silver plated tubes are helpful in problem analysis. If a nickel plated tube shows any sign of heat discoloration, a significant cooling or operational problem exists. Nickel will not discolor until it reaches a temperature much higher than a tube will reach under normal conditions. If a nickel plated tube discolors, abnormal operating conditions are present.SafetyPower tubes and the equipment they are installed in have electrical voltages present that can be lethal. The access panels to all high voltage cabinets should be installed. All interlocks should be operating and never bypassed. High voltage cabinets should be equipped with a shorting bar, which should be directly grounded. The bar is used to ground all high voltage areas before reaching into them to work on or inspect any components.Proper equipment design requires that all high voltage circuits have bleeder resistors to bleed off any residual charge to ground when the equipment is turned off. Full discharge by these bleeder circuits may take several seconds.1.4 SocketsPrior to installing a tube, it is wise to inspect the socket to determine if there are any broken pieces of fingerstock. Broken pieces of fingerstock can fall into the equipment causing shorts and other damage. They should be located and removed prior to installation of the tube. Individual finger contacts can break off on occasion and as long as they are located and removed, the socket ring does not require replacement. If more than 20 percent of fingerstock are broken off, the contact ring should be replaced. Consecutive gaps around the tube can cause improper tuning, instability, and lead to premature failure.Repair kits are available for most sockets from manufacturers. This method is far cheaper than replacing the entire socket. ECONCO is happy to advise a tube user as to where specific socket replacement parts can be obtained.Socket ProblemsLoose contact on a tube socket will always lead to problems. Some socket designs have a wire-wound spring encircling the outside circumference of the fingerstock to increase individual finger contact pressure. These should be replaced if they break or lose tension. Adequate contact pressure is vital for proper operation and long life. Some sockets have stops that are set so that the tube has the grid contacts in the middle of the contact area when fully inserted. This positioning can be checked by inserting and then removing a new tube. The scratch marks on the grid contacts will show the position of the tube relative to the socket contacts.Figure 6 shows a burned and melted grid ring on an industrial triode. This fail-ure was caused by poor contact between the grid ring and the socket.Figure 6. An industrial triode thatfailed because of socketingproblems.Tube InsertionGently rock and slightly rotate the tube as it is being inserted into the socket. This helps avoid bending and breaking of fingerstock. Be sure to apply sufficient force to seat the tube all the way into the socket. Never use a lever or hammer on the tube to set it into the socket. Manual pressure should be adequate. An intermediate point is reached when the grid contact fingerstock slides up the tube sides and first contacts the connection areas. It is important to be sure the tube is fully inserted in the socket beyond this initial point of resistance.Tubes Without SocketsMany industrial tubes and tubes used in medium-wave service are not socketed but are installed into the equipment by bolted or clamped connections. Clamped anode connections made of stainless steel should have some method of strain relief to avoid excess pressure collapsing the anode of the tube as it heats up inoperation. Stainless steel has a much lower coefficient of thermal expansion than copper.All bolted or screwed connections should be tight. It is important to check that the clamps are snug, providing good electrical contact around the entire circumfer-ence of the contact area. Because of the radio frequency fields present, all clamps and bolts should be made from non-magnetic materials. Copper, brass, or non-magnetic Series 300 stainless steel fasteners are preferred. Stainless steel is not a good conductor of electricity, and while it is used for clamping, it should not be part of the current path.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档