西电电子管手册101L
法国西电MICS中文操作说明书

MICS TELYS 中文使用说明书目录1.前言1.1安全事项1.2电源连接1.3电气连接(控制)1.4电池预检查和试运行1.5MICS Telys 第一次加电1.6欢迎界面1.7“纵览”界面2.工作模式2.1停机模式2.2编程模式2.3自动模式2.4测试模式3.休眠模式及自动断电3.1休眠模式3.2自动断电4.察看电气指标。
4.1电压4.2电流34.3频率和累计时间5.察看发动机参数6.显示LEDs及灯测试7.屏幕对比度8.显示警报和故障信息8.1屏幕信息8.2清除屏幕信息9.状态信息的显示10.进入一级菜单11“告警/故障”菜单11.1故障特性11.2告警特性11.3其他的特别情况12.“状态”菜单13.“输入”菜单14.“输出”菜单15.“对比度”菜单16.“保护”菜单16.1活动保护16.2通过CIC的保护16.3特别情况17.发电机组的操作17.1水加热器17.2发动机预热17.3油阀控制17.4启动马达控制17.5启动马达的脱离17.6转速和电压稳定17.7发电机组的输出17.8发动机冷机和关机18.ATS的操作18.1停机模式18.2自动模式18.3手动模式1、机油压力故障/停机(红灯亮)2、水温故障/停机(红灯亮)3、过载故障/停机(红灯亮)4、超速故障/停机(红灯亮)5、发电机组带载或准备带载(绿灯亮)6、充电电机报警停机(红灯亮)7、一般报警(黄灯闪烁)8、一般故障/停机(红灯闪烁)自动关闭之后重新开启按钮主菜单按钮确认按钮退出按钮浏览选择按钮及灰度调节数字键盘断开发电机组断路器闭合发电机组断路器电压显示按钮电流显示按钮频率及小时计按钮显示发动机参数按钮自动模式按钮(灯亮)测试模式按钮(灯亮)停止模式按钮(灯亮)手动模式按钮(灯亮)故障复位按钮灯光测试按钮(不包括ON按钮的灯)1.机油压力故障/停机(红灯亮)2.水温故障/停机(红灯亮)3.启动失败故障/停机(红灯亮)4.超速故障/停机(红灯亮)5.发电机组带载或准备带载(绿灯亮)6.充电发电机告警停机(红灯亮)7.综合告警(黄灯闪烁)8.综合故障/停机(红灯闪烁)四、1、前言1、1概述MICS Telys连接到不同交流电压源。
电子管数据手册共116页文档

电子管数据手册资料名称:自命名国产电子管1A2型号:说明:类型:直热式阴极七极管主要用途:变频(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;第二四栅极电压(Ug2g4)=45V;第三栅极电压(Ug3)=0V;第一栅极电压(Ug1)=0V;阳极电流(Ia)=0.7±0.3mA;第二四栅极电流(Ig2g4)=1.1±0.5mA;第一栅极电流(Ig1)=130±35μA;变频跨导(Sc)≥0.17mA/V;振荡跨导≥0.65mA/V;第一栅极电阻(Rg1)=51kΩ.(极间电容)输入电容(Cin)=5.1pF;输出电容(Cout)=6.3pF;过渡电容(Cag)≤0.6pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二四栅极电压(Ug2maxp、Ug4max)=7.5V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=3mA;最大阴极电流峰值(Ikmax)=9mA;最大阳极耗散功率(Pamax)=0.3W.型号:说明:类型:直热式阴极二极-五极管主要用途:检波和低频电压放大(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=0.9±0.4mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.35mA;跨导(S)=0.2~0.55mA;内阻(Ri)=1MΩ.(极间电容)输入电容(Cin)=1.85pF;输出电容(Cout)=2.1pF;过渡电容(Cag)=0.27pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2max)=75V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=2mA;最大阳极耗散功率(Pamax)=0.15W.型号:说明:类型:直热式阴极遥截止五极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=1.35±0.5mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)=0.35+0.15mA;跨导(S)=0.25~0.7mA;内阻(Ri)=1.5MΩ.(极间电容)输入电容(Cin)=3pF;输出电容(Cout)=4.9pF;过渡电容(Cag)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2max)=75V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=3.5mA;最大阳极耗散功率(Pamax)=0.3W.型号:说明:类型:旁热式阴极二极管主要用途:用于110o电视机行扫描逆程脉冲电压的整流(基本数据)灯丝电压(Uf)=1.4V;灯丝电流(If)=0.5±0.055A;阳极电压(Ua)=100V;阳极电流(Ia)≥8mA.(极间电容)阳极与阴极间电容(Cak)=1.55pF.(极限运用数据)最大灯丝电压(Ufmax)=1.54V;最小灯丝电压(Ufmin)=1.26V;最大整流电流(Ikmax)=0.5mA;最大反向电压峰值①(Upmax)=22kV;最大滤波电容(Cmax)=2000pF.注:①最大占空比=22%,最大脉宽=18μs时.型号:说明:类型:直热式阴极高压整流二极管主要用途:在电视机接收中作行扫描逆程电压整流(基本数据)灯丝电压(Uf)=0.7V;灯丝电流(If)=0.2A;阳极交流电压(Ua~)=100V;阳极电流(Ia)≥2mA;行扫描频率(fH)≥16kHz.(极限运用数据)最大灯丝电压(Ufmax)=0.77V;最小灯丝电压(Ufmin)=0.63V;最大反向电压峰值(Upmax)=8kV;最大整流电流(Ikmax)=3mA;最大阳极耗散功率(Pamax)=0.6W.型号:说明:类型:直热式阴极高压脉冲整流二极管主要用途:在专用无线电设备中作高频脉冲整流用(基本数据)灯丝电压(Uf)=1.25V;灯丝电流(If)=0.2±0.04A;阳极反向电压峰值(Up)≥30kV;阴极放射电流①(Ia)≥4mA;注:①Ua=100V时.(极间电容)阳极与阴极间电容(Cak)=1.2±0.5pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=1.1V;最大反向电压峰值(Upmax)=30kV;最大整流电流(Ikmax)=2mA;最大脉冲频率(fmax)=300kHz.型号:说明:类型:直热式阴极二极管主要用途:电视机接收中作行扫描逆程脉冲电压整流用(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.2A;阳极电压(Ua)=100V;阳极电流(Ia)≥4mA.(极间电容)阳极与阴极间电容(Cak)=1pF.(极限运用数据)最大灯丝电压(Ufmax)=1.32V;最小灯丝电压(Ufmin)=1.08V;最大整流电流(Ikmax)=300μA;最大反向电压峰值(Upmax)=20kV;最小行扫描频率(fmin)=12kHz.型号:说明:类型:旁热式阴极二极管主要用途:在分米波段作检波用(基本数据)灯丝电压(Uf)=2.3V;灯丝电流(If)=0.2±0.05A;阳极电压(Ua)=5V;阳极电流(Ia)≥1.6mA.(极间电容)阳极与阴极间电容(Cak)=0.1~0.4pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.2V;最大整流电流(Ikmax)=0.1mA;最大反向电压峰值(Upmax)=100V;最大阳极耗散功率(Pamax)=0.01W;最大阴极和灯丝间电压(Ufkmax)=±25V; 最高工作频率(fmax)=3GHz.型号:说明:类型:直热式阴极锐截止五极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.06A;阳极电压(Ua)=90V;阳极电流(Ia)=1.9±0.6mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.8mA;第三栅极电压(Ug3)=0V;跨导(S)=1.25±0.25mA/V.(极间电容)输入电容(Cin)≤4.5pF;输出电容(Cout)≤6.0pF;过渡电容(Cag)≤0.015pF;阳极与阴极间电容(Cak)≤0.03pF.(极限运用数据)最大灯丝电压(Ufmax)=2.5V;最小灯丝电压(Ufmin)=1.8V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2maxp)=90V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=0.5W.最大第二栅极耗散功率(Pg2max)=0.13W.型号:说明:类型:直热式阴极锐截止五极管主要用途:小功率放大及高频振荡(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.057A;阳极电压(Ua)=120V;阳极电流(Ia)=1.9±0.6mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.5mA;第三栅极电压(Ug3)=0V;跨导(S)=1.25±0.25mA/V;内阻(Ri)≥0.7MΩ.(极间电容)输入电容(Cin)≤5.3pF;输出电容(Cout)≤4.9pF;阳极与阴极间电容(Cak)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2max)=120V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=1.0W;最大第二栅极耗散功率(Pg2max)=0.3W.???型号:说明:类型:直热式阴极五极管主要用途:低频功率放大(基本数据)灯丝电压(Uf)=1.2/2.4V;灯丝电流(If)=0.06/0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=3.5±1.2mA;第一栅极电压(Ug1)=﹣3.5V;第二栅极电压(Ug2)=60V;第二栅极电流(Ig2)≤1.2mA;跨导(S)≥0.9mA/V;输出功率(PO)=50mW;非线性失真度系数(THD)≤10%.(极间电容)输入电容(Cin)=3.7pF;输出电容(Cout)=3.8pF;过渡电容(Cag)=0.4pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V/2.8V;最小灯丝电压(Ufmin)=0.9/1.8V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2maxp)=90V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V; 最大阴极电流(Ikmax)=7mA;最大阴极电流峰值(Ikmax)=10mA;最大阳极耗散功率(Pamax)=0.4W.型号:说明:类型:直热式阴极束射四极管主要用途:功率输出(基本数据)灯丝电压(Uf)=1.4/2.8V;灯丝电流(If)=0.2/0.1A;阳极电压(Ua)=135V;阳极电流(Ia)=16±4mA;第一栅极电压(Ug1)=﹣7.5V;第二栅极电压(Ug2)=90V;第二栅极电流(Ig2)≤3.1mA;输出功率(PO)≥0.15W;非线性失真度系数(THD)≤10%.(极间电容)输入电容(Cin)=4.8pF;输出电容(Cout)=4.2pF;过渡电容(Cag)≤0.34pF.(极限运用数据)最大灯丝电压(Ufmax)=1.54/3.08V;最小灯丝电压(Ufmin)=1.26/2.52V;最大阳极电压(Uamax)=150V;最大第二栅极电压(Ug2maxp)=135V;最大阴极电流(Ikmax)=23mA;最大阳极耗散功率(Pamax)=2.0W;最大第二栅极耗散功率(Pg2max)=0.5W.?????型号:说明:类型:直热式阴极五极管主要用途:功率放大(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.1A;阳极电压(Ua)=120V;阳极电流(Ia)=7.6±2.2mA;第一栅极电压(Ug1)=﹣5V;第二栅极电压(Ug2)=90V;第二栅极电流(Ig2)≤3.5mA;第三栅极电压(Ug3)=0V;跨导(S)≥1.7mA/V.(极间电容)输入电容(Cin)≤4.5pF;输出电容(Cout)≤7pF;过渡电容(Cag)≤0.03pF;阳极与阴极间电容(Cak)≤0.05pF.(极限运用数据)最大灯丝电压(Ufmax)=2.5V;最小灯丝电压(Ufmin)=1.8V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=130V;最大阴极电流(Ikmax)=15mA;最大阳极耗散功率(Pamax)=1W;最大第二栅极耗散功率(Pg2max)=0.35W.型号:说明:类型:直热式阴极五极管主要用途:小功率发射(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.11A;阳极电压(Ua)=120V;阳极电流(Ia)≥2.7mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤1.2mA;第三栅极电压(Ug3)=0V;跨导(S)≥1.5mA/V.(极间电容)输入电容(Cin)=4.85pF;输出电容(Cout)=2pF;阳极与阴极间电容(Cak)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=120V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=1W;最大第二栅极耗散功率(Pg2max)=0.3W.型号:说明:类型:直热式阴极五极管主要用途:功率放大及高频振荡(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.12A;阳极电压(Ua)=160V;阳极电流(Ia)=10mA;第一栅极电压(Ug1)=﹣5.5±1.7V;第二栅极电压(Ug2)=120V;第二栅极电流(Ig2)≤2.0mA;第三栅极电压(Ug3)=0V;跨导(S)=2.05±0.25mA/V;输出功率(PO)=1.2W.(极间电容)输入电容(Cin)=4.3pF;输出电容(Cout)=5.6pF;过渡电容(Cag)=0.055pF;阳极与阴极间电容(Cak)=0.03pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=150V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.0W;最大第二栅极耗散功率(Pg2max)=0.7W; 最高工作频率(fmax)=120MHz.型号:说明:类型:旁热式阴极高压整流二极管主要用途:高压整流(基本数据)灯丝电压(Uf)=2.5V;灯丝电流(If)=1.75±0.2A;平均整流电流(Icp)≥6.8mA;变压器次级线圈交流电压有效值(Urms)=4500V;滤波电容①(C)=0.06μF.注:①当选用大于此值的滤波电容时必须加入充电限流电阻,以免滤波电容充电峰值电流超出上述规定.(极限运用数据)最大灯丝电压(Ufmax)=2.75V;最小灯丝电压(Ufmin)=2.25V;最大阳极交流电压有效值(Urms)=4500V;最大反向电压峰值(Upmax)=12.5kV;最大整流电流(Ikmax)=7.5mA.型号:说明:类型:旁热式阴极锐截止五极管主要用途:小功率放大及高频振荡(基本数据)灯丝电压(Uf)=4.2V;灯丝电流(If)=0.225A;阳极电压(Ua)=150V;阳极电流(Ia)=1.4~3.1mA;第一栅极电压(Ug1)=﹣2.3V;第二栅极电压(Ug2)=75V;第二栅极电流(Ig2)=0.2~0.9mA;第三栅极电压(Ug3)=0V;跨导(S)=1.2~2.1mA/V;内阻(Ri)≥1MΩ;输出功率(PO)≥0.5W.(极间电容)输入电容(Cin)=4.0pF;输出电容(Cout)=4.2pF;过渡电容(Cag)≤0.007pF.(极限运用数据)最大灯丝电压(Ufmax)=4.8V;最小灯丝电压(Ufmin)=3.6V;最大阳极电压(Uamax)=250V;最大第二栅极电压(Ug2maxp)=225V;最大灯丝与阴极间电压(Ufkmax)=100V;最大阴极电流(Ikmax)=11mA;最大阳极耗散功率(Pamax)=2W;最大第二栅极耗散功率(Pg2max)=0.7W.型号:说明:类型:直热式阴极五极管主要用途:振荡及功率放大(基本数据)灯丝电压(Uf)=4.2V;灯丝电流(If)=0.325A;阳极电压(Ua)=150V;阳极电流(Ia)=60±20mA;第一栅极电压(Ug1)=﹣3.5V;第二栅极电压(Ug2)=150V;第二栅极电流(Ig2)≤6.5mA;第三栅极电压(Ug3)=0V;跨导(S)=6±1.5mA/V;输出功率(PO)≥4.2W.(极间电容)输入电容(Cin)=8.5pF;输出电容(Cout)=9.4pF;过渡电容(Cag)≤0.1pF.(极限运用数据)最大灯丝电压(Ufmax)=4.7V;最小灯丝电压(Ufmin)=3.9V;最大阳极电压(Uamax)=250V;最大第二栅极电压(Ug2maxp)=250V; 最大阴极电流(Ikmax)=50mA;最大阳极耗散功率(Pamax)=7.5W;最大第二栅极耗散功率(Pg2max)=1.5W.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=2±0.4A;平均整流电流(Icp)=125mA;变压器次级线圈交流电压有效值①(Urms)=2x500V; 变压器次级线圈交流电压有效值②(Urms)=2x350V; 滤波电容(C)=4μF;滤波电感(L)=10H.注:①滤波电路为电感输入时;②滤波电路为电容输入时.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1.4kV.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=2±0.2A;平均整流电流(Icp)=125mA;变压器次级线圈交流电压有效值(Urms)=2x400V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1.4kV.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=3±0.3A;平均整流电流(Icp)≥230mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=250mA;最大反向电压峰值(Upmax)=1550V.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=1.8~2.2A;平均整流电流(Icp)≥122mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1350V.型号:说明:类型:旁热式阴极双阳极整流二极管主要用途:全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=5±0.75A;平均整流电流(Icp)≥400mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=420mA;最大反向电压峰值(Upmax)=1700V;最大阳极耗散功率(Pamax)=30W.型号:说明:类型:旁热式阴极双阳极整流二极管主要用途:全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=3±0.3A;平均整流电流(Icp)≥190mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=205mA;最大反向电压峰值(Upmax)=1700V;最大阳极耗散功率(Pamax)=12W.型号:说明:类型:旁热式阴极七极管主要用途:变频(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=250V;阳极电流(Ia)=3±1mA;第二四栅极电压(Ug2g4)=100V;第三栅极电压(Ug3)=﹣1.5V;第二四栅极电流(Ig2g4)=7.0±2.1mA;第一栅极电阻(Rg1)=20kΩ;变频跨导(Sc)≥0.3mA/V;振荡跨导≥4.5mA/V.(极间电容)输入电容(Cin)≤8.8pF;输出电容(Cout)≤10.1pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=330V;最大第二四栅极电压(Ug2g4max)=110V;最大第三栅极电压(Ug3max)=﹣50V;最大第一栅极电流(Ig1max)=0.5mA;最大阴极电流(Ikmax)=14mA;最大灯丝与阴极间电压(Ufkmax)=100V;最大阳极耗散功率(Pamax)=1.1W;最大第二四栅极耗散功率(Pg2g4max)=1.1W.型号:说明:类型:旁热式阴极七极变频管主要用途:变频(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=250V;阳极电流(Ia)=3.5±1mA;第二四栅极电压(Ug2g4)=100V;第三栅极电压(Ug3)=0V;第一栅极电流(Ig1)=0.51±0.13mA;第二四栅极电流(Ig2g4)=9±2.5mA;变频跨导(Sc)=0.45±0.15mA/V;振荡跨导=4.7±1.2mA/V.(极间电容)输入电容(Cin)=11±3pF;输出电容(Cout)=11±3pF;过渡电容(Cag)=0.7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=330V;最大第二四栅极电压(Ug2g4max)=110V;最大第一栅极电流(Ig1max)=0.5mA;最大阴极电流(Ikmax)=15.5mA;最大灯丝与阴极间电压(Ufkmax)=100V;最大阳极耗散功率(Pamax)=1.1W;最大第二四栅极耗散功率(Pg2g4max)=1.1W.型号:说明:类型:旁热式阴极双二极-五极管主要用途:作高频和低频电压放大、检波和自动音量控制(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;(双二极管部分)平均整流电流(Icp)≥220μA;(五极管部分)阳极电压(Ua)=250V;阳极电流(Ia)=7.3~13mA;第一栅极电压(Ug1)=﹣3V;第二栅极电压(Ug2)=125V;第二栅极电流(Ig2)=2.45+1.05mA;跨导(S)=1.32~1.6mA/V.(极间电容)输入电容(Cin)=3.9~4.15pF;输出电容(Cout)=11±2pF;过渡电容(Cag)≤0.008pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=27.5V;最大第二栅极电压(Ug2maxp)=140V;最大每只二极管整流电流(Ikmax)=1mA;最大阳极耗散功率(Pamax)=4W;最大第二栅极耗散功率(Pg2max)=0.3W;最大灯丝与阴极间电压(Ufkmax)=100V.型号:说明:类型:旁热式阴极三极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.15A;阳极电压(Ua)=250V;阳极电流(Ia)=6.1±2.5mA;栅极电压(Ug)=﹣7V;跨导(S)=2.65±0.65mA/V;内阻(Ri)=8.4~14.8kΩ.(极间电容)输入电容(Cin)=0.95~1.8pF;输出电容(Cout)=0.75~1.45pF;过渡电容(Cag)=1.0~1.8pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=275V;最大灯丝与阴极间电压(Ufkmax)=﹣90V; 最大阳极耗散功率(Pamax)=1.8W.型号:说明:类型:旁热式阴极三极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=16±4mA;阴极电阻(Rk)=100Ω;跨导(S)=19.5±4.5mA/V;放大系数(μ)=50±15.(极间电容)输入电容(Cin)=5.5pF;输出电容(Cout)=0.85pF;过渡电容(Cag)≤2.4pF;灯丝与阴极间电容(Cfk)=7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=160V;最大灯丝与阴极间电压(Ufkmax)=+100V(-160V); 最大阳极耗散功率(Pamax)=3W;最大阴极电流(Ikmax)=35mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:宽频带高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=16±4mA;阴极电阻(Rk)=100Ω;跨导(S)=19.5±4.5mA/V;放大系数(μ)=50±15.(极间电容)输入电容(Cin)≤13.3pF;输出电容(Cout)≤0.17pF;过渡电容(Cag)≤3.75pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=160V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3W;最大阴极电流(Ikmax)=35mA;最大栅极电阻(Rgmax)=1MΩ.?????�型号:说明:类型:旁热式阴极三极管主要用途:作分米和厘米波段的小功率振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.7±0.07A;阳极电压(Ua)=250V;阳极电流(Ia)=8~23A;跨导(S)=5±1.5mA/V;放大系数(μ)=40±10.(极间电容)输入电容(Cin)=1.9~2.8pF;输出电容(Cout)≤0.05pF;过渡电容(Cag)=1.15~1.5pF.(极限运用数据)最大灯丝电压(Ufmax)=6.6V;最小灯丝电压(Ufmin)=6.0V;最大阳极电压(Uamax)=300V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=6.5W;最高振荡频率(fmax)=3370MHz.型号:说明:类型:旁热式阴极三极管主要用途:检波和低频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=﹣8V;阳极电流(Ia)=8±3mA;跨导(S)=2.2±0.5mA/V;内阻(Ri)=9kΩ;放大系数(μ)=20±2.(极间电容)输入电容(Cin)=3.8±0.9pF;输出电容(Cout)=7.4~13.4pF;过渡电容(Cag)=2±0.6pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=350V;最大灯丝与阴极间电压(Ufkmax)=100V; 最大阳极耗散功率(Pamax)=2.75W.型号:说明:类型:旁热式阴极三极管主要用途:低频电压放大及高频振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.2A;阳极电压(Ua)=120V;阳极电流(Ia)=9.0±2.7mA;阴极电阻(Rk)=220Ω;跨导(S)=4~6.3mA/V;放大系数(μ)=25.(极间电容)输入电容(Cin)=2.5pF;输出电容(Cout)=2.5pF;过渡电容(Cag)≤1.58pF;灯丝与阴极间电容(Cfk)≤7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大灯丝与阴极间电压(Ufkmax)=150V; 最大阳极耗散功率(Pamax)=1.4W;最大栅极电阻(Rgmax)=1MΩ;最高频率(fmax)=500MHz.??型号:说明:类型:旁热式阴极三极管主要用途:低频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.2A;阳极电压(Ua)=250V;阳极电流(Ia)=4.5±0.9mA;阴极电阻(Rk)=400Ω;跨导(S)=4±0.9mA/V;放大系数(μ)=65.(极间电容)输入电容(Cin)=2.5pF;输出电容(Cout)=2.65pF;过渡电容(Cag)≤1.0pF;灯丝与阴极间电容(Cfk)≤7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=300V;最大灯丝与阴极间电压(Ufkmax)=±150V; 最大阳极耗散功率(Pamax)=1.45W;最大阴极电流(Ikmax)=7mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:高频脉冲振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=300V;阳极电流(Ia)=8~14.5mA;跨导(S)=3±0.6mA/V;放大系数(μ)=20±2.(极间电容)输入电容(Cin)=2.2±0.4pF;输出电容(Cout)=0.65±0.15pF;过渡电容(Cag)=3.6±0.72pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=500V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3.6W.�?型号:说明:类型:旁热式阴极三极管主要用途:超高频振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.17A;阳极电压(Ua)=120V;阳极电流(Ia)=20mA;跨导(S)=4.5mA/V;放大系数(μ)=16.(极间电容)输入电容(Cin)=1.8±0.4pF;输出电容(Cout)=0.7±0.3pF;过渡电容(Cag)=1.6±0.3pF;灯丝与阴极间电容(Cfk)=2.5pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=275V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3.5W;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:在栅地电路中作低噪超高频放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.17mA;阳极电压(Ua)=160V;阳极电流(Ia)=12±3mA;跨导(S)=13±3mA/V;放大系数(μ)=65.(极间电容)输入电容(Cin)=3.7±0.5pF;输出电容(Cout)=1.5±0.5pF;过渡电容(Cag)=0.08±0.02pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=175V;最大灯丝与阴极间电压(Ufkmax)=100V; 最大阳极耗散功率(Pamax)=2W;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极高跨导、低噪声三极管主要用途:宽频带电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=24mA;阴极电阻(Rk)=60Ω;跨导(S)=24mA/V.(极间电容)输入电容(Cin)=10pF;输出电容(Cout)=1pF;过渡电容(Cag)=3pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电流(Iamax)=30mA;最大灯丝与阴极间电压(Ufkmax)=150V;最大阳极耗散功率(Pamax)=4W.?????型号:说明:类型:旁热式阴极大功率三极管主要用途:稳压器调整管、OTL功放(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=1±0.07A;阳极电压(Ua)=110V;栅极电压(Ug)=﹣7V;阳极电流(Ia)=105±25mA;阴极电阻(Rk)=130Ω;跨导(S)=7.5±1.5mA/V;内阻(Ri)=300Ω.(极间电容)输入电容(Cin)=6.5pF;输出电容(Cout)=2.5pF;过渡电容(Cag)=8.0pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极耗散功率(Pamax)=11W;最大栅极电阻(Rgmax)=0.5MΩ;最大阳极电压①(Uamax)Pa≤7W时350V,Pa≤11W时200V;最大灯丝与阴极间电压(Ufkmax)=±250V;最大栅极电压(Ugmax)=﹣1.5V.注:①指管子在冷态时插入500V.(推荐甲类功放参数)阳极电压(Ua)=190V; 栅极电压(Ug)=﹣67V;阳极电流(Ia)=45mA;阴极自给偏压电阻(Rk)=1.5kΩ;最大阳极耗散功率(Pamax)=8.5W;负载阻抗(ZL)=1.25kΩ;输出功率(PO)=7W;非线性失真度(THD)=0.75%(1W),7%(7W).型号:说明:类型:旁热式阴极三极管主要用途:电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.22A;阳极电压(Ua)=50V;阳极电流(Ia)=40±10mA;跨导(S)=20±6mA/V;放大系数(μ)>13.(极间电容)输入电容(Cin)=4.1±1.0pF;输出电容(Cout)≤1.5pF;过渡电容(Cag)=3.8±1.0pF;灯丝与阴极间电容(Cfk)≤5.5pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=100V;最大灯丝与阴极间电压(Ufkmax)=±200V; 最大阳极耗散功率(Pamax)=2.5W;最大阴极电流(Ikmax)=50mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极遥截止三极管主要用途:电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.165A;阳极电压(Ua)=200V;阳极电流(Ia)=3.0±1.3mA;阴极电阻(Rk)=280Ω;跨导(S)=3.5±1.3mA/V;放大系数(μ)=70~140.(极间电容)输入电容(Cin)=3.0±0.7pF;输出电容(Cout)=0.65±0.35pF;过渡电容(Cag)≤1.2pF;灯丝与阴极间电容(Cfk)≤6.0pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大灯丝与阴极间电压(Ufkmax)=150V;最大阳极耗散功率(Pamax)=4.5W;最大阴极电流(Ikmax)=10mA;最大栅极电阻(Rgmax)=2MΩ.型号:说明:类型:旁热式阴极三极管主要用途:作分米波振荡(基本数据)灯丝电压(Uf)=12.6V;灯丝电流(If)=0.09A;阳极电压(Ua)=100V;阳极电流(Ia)=30.2±12.5mA;跨导(S)=2.2~4.2mA/V;放大系数(μ)=8~17;输出功率①(PO)≥275mA.注:①Ua=130V;f≥7.5x108Hz时.(极间电容)输入电容(Cin)=1.55±0.55pF;输出电容(Cout)=0.65±0.15pF;过渡电容(Cag)=1.15±0.25pF.(极限运用数据)最大灯丝电压(Ufmax)=14.5V;最小灯丝电压(Ufmin)=10.8V;最大阳极电压(Uamax)=300V;最大栅极电压(Ugmax)=50V;最小栅极电压(Ugmin)=﹣250V;最大阳极耗散功率(Pamax)=5W;最大栅极耗散功率(Pgmax)=0.25W;最小输出功率(POmin)=275mW;最大阴极电流峰值(Ikmax)=200mA;最大灯丝与阴极间电压(Ufkmax)=100V.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;荧光屏电压(UL)=250V;阳极电压(Ua)=100V;栅极电压(Ug)=0~﹣15V;阳极电阻(Ra)=0.5MΩ;栅极电阻(Rg)=0.1MΩ;荧光屏扇形指示角(θL)=5o~55o.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大荧光屏电压(ULmax)=250V;最大阳极电压(Uamax)=250V;最大阳极耗散功率(Pamax)=0.2W;最大栅极电阻(Rgmax)=3MΩ.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.03A;阳极电流①(Ia)=2±0.5mA;栅极截止电压②(Ugj)=﹣10±5V;阳极电源电压(Ea)=250V;荧光屏电压(UL)=250V;荧光屏电流①(IL)=1mA;跨导(S)≥0.5mA/V;阳极内阻(Ri)=100kΩ;栅极电阻(Rg)=3MΩ;放大系数(μ)≥20.注:①Ug=0V时;②荧光屏光带闭合时.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大荧光屏电压(ULmax)=250V;最小荧光屏电压(ULmin)=200V;最大阳极电源电压(Eamax)=250V;最大阳极耗散功率(Pamax)=0.5W;最大栅极电阻(Rgmax)=3MΩ;最大灯丝与阴极间电压(Ufmax)=±100V.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=250V;荧光屏电压(UL)=250V;栅极电压(Ug)=﹣4V;阳极电流(Ia)=5.3±1.9mA;荧光屏电流(IL)≤5mA;跨导(S)=1.2±0.4mA/V;放大系数(μ)=24±2;荧光屏扇形阴影闭合时栅极电压(UgL)=﹣7.5±2V. (极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大荧光屏电压(ULmax)=250V;最大灯丝与阴极间电压(Ufmax)=100V.型号:说明:类型:旁热式阴极三极-五极管主要用途:变频或高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.417A;(三极管部分)阳极电压(Ua)=100V;阳极电流(Ia)=13±5mA;栅极电压(Ug)=﹣2V;跨导(S)=5±1.5mA/V;放大系数(μ)=20;(五极管部分)阳极电压(Ua)=170V;阳极电流(Ia)=6~15mA;第二栅极电压(Ug2)=170V;第二栅极电流(Ig2)≤4.5mA;跨导(S)=6.2±2.2mA/V;内阻(Ri)=0.4MΩ.(极间电容)(三极管部分)输入电容(Cin)=2.5pF;输出电容(Cout)=0.3pF;过渡电容(Cag)=1.45pF;(五极管部分)输入电容(Cin)=5.5pF;输出电容(Cout)=3.4pF;过渡电容(Cag)≤0.025pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大灯丝与阴极间电压(Ufkmax)=100V; (三极管部分)最大阳极电压(Uamax)=250V; 最大阴极电流(Ikmax)=14mA;最大阳极耗散功率(Pamax)=1.5W;最大栅极电阻(Rgmax)=0.5MΩ;(五极管部分)最大阳极电压(Uamax)=250V; 最大第二栅极电压(Ug2maxp)=175V;最大阴极电流(Ikmax)=14mA;最大阳极耗散功率(Pamax)=2.5W;最大第二栅极耗散功率(Pg2max)=0.7W;最大第一栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极-五极管主要用途:振荡、混频及高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.45±0.05A;(三极管部分)阳极电压(Ua)=150V;阳极电流(Ia)=13±5mA;阴极电阻(Rk)=56Ω;跨导(S)=8.5mA/V;内阻(Ri)=5kΩ;放大系数(μ)=40;(五极管部分)阳极电压(Ua)=250V;阳极电流(Ia)=10±3mA;第二栅极电压(Ug2)=110V;第二栅极电流(Ig2)≤5.5mA;阴极电阻(Rk)=68Ω;跨导(S)=5.2mA/V;内阻(Ri)=400kΩ.(极间电容)(三极管部分)输入电容(Cin)=2.5pF;输出电容(Cout)=0.4pF;过渡电容(Cag)=1.8pF;(五极管部分)输入电容(Cin)=5pF;输出电容(Cout)=2.6pF;过渡电容(Cag)=0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大灯丝与阴极间电压(Ufkmax)=±90V; (三极管部分)最大阳极电压(Uamax)=300V; 最大栅极电压(Ugmax)=0V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.7W;最大栅极电阻(Rgmax)=1MΩ;(五极管部分)最大阳极电压(Uamax)=300V; 最大第一栅极偏压(Ug1max)=0V;最大第二栅极电压(Ug2maxp)=300V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.8W;最大第二栅极耗散功率(Pg2max)=0.5W.。
电子管代换及说明资料

电子管代换及说明常用电压放大级即前级放大胆管代换表6N1ECC85,6AQ8,6H1л6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV4926N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,61896N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,16336H8C 6HM,6F8G,1633,9002,6C8G6J8P 6SJ7,6267,EF86,12AT7ECC81,CV4024,6201,B739,A2900,2025,ECC80156N9P 6SL7,5691,33S29,VT2296F2ECF82,6U86N26H2л电子管代换及说明可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S,B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。
可以直接代用12AX7的管子有:ECC83,ECC803S,B339,E283CC,M8137,CV492,CV4004,CV8156,6057,7729。
7025,5751,7058,6N4。
前级管的选择:12AX7:品牌一:AMPEREX 『橙字』『地球嘜』品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』SYLVANIA 5157。
12AU7:品牌一:AMPEREX『地球嘜』品牌二:MULLARD ecc826922:品牌一:西门子 CCA品牌二:AMPEREX 7308PHILIPS电子管大家族“买Philips电子管?不是真的吧,他们好像只是生产灯泡和光管,其音响用电子管的质素想必好不到哪里吧!”,“Philips电子管?他们根本没有生产音响用电子管,全部都是买别人家的出品回来印牌发售,又谈何Philips电子管的音色呢?”“Amperex电子管?Amperex只是一个商标,并无自己的出品,好像其吹喇叭系列电子管,都是买Philips电子管来印牌发售的”。
IXYS Corporation 电子管数据手册说明书

Symbol Test Conditions Characteristic Values(TJ= 25︒C, Unless Otherwise Specified) Min. Typ. Max.VGE(th) IC= 250μA, VCE= VGE3.0 5.0 VI CES VCE= VCES, VGE= 0V 300 μA TJ= 125︒C 5 mAI GES VCE= 0V, VGE= ±20V ±100 nAVCE(sat) IC= 60A, VGE= 15V, Note 1 1.50 1.80 V IC= 120A 1.75 VSymbol Test Conditions Maximum RatingsVCES TJ= 25︒C to 150︒C 600VVCGR TJ= 25︒C to 150︒C, RGE= 1MΩ 600VVGESContinuous±20VVGEMTransient±30VI C25TC= 25︒C80AIC110TC= 110︒C40AIF110TC= 110︒C34AI CM TC= 25︒C, 1ms450ASSOA VGE = 15V, TVJ= 125︒C, RG= 3ΩICM= 240A(RBSOA)Clamped Inductive Load VCE ≤ VCESPC TC= 25︒C200WTJ-55 ... +150︒CTJM150︒CTstg-55 ... +150︒CVISOL50/60 Hz, 1 Minute 2500V~FCMounting Force20..120/4.5..27N/lbTLMaximum Lead Temperature for Soldering300°CTSOLD1.6mm (0.062 in.) from Case for 10s 260 °C Weight5 g VCES= 600V IC110= 40A VCE(sat)≤ 1.80V tfi(typ)= 92nsIXGR72N60B3H1GenX3TM600VIGBT w/ Diode(Electrically Isolated Tab)Me dium Speed Low Vsat PT IGBTfor 5-40 kHz Switching ISOPLUS247TMGCEG = Gate C = CollectorE = EmitterIsolated TabFeatures●Silicon Chip on Direct-Copper Bond(DCB) Substrate●Isolated Mounting SurfaceOptimized for Low Conduction andSwitching Losses●2500V~ Electrical Isolation●Square RBSOA●Anti-Parallel Ultra Fast DiodeAdvantages●High Power Density●Low Gate Drive RequirementApplications●Power Inverters●UPS●Motor Drives●SMPS●PFC Circuits●Battery Chargers●Welding Machines●Lamp BallastsIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Reverse Diode (FRED)(Symbol Test ConditionsCharacteristic Values (T J = 25︒C, Unless Otherwise Specified) Min. Typ. Max.V F I F = 60A, V GE = 0V, Note 12.45 V T J = 150°C 1.40 1.80 VI RM I F = 60A, V GE = 0V, T J = 100°C 8.3A-di F /dt = 200A/μs, V R = 300V t rr I F = 60A, -di/dt = 200A/μs, V R = 300V, T J = 100°C 140nsR thJC0.80°C/WNotes:1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.2. Switching times & energy losses may increase for higher V CE (Clamp), T J or R G .1 - Gate2 - Collector3 - EmitterEAA21 2 3E1D1D2QR Dc 3x b3x e2x b2b4D3A1LWL1IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Fig. 21 Forward Current IF vs. VFFig. 22 Typ. Reverse RecoveryCharge Qrr。
SEG101 PIR Wireless WH产品说明书

SEG101 PIR IP65 Wireless WH注意事项Please Pay Attention 无线天线位置The location of wireless antenna感应器远离风口Sensor far away from air outlet 感应器远离热源Sensor far away from heat source*参考应用指导备注:客户装完电池后,请注意避免误按功能按键* Refer to the application guideNote: after installing the battery, please avoid pressing the function button by mistake技术参数供电: 2节AA电池感应角度: 最大360°(高挂天花)安装高度: 安装高度2.5-4m(典型值3m)感应距离: 半径3米(高挂3m,温度25℃)亮灯持续时间: 4档可调(3/10/15/30min)背景亮度等级: 4档可调(阈值20%/30%/50%/70%)防尘防水等级: IP20/IP65 (仅限室内使用)Technical parametersSupply: 2pcs AA batteryInduction angle: Maximum 360° (high hanging ceiling) Mounting height: 2.5-4m (typical height 3m) Induction distance: radius 3m (at height 3m,Ta 25℃) Duration of hold on time: 4 switchs can be adjustable (3/ 10/15/30min)External brightness level: 4 switchs can be adjustable (20%/30%/50%/70%)Dustproof and waterproof grade: IP20 (For indoor use only )1.感应器安装应离热源2米以上,热源包括空调,加热器,壁炉等发热设备。
ELAC DS-C101W-G说明书

ELAC DS-C101W-G说明书重要安全说明1.一般信息•请阅读并遵守这些安全说明。
•请妥善保管,以便日后参考。
•请遵守装置上和手册中的所有警告。
使用前请检查扬声器是否损坏。
本装置必须处于完美的工作状态。
损坏的部件可能导致人身伤害。
2.仅按指示使用•按照手册中的说明连接设备。
3.地点•只需将设备安装在一个水平面上•在为该设备选择位置时,不要将其放置在有以下情况的地方。
•在阳光直射下•非常湿润•易受振动影响•特别热或特别冷不要堵塞任何通风口。
按照制造商的说明进行安装。
•请勿将本设备安装在封闭的机架或封闭的橱柜中。
•不要把燃烧的蜡烛放在设备上或附近。
•不要在变压器附近安装设备,因为电磁杂散场会导致低音扬声器出现嗡嗡声。
4.服务危险!不要打开机柜,因为部件和导体可能带有危险等级的电流!请不要打开机柜。
只能由合格的服务人员进行维修。
当扬声器以任何方式被损坏时,如电源线或插头损坏,或有液体溢出或物体落入扬声器时,需要进行维修。
扬声器被暴露在雨中或湿气中,不能正常操作,或被掉落。
为减少电击的危险,请勿打开扬声器。
维修工作只能由合格的服务人员进行。
5.清洁注意:只能用柔软、光滑的布或防尘刷清洁。
不要使用洗刷剂、酒精、苯、家具上光剂或其他药剂进行清洁!现代家具通常涂有多种清漆和塑料,可以用化学制剂处理。
这些药剂中有些含有降解或软化橡胶脚的物质。
6.废弃处理包装是由可回收材料制成的。
请以环保的方式进行处理。
在使用寿命结束时,不要将扬声器与标准的家庭垃圾一起处理。
必须按照当地法律规定对扬声器进行回收。
由于本设备含有宝贵的原材料,请向当地政府询问有关回收的进一步信息。
在弃置前请禁用扬声器。
7.权力本设备只能连接到箱体后面板上所列的电压。
连接到任何其他电压可能会对亚低音扬声器造成不可逆的损坏,并且会导致保修失效。
不建议使用插头适配器,因为它们可能会允许连接到本低音炮背面所印的电压以外的电压。
8.无线发射器的合规信息无线电认证号前的术语"IC:"仅表示符合加拿大工业部的技术规范。
电子管基础设计和结构说明书

Tube TopicsSection 1: Basic Tube DesignA vacuum tube consists of a vacuum envelope containing various electronic ele-ments used to emit, control, and collect a flow of electrons. A filament or cathode provides a source of electron emission. Up to three grids; the control, screen, and suppressor grids control the flow of electrons within the tube and a plate or anode collects the electron flow. Electrical energy that is not transferred to the load is converted to heat at the anode.Figure 1 shows the interior elements of a tetrode. These elements are mounted and aligned parallel and concentric with each other but are electrically isolated, as shown in Figure 2. In the example device, each bar and spiral of thescreen grid is “hidden” from the filament by a corresponding control grid bar.(a) (b) (c)Figure 1. The interior of a tetrode: (a) mesh filament, (b) control grid (c) screen gridFigure 2. Interior assembly of a power tetrode.1.1 Electron Emitter TypesThe electron emitters in vacuum tubes are either directly heated or indirectly heated. The tube types we are concerned with in this booklet are directly heated, filamentary tubes.Operating techniques that are proper for filamentary tubes are not necessarily correct for tubes with indirectly heated cathode emitters. In particular, the opera-tion of cathode types at reduced heater voltage can be destructive to the tube.Filament DesignsDirectly heated tubes have either spiral, parallel bar, hairpin, or mesh filament structures. The spiral filament structure consists of one or two strands of wire that are spiral wrapped around a central support rod. They are found in older, lower power designs. Spiral filaments are subject to sagging and shorting between the turns. As illustrated in Figure 3, the filament in (a) is normal while the filament shown in (b) has sagged because of excess filament voltage. These particular tubes operate inverted. Note the shorted turns at the top of (b).(a) (b)Figure 3. 5762/7C24 spiral filaments: (a) normal filament, (b) abnormal filamentThe hairpin structure is found in many power tubes currently installed. It con-sists of a number of parallel elements bent into the shape of a hairpin (thus the name). The current path is up one leg, across the top, and down the adjacent leg. Hairpin filament support structures have built in spring compensation for thermal expansion of the filament (Figure 4.). These filament structures can have all voltages applied without filament warm-up. Tuning will drift slightly because of relative movement of the tube elements as they reach thermal equilibrium, but there is no danger of shorting. Some tube designs require surge current limitation for the filament when initially turned on. This protection should be provided for by the equipment manufacturer and should not be bypassed.Figure 4. The hairpin filament structureFigure 5. Mesh filament structureMesh filaments are composed of filament wires woven to form a basket weave filament structure. (Figure 5.) The wire joints are spotwelded or diffusion bonded at the intersections. Mesh filaments are being designed into most new tube designs on the theory that a mesh filament permits a denser, more closely spaced structure. This allows higher stage gain, increased efficiency and higher frequency operation.The mesh structure relies on thermal expansion of the ridged upper filament support structure to compensate for thermal expansion of the filament. The current path is from the base, up through mesh filament, across top, and down through the center support rod Mesh filaments require slower warm-up as the thin, low mass filament wires come to temperature immediately as voltage is applied. As they heat, they expand, and until the more massive and slower to heat support structures reach their operating temperature to compensate for this expansion, the filament wires warp in and out. A warped filament greatly increases the possibility of a thermal grid-to-filament short circuit. Common precautions for filament operation are detailed in Section 2.5 (“Filament Voltage”). Attention to filament voltage is vital to long life and stable operation of filamentary tubes.1.2 GridsGrid elements are generally formed of wires spotwelded together to form a circular structure that completely surrounds the emitting surface of the filament. The grid controls the flow of electrons from the filament. Grids are coated withvarious materials compounded to manage the emission of electrons from thegrid. If emission of electrons from the grid is uncontrolled, it can result in high distortion or a destructive runaway effect in the tube.1.3 AnodeAnodes are copper cylinders or drawn cups that collect the flow of electrons within a tube. They have air cooling fins, vapor cooling surfaces, or water cooling jackets brazed to their exterior in order to remove the heat generated by the power not transferred to the load.PlatingThe external metal parts of tubes are plated with nickel or silver. Tubes that go into sockets are normally silver plated. The soft silver provides a better contact interface than the much harder nickel; it deforms slightly under contact pressure providing greater contact area. Silver plating has a dull, whitish cast, whereas nickel has a hard metallic appearance.Nickel is resistant to discoloration resulting from heat at normal tube operating temperatures, while silver will tarnish easily. Often, the heat patterns on silver plated tubes are helpful in problem analysis. If a nickel plated tube shows any sign of heat discoloration, a significant cooling or operational problem exists. Nickel will not discolor until it reaches a temperature much higher than a tube will reach under normal conditions. If a nickel plated tube discolors, abnormal operating conditions are present.SafetyPower tubes and the equipment they are installed in have electrical voltages present that can be lethal. The access panels to all high voltage cabinets should be installed. All interlocks should be operating and never bypassed. High voltage cabinets should be equipped with a shorting bar, which should be directly grounded. The bar is used to ground all high voltage areas before reaching into them to work on or inspect any components.Proper equipment design requires that all high voltage circuits have bleeder resistors to bleed off any residual charge to ground when the equipment is turned off. Full discharge by these bleeder circuits may take several seconds.1.4 SocketsPrior to installing a tube, it is wise to inspect the socket to determine if there are any broken pieces of fingerstock. Broken pieces of fingerstock can fall into the equipment causing shorts and other damage. They should be located and removed prior to installation of the tube. Individual finger contacts can break off on occasion and as long as they are located and removed, the socket ring does not require replacement. If more than 20 percent of fingerstock are broken off, the contact ring should be replaced. Consecutive gaps around the tube can cause improper tuning, instability, and lead to premature failure.Repair kits are available for most sockets from manufacturers. This method is far cheaper than replacing the entire socket. ECONCO is happy to advise a tube user as to where specific socket replacement parts can be obtained.Socket ProblemsLoose contact on a tube socket will always lead to problems. Some socket designs have a wire-wound spring encircling the outside circumference of the fingerstock to increase individual finger contact pressure. These should be replaced if they break or lose tension. Adequate contact pressure is vital for proper operation and long life. Some sockets have stops that are set so that the tube has the grid contacts in the middle of the contact area when fully inserted. This positioning can be checked by inserting and then removing a new tube. The scratch marks on the grid contacts will show the position of the tube relative to the socket contacts.Figure 6 shows a burned and melted grid ring on an industrial triode. This fail-ure was caused by poor contact between the grid ring and the socket.Figure 6. An industrial triode thatfailed because of socketingproblems.Tube InsertionGently rock and slightly rotate the tube as it is being inserted into the socket. This helps avoid bending and breaking of fingerstock. Be sure to apply sufficient force to seat the tube all the way into the socket. Never use a lever or hammer on the tube to set it into the socket. Manual pressure should be adequate. An intermediate point is reached when the grid contact fingerstock slides up the tube sides and first contacts the connection areas. It is important to be sure the tube is fully inserted in the socket beyond this initial point of resistance.Tubes Without SocketsMany industrial tubes and tubes used in medium-wave service are not socketed but are installed into the equipment by bolted or clamped connections. Clamped anode connections made of stainless steel should have some method of strain relief to avoid excess pressure collapsing the anode of the tube as it heats up inoperation. Stainless steel has a much lower coefficient of thermal expansion than copper.All bolted or screwed connections should be tight. It is important to check that the clamps are snug, providing good electrical contact around the entire circumfer-ence of the contact area. Because of the radio frequency fields present, all clamps and bolts should be made from non-magnetic materials. Copper, brass, or non-magnetic Series 300 stainless steel fasteners are preferred. Stainless steel is not a good conductor of electricity, and while it is used for clamping, it should not be part of the current path.。
AM29LV065DU101REF资料

July 2003The following document specifies Spansion memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that orig-inally developed the specification, these products will be offered to customers of both AMD and Fujitsu.Continuity of SpecificationsThere is no change to this datasheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal datasheet improvement and are noted in the document revision summary, where supported. Future routine revisions will occur when appropriate,and changes will be noted in a revision summary.Continuity of Ordering Part NumbersAMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM”. To order these products, please use only the Ordering Part Numbers listed in this document.For More InformationPlease contact your local AMD or Fujitsu sales office for additional information about Spansion memory solutions.Am29L V065DData SheetPublication Number 23544 Revision C Amendment 2Issue Date February 16, 2006THIS PAGE LEFT INTENTIONALLY BLANK.Publication# 23544Rev: C Amendment: 2Issue Date: February 16, 2006Refer to AMD’s Website () for the latest information.Am29LV065D64 Megabit (8 M x 8-Bit) CMOS 3.0 Volt-onlyUniform Sector Flash Memory with VersatileIO TM ControlDISTINCTIVE CHARACTERISTICS■Single power supply operation— 3.0 to 3.6 volt read, erase, and program operations ■VersatileIO TM control—Device generates output voltages and tolerates inputvoltages on the DQ I/Os as determined by the voltage on V IO input ■High performance—Access times as fast as 90 ns■Manufactured on 0.23 µm process technology ■CFI (Common Flash Interface) compliant—Provides device-specific information to the system,allowing host software to easily reconfigure for different Flash devices ■SecSi (Secured Silicon) Sector region—256-byte sector for permanent, secure identificationthrough an 16-byte random Electronic Serial Number —May be programmed and locked at the factory or bythe customer—Accessible through a command sequence ■Ultra low power consumption (typical values at 3.0 V ,5 MHz)—9 mA typical active read current—26 mA typical erase/program current —200 nA typical standby mode current ■Flexible sector architecture—One hundred twenty-eight 64 Kbyte sectors■Sector Protection— A hardware method to lock a sector to preventprogram or erase operations within that sector—Sectors can be locked in-system or via programmingequipment—T emporary Sector Unprotect feature allows codechanges in previously locked sectors ■Embedded Algorithms—Embedded Erase algorithm automaticallypreprograms and erases the entire chip or any combination of designated sectors—Embedded Program algorithm automatically writesand verifies data at specified addresses■Compatibility with JEDEC standards—Pinout and software compatible with single-powersupply Flash—Superior inadvertent write protection ■Minimum 1 million erase cycle guarantee per sector ■Package options—48-pin TSOP —63-ball FBGA■Erase Suspend/Erase Resume—Suspends an erase operation to read data from, orprogram data to, a sector that is not being erased, then resumes the erase operation ■Data# Polling and toggle bits—Provides a software method of detecting program orerase operation completion ■Unlock Bypass Program command—Reduces overall programming time when issuingmultiple program command sequences ■Ready/Busy# pin (RY/BY#)—Provides a hardware method of detecting program orerase cycle completion ■Hardware reset pin (RESET#)—Hardware method to reset the device for reading arraydata ■ACC pin—Accelerates programming time for higher throughputduring system production ■Program and Erase Performance (V HH not applied tothe ACC input pin)—Byte program time: 5 µs typical—Sector erase time: 0.9 s typical for each 64 Kbytesector ■20-year data retention at 125°C—Reliable operation for the life of the systemGENERAL DESCRIPTIONThe Am29LV065D is a 64 Mbit, 3.0 Volt (3.0 V to 3.6 V) single power supply flash memory devices orga-nized as 8,388,608 bytes. Data appears on DQ0-DQ7. The device is designed to be programmed in-system with the standard system 3.0 volt V CC supply. A 12.0 volt V PP is not required for program or erase opera-tions. The device can also be programmed in standard EPROM programmers.The device offers access times of 90, 100, and 120 ns. The device is offered in standard 48-pin TSOP and 63-ball FBGA packages. To eliminate bus contention each device has separate chip enable (CE#), write en-able (WE#) and output enable (OE#) controls.Each device requires only a single 3.0 Volt power supply (3.0 V to 3.6 V) for both read and write func-tions. Internally generated and regulated voltages are provided for the program and erase operations.The device is entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the command register using standard microprocessor write timing. Register con-tents serve as inputs to an internal state-machine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices.Device programming occurs by executing the program command sequence. This initiates the Embedded Program algorithm—an internal algorithm that auto-matically times the program pulse widths and verifies proper cell margin. The Unlock Bypass mode facili-tates faster programming times by requiring only two write cycles to program data instead of four.Device erasure occurs by executing the erase com-mand sequence. This initiates the Embedded Erase algorithm—an internal algorithm that automatically preprograms the array (if it is not already programmed) before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.The VersatileIO™ (V IO) control allows the host system to set the voltage levels that the device generates and tolerates on CE# and DQ I/Os to the same voltage level that is asserted on V IO. V IO is available in two configurations (1.8–2.9 V and 3.0–5.0 V) for operation in various system environments.The host system can detect whether a program or erase operation is complete by observing the RY/BY# pin, by reading the DQ7 (Data# Polling), or DQ6 (tog-gle) status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command.The sector erase architecture allows memory sec-tors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.Hardware data protection measures include a low V CC detector that automatically inhibits write opera-tions during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of memory. This can be achieved in-system or via programming equipment.The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period of time to read data from, or program data to, any sector that is not selected for erasure. True background erase can thus be achieved.The hardware RESET# pin terminates any operation in progress and resets the internal state machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the system micropro-cessor to read boot-up firmware from the Flash mem-ory device.The device offers a standby mode as a power-saving feature. Once the system places the device into the standby mode power consumption is greatly reduced. The SecSi TM (Secured Silicon) Sector provides an minimum 256-byte area for code or data that can be permanently protected. Once this sector is protected, no further programming or erasing within the sector can occur.The accelerated program (ACC) feature allows the system to program the device at a much faster rate. When ACC is pulled high to V HH, the device enters the Unlock Bypass mode, enabling the user to reduce the time needed to do the program operation. This feature is intended to increase factory throughput during sys-tem production, but may also be used in the field if de-sired.AMD’s Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effective-ness. The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunnelling. The data is programmed using hot electron injection.4Am29LV065D February 16, 2006TABLE OF CONTENTSProduct Selector Guide . . . . . . . . . . . . . . . . . . . . .6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . .7 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Ordering Information . . . . . . . . . . . . . . . . . . . . . .10 Device Bus Operations . . . . . . . . . . . . . . . . . . . . .11 Table 1. Am29LV065D Device Bus Operations (11)VersatileIO TM (V IO) Control (11)Requirements for Reading Array Data (11)Writing Commands/Command Sequences (12)Accelerated Program Operation (12)Autoselect Functions (12)Standby Mode (12)Automatic Sleep Mode (12)RESET#: Hardware Reset Pin (12)Output Disable Mode (13)Table 2. Sector Address Table (13)Autoselect Mode (17)Table 3. Am29LV065D Autoselect Codes, (High Voltage Method) 17 Sector Group Protection and Unprotection (18)Table 4. Sector Group Protection/Unprotection Address Table (18)Temporary Sector Group Unprotect (19)Figure 1. Temporary Sector Group Unprotect Operation (19)Figure 2. In-System Sector Group Protect/Unprotect Algorithms (20)SecSi (Secured Silicon) Sector Flash Memory Region (21)Table 5. SecSi Sector Contents (21)Figure 3. SecSi Sector Protect Verify (22)Hardware Data Protection (22)Low VCC Write Inhibit (22)Write Pulse “Glitch” Protection (22)Logical Inhibit (22)Power-Up Write Inhibit (22)Common Flash Memory Interface (CFI). . . . . . . 22 Table 6. CFI Query Identification String (23)System Interface String (23)Table 8. Device Geometry Definition (23)Table 9. Primary Vendor-Specific Extended Query (24)Command Definitions . . . . . . . . . . . . . . . . . . . . . .25 Reading Array Data (25)Reset Command (25)Autoselect Command Sequence (25)Enter SecSi Sector/Exit SecSi SectorCommand Sequence (25)Byte Program Command Sequence (26)Unlock Bypass Command Sequence (26)Figure 4. Program Operation (26)Chip Erase Command Sequence (27)Sector Erase Command Sequence (27)Erase Suspend/Erase Resume Commands (27)Figure 5. Erase Operation (28)Command Definitions (29)Table 10. Am29LV065D Command Definitions (29)Write Operation Status . . . . . . . . . . . . . . . . . . . . 30 DQ7: Data# Polling (30)Figure 6. Data# Polling Algorithm (30)RY/BY#: Ready/Busy# (31)DQ6: Toggle Bit I (31)Figure 7. Toggle Bit Algorithm (31)DQ2: Toggle Bit II (32)Reading Toggle Bits DQ6/DQ2 (32)DQ5: Exceeded Timing Limits (32)DQ3: Sector Erase Timer (32)Table 11. Write Operation Status (33)Absolute Maximum Ratings . . . . . . . . . . . . . . . . 34 Figure 8. Maximum Negative Overshoot Waveform (34)Figure 9. Maximum Positive Overshoot Waveform (34)Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . 34 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 10. I CC1 Current vs. Time (Showing Active andAutomatic Sleep Currents) (36)Figure 11. Typical I CC1 vs. Frequency (36)Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 12. Test Setup (37)Table 12. Test Specifications (37)Figure 13. Input Waveforms and Measurement Levels (37)Key to Switching Waveforms. . . . . . . . . . . . . . . . 37 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 38 Read-Only Operations (38)Figure 14. Read Operation Timings (38)Hardware Reset (RESET#) (39)Figure 15. Reset Timings (39)Erase and Program Operations (40)Figure 16. Program Operation Timings (41)Figure 17. Accelerated Program Timing Diagram (41)Figure 18. Chip/Sector Erase Operation Timings (42)Figure 19. Data# Polling Timings (During Embedded Algorithms). 43 Figure 20. Toggle Bit Timings (During Embedded Algorithms) (44)Figure 21. DQ2 vs. DQ6 (44)Temporary Sector Unprotect (45)Figure 22. Temporary Sector Group Unprotect Timing Diagram (45)Figure 23. Sector Group Protect and Unprotect Timing Diagram.. 46 Figure 24. Alternate CE# Controlled Write(Erase/Program)Operation Timings (48)Erase And Programming Performance . . . . . . . 49 Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 49 TSOP Pin Capacitance. . . . . . . . . . . . . . . . . . . . . 49 Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 50 TS 048—48-Pin Standard Pinout Thin Small Outline Package(TSOP) (50)FBE063—63-Ball Fine-Pitch Ball Grid Array (FBGA)11 x 12 mm package (51)February 16, 2006Am29LV065D56Am29LV065D February 16, 2006PRODUCT SELECTOR GUIDENote: See “AC Characteristics” for full specifications.BLOCK DIAGRAMPart Number Am29LV065DSpeed Option V CC = 3.0–3.6 V , V IO = 3.0–5.0 V 90R120R V CC = 3.0–3.6 V , V IO = 1.8–2.9 V101R 121R Max Access Time (ns)90100120CE# Access Time (ns)90100120OE# Access Time (ns)353550Input/Output Buffers X-DecoderY-Decoder Chip Enable Output EnableLogicErase Voltage GeneratorPGM Voltage GeneratorTimerV CC DetectorState Control Command RegisterV CC V SSWE#ACCCE#OE#STBSTBDQ0–DQ7Sector Switches RY/BY#RESET#Data LatchY-GatingCell MatrixA d d r e s s L a t c hA0–A22V IOCONNECTION DIAGRAMSFebruary 16, 2006Am29LV065D78Am29LV065D February 16, 2006CONNECTION DIAGRAMSSpecial Handling Instructions for FBGA PackageSpecial handling is required for Flash Memory products in FBGA packages.Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods.The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.63-Ball FBGAT op View, Balls Facing DownFebruary 16, 2006Am29LV065D 9PIN DESCRIPTIONA0–A22=23 Addresses inputs DQ0–DQ7=8 Data inputs/outputs CE#=Chip Enable input OE#=Output Enable input WE#=Write Enable input ACC =Acceleration Input RESET#=Hardware Reset Pin input RY/BY#=Ready/Busy outputV CC= 3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances)V IO =Output Buffer power V SS =Device GroundNC=Pin Not Connected InternallyLOGIC SYMBOL238DQ0–DQ7A0–A22CE# OE#WE#RESET#RY/BY#ACC V IO10Am29LV065D February 16, 2006ORDERING INFORMATION Standard ProductsAMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the following:Valid CombinationsValid Combinations list configurations planned to be sup-ported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.Am29LV065DU90RWHINOPTIONAL PROCESSINGBlank =Standard Processing N =16-byte ESN devices(Contact an AMD representative for more information)TEMPERATURE RANGE I = Industrial (–40°C to +85°C)F = Industrial (–40°C to +85°C) with Pb-free packagePACKAGE TYPE E =48-Pin Standard Pinout Thin Small Outline Package (TS 048)WH =63-Ball Fine-Pitch Ball Grid Array (FBGA)0.80 mm pitch, 11 x 12 mm package (FBE063)SPEED OPTIONSee Product Selector Guide and Valid Combinations SECTOR ARCHITECTURE U =Uniform sector deviceDEVICE NUMBER/DESCRIPTIONAm29LV065D64 Megabit (8 M x 8-Bit) CMOS Uniform Sector Flash Memory with VersatileIO ™ Control 3.0 Volt-only Read, Program, and EraseValid Combinations for TSOPPackagesSpeed/V IO Range AM29LV065DU90R,AM29LV065DU90R EI, EF90ns,V IO = 3.0 V – 5.0 V AM29LV065DU101R,AM29LV065DU101R 100 ns,V IO = 1.8 V – 2.9 V AM29LV065DU120R,AM29LV065DU120R EI, EF120 ns,V IO = 3.0 V – 5.0 V AM29LV065DU121R,AM29LV065DU121R120 ns,V IO = 1.8 V – 2.9 VValid Combinations for FBGA PackagesSpeed/V IO Range Order Number Package Marking AM29LV065DU90R WHI,WHFL065DU90R I,F 90 ns, V IO = 3.0 V – 5.0 VAM29LV065DU101R L065DU01R 100 ns, V IO =1.8 V –2.9 V AM29LV065DU120R WHI, WHFL065DU12R I,F 120 ns, V IO = 3.0 V – 5.0 V AM29LV065DU121RL065DU21R120 ns, V IO =1.8 V –2.9 VDEVICE BUS OPERATIONSThis section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory loca-tion. The register is a latch used to store the com-mands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the in-puts and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail.Table 1.Am29LV065D Device Bus OperationsLegend: L = Logic Low = V IL, H = Logic High = V IH, V ID = 8.5–12.5V, V HH = 11.5–12.5V, X = Don’t Care, SA = Sector Address, A IN = Address In, D IN = Data In, D OUT = Data OutNotes:1.Addresses are A22:A0. Sector addresses are A22:A16.2.The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector GroupProtection and Unprotection” section.3.All sectors are unprotected when shipped from the factory (The SecSi Sector may be factory protected depending on versionordered.)4.D IN or D OUT as required by command sequence, data polling, or sector protect algorithm (see Figure 2).VersatileIO TM (V IO) ControlThe VersatileIO™ (V IO) control allows the host system to set the voltage levels that the device generates and tolerates on CE# and DQ I/Os to the same voltage level that is asserted on V IO. V IO is available in two configurations (1.8–2.9 V and 3.0–5.0 V) for operation in various system environments.For example, a V I/O of 4.5–5.0 volts allows for I/O at the 5 volt level, driving and receiving signals to and from other 5 V devices on the same data bus.Requirements for Reading Array DataTo read array data from the outputs, the system must drive the CE# and OE# pins to V IL. CE# is the power control and selects the device. OE# is the output con-trol and gates array data to the output pins. WE# should remain at V IH.The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No com-mand is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remainsOperation CE#OE#WE#RESET#ACC Addresses(Note 2)DQ0–DQ7Read L L H H X A IN D OUT Write (Program/Erase)L H L H X A IN(Note 4) Accelerated Program L H L H V HH A IN(Note 4)Standby V CC±0.3 VX XV CC±0.3 VH X High-ZOutput Disable L H H H X X High-Z Reset X X X L X X High-ZSector Group Protect (Note 2)L H L V ID XSA, A6 = L,A1 = H, A0 = L(Note 4)Sector Group Unprotect (Note 2)L H L V ID XSA, A6 = H,A1 = H, A0 = L(Note 4)Temporary Sector GroupUnprotectX X X V ID X A IN(Note 4)enabled for read access until the command register contents are altered.See “VersatileIO TM (V IO) Control” for more information. Refer to the AC Read-Only Operations table for timing specifications and to Figure 14 for the timing diagram.I CC1 in the DC Characteristics table represents the ac-tive current specification for reading array data. Writing Commands/Command Sequences T o write a command or command sequence (which in-cludes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to V IL, and OE# to V IH.The device features an Unlock Bypass mode to facili-tate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are re-quired to program a byte, instead of four. The “Byte Program Command Sequence” section has details on programming data to the device using both standard and Unlock Bypass command sequences.An erase operation can erase one sector, multiple sec-tors, or the entire device. T able 2 indicates the address space that each sector occupies.I CC2 in the DC Characteristics table represents the ac-tive current specification for the write mode. The AC Characteristics section contains timing specification tables and timing diagrams for write operations. Accelerated Program OperationThe device offers accelerated program operations through the ACC function. This function is primarily in-tended to allow faster manufacturing throughput dur-ing system production.If the system asserts V HH on this pin, the device auto-matically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing V HH from the ACC pin returns the device to normal op-eration. Note that the ACC pin must not be at V HH for operations other than accelerated programming, or device damage may result.Autoselect FunctionsIf the system writes the autoselect command se-quence, the device enters the autoselect mode. The system can then read autoselect codes from the inter-nal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to the Autoselect Mode and Autose-lect Command Sequence sections for more informa-tion.Standby ModeWhen the system is not reading or writing to the de-vice, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.The device enters the CMOS standby mode when the CE# and RESET# pins are both held at V CC ± 0.3 V. (Note that this is a more restricted voltage range than V IH.) If CE# and RESET# are held at V IH, but not within V CC ± 0.3 V, the device will be in the standby mode, but the standby current will be greater. The device re-quires standard access time (t CE) for read access when the device is in either of these standby modes, before it is ready to read data.If the device is deselected during erasure or program-ming, the device draws active current until the operation is completed.I CC3 in the DC Characteristics table represents the standby current specification.Automatic Sleep ModeThe automatic sleep mode minimizes Flash device en-ergy consumption. The device automatically enables this mode when addresses remain stable for t ACC + 30ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard ad-dress access timings provide new data when ad-dresses are changed. While in sleep mode, output data is latched and always available to the system.I CC4 in the DC Characteristics table represents the automatic sleep mode current specification. RESET#: Hardware Reset PinThe RESET# pin provides a hardware method of re-setting the device to reading array data. When the RE-SET# pin is driven low for at least a period of t RP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state ma-chine to reading array data. The operation that was in-terrupted should be reinitiated once the device is ready to accept another command sequence, to en-sure data integrity.Current is reduced for the duration of the RESET# pulse. When RESET# is held at V SS±0.3 V, the device draws CMOS standby current (I CC4). If RESET# is held at V IL but not within V SS±0.3 V, the standby current will be greater.The RESET# pin may be tied to the system reset cir-cuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firm-ware from the Flash memory.If RESET# is asserted during a program or erase op-eration, the RY/BY# pin remains a “0” (busy) until the internal reset operation is complete, which requires a time of t READY (during Embedded Algorithms). The sys-tem can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is completed within a time of t READY (not during Embedded Algo-rithms). The system can read data t RH after the RE-SET# pin returns to V IH.Refer to the AC Characteristics tables for RESET# pa-rameters and to Figure 15 for the timing diagram. Output Disable ModeWhen the OE# input is at V IH, output from the device is disabled. The output pins are placed in the high impedance state.Table 2.Sector Address TableSector A22A21A20A19A18A17A168-bit Address Range (in hexadecimal)SA00000000000000–00FFFF SA10000001010000–01FFFF SA20000010020000–02FFFF SA30000011030000–03FFFF SA40000100040000–04FFFF SA50000101050000–05FFFF SA60000110060000–06FFFF SA70000111070000–07FFFF SA80001000080000–08FFFF SA90001001090000–09FFFF SA1000010100A0000–0AFFFF SA1100010110B0000–0BFFFF SA1200011000C0000–0CFFFF SA1300011010D0000–0DFFFF SA1400011100E0000–0EFFFF SA1500011110F0000–0FFFFF SA160010000100000–10FFFF SA170010001110000–11FFFF SA180010010120000–12FFFF SA190010011130000–13FFFF SA200010100140000–14FFFF SA210010101150000–15FFFF SA220010110160000–16FFFF SA230010111170000–17FFFF SA240011000180000–18FFFF SA250011001190000–19FFFF SA2600110101A0000–1AFFFFSA2700110111B0000–1BFFFF SA2800111001C0000–1CFFFF SA2900111011D0000–1DFFFF SA3000111101E0000–1EFFFF SA3100111111F0000–1FFFFF SA320100000200000–20FFFF SA330100*********–21FFFF SA340100*********–22FFFF SA350100*********–23FFFF SA360100100240000–24FFFF SA370100101250000–25FFFF SA380100110260000–26FFFF SA390100111270000–27FFFF SA400101000280000–28FFFF SA410101001290000–29FFFF SA4201010102A0000–2AFFFF SA4301010112B0000–2BFFFF SA4401011002C0000–2CFFFF SA4501011012D0000–2DFFFF SA4601011102E0000–2EFFFF SA4701011112F0000–2FFFFF SA480110000300000–30FFFF SA490110001310000–31FFFF SA500110*********–32FFFF SA510110011330000–33FFFF SA520110100340000–34FFFF SA530110101350000–35FFFF SA540110110360000–36FFFF SA550110111370000–37FFFF SA560111000380000–38FFFF SA570111001390000–39FFFF SA5801110103A0000–3AFFFF SA5901110113B0000–3BFFFF SA6001111003C0000–3CFFFF SA61111113D0000–3DFFFFTable 2.Sector Address Table (Continued)Sector A22A21A20A19A18A17A168-bit Address Range (in hexadecimal)。