2009年部分省市中考数学试题分类汇编四边行

合集下载

2009—2011年全国各地中考数学试卷分类汇编:猜想、探究题

2009—2011年全国各地中考数学试卷分类汇编:猜想、探究题

2009—2011年全国各地中考数学试卷分类汇编:多边形与平行四边形一、选择题1. (2011安徽,6,4分)如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11【答案】D 2. (2011广东广州市,2,3分)已知□ABCD 的周长为32,AB=4,则BC=( ).A.4B.12C.24D.28【答案】B3. (2011山东威海,3,3分)在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF =( )A .1:2B .1:3C .2:3D .2:5【答案】A4. (2011四川重庆,9,4分)下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为( )……图① 图② 图③ 图④A.55 B. 42 C.41 D.29【答案】C5. (2011江苏泰州,7,3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有A.1组 B.2组 C.3组 D.4组【答案】C6. (2011湖南邵阳,7,3分)如图(二)所示,ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()A.AC⊥BDB.AB=CDC. BO=ODD.∠BAD=∠BCD【答案】A.7. (2011重庆市潼南,9,4分)如图,在平行四边形 ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A. ①②B. ②③C. ②④D.③④【答案】B8. (2011广东东莞,5,3分)正八边形的每个内角为( )A .120°B .135°C .140°D .144°【答案】B9. (2011浙江省,8,3分)如图,在五边形ABCDE 中,∠BAE=120°, ∠B=∠E=90°,AB=BC ,AE=DE ,在BC ,DE 上分别找一点M,N ,使得△AMN 的周长最小时,则∠AMN+∠ANM 的度数为( )A. 100° B .110° C. 120° D. 130°【答案】C10. (2011台湾台北,33)图(十五)为一个四边形ABCD ,其中AC 与BD 交于E 点,且两灰色区域的面积相等。

2009年部分省市中考数学试题分类汇编 因式分解

2009年部分省市中考数学试题分类汇编 因式分解

2009年部分省市中考数学试题分类汇编 因式分解一、选择题:1、(2009·四川眉山)下列因式分解错误的是() A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+2、(2009·四川内江)在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b -=+-D .22(2)()2a b a b a ab b +-=+-3、(2009·广西南宁)把多项式2288x x -+分解因式,结果正确的是( )A .()224x -B .()224x -C .()222x -D .()222x +4、(2009·浙江温州)把多项式x 2一4x+4分解因式,所得结果是( )A .x(x 一4)+4 B.(x 一2)(x+2) C .(x 一2)2 D .(z+2)25、(2009·北京市)把3222x x y xy -+分解因式,结果正确的是A.()()x x y x y +-B.()222x x xy y -+C.()2x x y +D.()2x x y -二、填空题:1、(2009·福建福州)分解因式:22x x -= 。

2、(2009·湖南长沙)因式分解:224a a -= .3、(2009·湖北恩施)分解因式:a a 823-= .4、(2009·湖北黄冈)分解因式:3654a a -=________;5、(2009·贵州安顺)因式分解:32a ab -______________。

2009年中考数学试题分类汇编18 多边形的内角和以及平行四边形(含答案)

2009年中考数学试题分类汇编18 多边形的内角和以及平行四边形(含答案)

18.多边形内角和、平行四边形一、选择题1.(2009东营)如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A.2cmB.4cmC.6cmD.8cm【答案】A2.(2009年桂林市、百色市)如图,□ABCD 中,AC.BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .24 【答案】C3.(2009年常德市)下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一组邻边相等的平行四边形是菱形D .一组对边平行的四边形是梯形 【答案】 D4.(2009年黄冈市)一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A .4B .5C .6D .7【答案】A提示:∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,所以∠BOA+∠BOC=360°-140°=220°,所以∠AOC=140°。

AB CD5.(2009威海)如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,A B B F =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( ) A .A D B C = B .C D B F =C .A C ∠=∠D .F C DE ∠=∠【答案】D6.(2009年湖南长沙)如图,矩形A B C D 的两条对角线相交于点O ,602A O B A B ∠==°,,则矩形的对角线A C 的长是( )A .2B .4 C. D.【答案】B【解析】本题考查了矩形的性质和等边三角形的判定。

根据矩形的性质知:矩形的对角线相等且平分,所以AO=BO 。

在直角三角形AOB 中,又有060=∠AOB ,所以三角形AOB 为等边三角形,所以AO=AB=2,所以AC=2AO=4。

中考数学真题四边形分类汇编

中考数学真题四边形分类汇编

全国中考数学真题四边形分类汇编1.如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.2.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.3.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.4.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3,连接AE,DF⊥AE交于点F.(1)求证:△ABE≌△DF A;(2)连接CF,求sin∠DCF的值;(3)连接AC交DF于点G,求的值.5.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.6.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.7.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.9.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.10.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.11.如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.12.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.13.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.14.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.16.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.17.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.18.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.19.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.20.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.21.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.22.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.23.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.24.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.26.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.27.如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.28.如图,将矩形ABCD沿AF折叠,使点D落在BC边上的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.29.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.30.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.31.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.32.如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.33.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.34.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.35.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.36.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.37.如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.38.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.39.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.40.如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=时,求⊙O的半径.41.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.42.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO 并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.43.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC 于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.44.如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.45.如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.46.如图,点D是等边三角形ABC外接圆的上一点(与点B,C不重合),BE∥DC交AD于点E.(1)求证:△BDE是等边三角形;(2)求证:△ABE≌△CBD;(3)如果BD=2,CD=1,求△ABC的边长.47.如图所示,AB是⊙O的直径,P为AB延长线上的一点,PC切⊙O于点C,AD⊥PC,垂足为D,弦CE平分∠ACB,交AB于点F,连接AE.(1)求证:∠CAB=∠CAD;(2)求证:PC=PF;(3)若tan∠ABC=,AE=5,求线段PC的长.48.如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E在BC边上,且满足EB =ED.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,AB=10,求sin∠CAE的值.49.如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB 延长线于点E,垂足为点F.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径R=5,tan C=,求EF的长.50.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.全国中考数学真题四边形分类汇编参考答案与试题解析一.解答题(共50小题)1.如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判定定理得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,AD=CD,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=6,∴DG==4.【点评】本题考查了平行四边形的性质,菱形的判断和性质,全等三角形的判定和性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.2.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.3.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.【分析】(1)只要证明AD=BC,∠ADP=∠BCQ,DP=CQ即可解决问题;(2)首先证明四边形ABQP是平行四边形,再证明AB=AP即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.【点评】本题考查菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3,连接AE,DF⊥AE交于点F.(1)求证:△ABE≌△DF A;(2)连接CF,求sin∠DCF的值;(3)连接AC交DF于点G,求的值.【分析】(1)根据勾股定理求出AE,矩形的性质、全等三角形的判定定理证明;(2)连接DE交CF于点H,根据全等三角形的性质得到DF=AB=CD=4,AF=BE=3,证明∠DCH =∠DEC,求出sin∠DEC,得到答案;(3)过点C作CK⊥AE交AE的延长线于点K,根据平行线分线段成比例定理得到=,根据余弦的概念求出EK,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴=5,∠AEB=∠DAF,在△ABE和△AFD中,,∴△ABE≌△AFD;(2)连接DE交CF于点H.∵△ABE≌△DF A,∴DF=AB=CD=4,AF=BE=3,∴EF=CE=2.∴DE⊥CF.∴∠DCH+∠HDC=∠DEC+∠HDC=90°.∴∠DCH=∠DEC.在Rt△DCE中,CD=4,CE=2,∴DE=2,∴sin∠DCF=sin∠DEC==.(3)过点C作CK⊥AE交AE的延长线于点K.∴=.在Rt△CEK中,EK=CE•cos∠CEK=CE•cos∠AEB=2×=.∴FK=FE+EK=.∴==.【点评】本题考查的是矩形的性质、全等三角形的判定和性质以及三角形中位线定理的应用,掌握矩形的性质定理、全等三角形的判定定理和性质定理是解题的关键.5.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.6.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.【点评】此题考查菱形的判定和性质,关键是根据平行四边形和菱形的判定和性质解答.7.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.【分析】(1)根据SAS即可证明.(2)解直角三角形求出DF、OE、OF即可解决问题;【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.【点评】本题考查全等三角形的判定和性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.9.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.10.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE =CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG =90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.11.如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判断对了得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=4,∴DG==.【点评】本题考查了平行四边形的性质,菱形的判断和性质,全等三角形的判定和性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.12.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.【点评】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.13.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠F AG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.【分析】(1)由等腰三角形的性质得出∠ABC=∠C,证出∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,得出∠DEG=∠C,证出∠F=∠DEG,得出BF∥DE,即可得出结论;(2)证出△BDE、△BEF是等腰直角三角形,由勾股定理得出BF=BE=BD=,作FM⊥BD 于M,连接DF,则△BFM是等腰直角三角形,由勾股定理得出FM=BM=BF=1,得出DM=3,在Rt△DFM中,由勾股定理求出DF即可.【解答】(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;(2)解:∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°,∴△BDE、△BEF是等腰直角三角形,∴BF=BE=BD=,作FM⊥BD于M,连接DF,如图所示:则△BFM是等腰直角三角形,∴FM=BM=BF=1,∴DM=3,在Rt△DFM中,由勾股定理得:DF==,即D,F两点间的距离为.【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质和勾股定理是解决问题的关键.16.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.【分析】(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.【解答】(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.【点评】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.17.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2××(x+1)×1+×x×(x+1)=6,整理得:x2+3x﹣10=0,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.18.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.【分析】根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得结论.【解答】证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE.【点评】此题主要考查了菱形的性质以及全等三角形的判定与性质,熟练掌握菱形的性质,证明三角形全等是解决问题的关键.19.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=AE=2,∠BAF=2∠BAE,AE ⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,解直角三角形,属于中考常考题型.20.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO 即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,。

2009年部分省市中考数学试题分类汇编 分式及分式方程(含答案)

2009年部分省市中考数学试题分类汇编 分式及分式方程(含答案)

2009年部分省市中考数学试题分类汇编 分式及分式方程一、选择题:1、(2009,嘉兴)解方程xx -=-22482的结果是( )D A .2-=xB .2=xC .4=xD .无解2、(2009,天津)若x y ,为实数,且20x +,则2009x y ⎛⎫⎪⎝⎭的值为( )BA .1B .1-C .2D .2-3、(2009,成都)在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >4、(2009,上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=5、(2009,陕西省)化简2b a a a a b ⎛⎫- ⎪-⎝⎭的结果是( ).BA .a b -B .a b +C .1a b - D .1a b + 6、(2009,山西省)解分式方程11222x x x-+=--,可知方程( ) D A .解为2x = B .解为4x = C .解为3x = D .无解 7、(2009,济宁)在函数13y x =-中,自变量x 的取值范围是( )D A .0x ≠B .3x >C .3x ≠-D .3x ≠8、(2009,威海)化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( )D A.yx-B . x y -C .x yD .y x9、(2009,烟台)学完分式运算后,老师出了一道题“化简:23224x xx x +-++-”小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )C A .小明B .小亮C .小芳D .没有正确的10、(2009,潍坊0化简222a b a ab-+的结果为 B(A)b a - (B)a b a-(C)a ba+ (D)b -11、(2009,泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 12、(2009,包头)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( )D A .82x --B .82x - C .82x -+ D .82x +13、(2009,常德)要使分式11x +有意义,则x 应满足的条件是( )BA .1x ≠B .1x ≠-C .0x ≠D .1x >14、(2009,郴州)函数12y x =-的自变量x 的取值范围是( )B A .0x ¹ B . 2x ¹ C . 2x > D . 2x < 15、(2009,长沙)分式111(1)a a a +++的计算结果是( )C A .11a + B .1a a + C .1a D .1a a+ 16、(2009,怀化)分式方程2131=-x 的解是( )A .21=x B .2=x C .31-=x D . 31=x 17、(2009,襄樊)分式方程131x x x x +=--的解为( )D A .1 B .-1 C .-2 D .-3 18、(2009,鄂州)使代数式43--x x 有意义的x 的取值范围是( )D A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠419、(2009,柳州)分式方程3221+=x x 的解是( ) B A .0=x B .1=x C .2=x D .3=x 20、(2009,玉林)方程246x xx x -=--的解是( ) A .1x = B . 2x = C . 3x = D .4x =21、(2009,南宁)要使式子x 的取值范围是( )D A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且22、(2009,肇庆)若分式33x x -+的值为零,则x 的值是( )A A .3 B .3- C .3± D .0 23、(2009,定西)计算:a b a b b a a -⎛⎫-÷= ⎪⎝⎭( )A A .a bb+B .a bb- C .a ba- D .a ba+ 24、(2009,龙岩)计算111---x x x 的结果为( )C A .1B .2C .-1D .-225、(2009,福州)若分式21x -有意义,则x 的取值范围是( )A A .x ≠1 B .x>1 C . x=1 D .x<126、(2009,漳州)分式方程211x x =+的解是( )A A .1 B .1- C .13 D .13-27、(2009,重庆)函数31+=x y 的自变量取值范围是( )CA .3->xB .3-<xC .3-≠xD .3-≥x28、(2009,黄冈)化简24()22a a a a a a---+ 的结果是( )A .-4B .4C .2aD .-2 a29、(2009,吉林)化简2244xy yx x --+的结果是( )DA .2x x +B .2x x -C .2y x +D .2y x -二、填空题:1、(2009,泉州)计算: a c b a ∙ = .bc2、(2009,衢州)化简:2111x xx x -+=++ .1 3、(2009,义乌)化简22a aa+的结果是 # .4、(2009,天津)若分式22221x x x x --++的值为0,则x 的值等于 .5、(2009,成都)分式方程2131x x =+的解是_________ 6、(2009,成都)化简:22221369x y x y x y x xy y+--÷--+=_______ 7、(2009,太原)方程2512x x=-的解是 .5x =(或5) 8、(2009,枣庄)a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).=9、(2009,烟台)设0a b >>,2260a b ab +-=,则a bb a+-的值等于 .10、(2009,青海)若2||323x x x ---的值为零,则x 的值是 .3- 11、(2009,吉林)方程312x =-的解是 .x =5 12、(2009,邵阳)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

2009年中考数学特殊平行四边形(证明题汇编

2009年中考数学特殊平行四边形(证明题汇编

2009年中考数学特殊平行四边形(解答题)三.解答题1.(2009年湖北十堰市)如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F .(1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).【关键词】正方形的性质与判定、多边形相似【答案】(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG ∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知, AE = BF ,∴ EF = BF = 2 FG(3) 如图DE + BF = EF说明:第(2)问不先下结论,只要解答正确,给满分.若只有正确结论,.2.(2009年山东青岛市)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.【关键词】全等三角形的性质与判定、菱形的性质与判定【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AB CD =.∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成.∴CG AD ⊥.∴90AEB CGD ∠=∠=°.∵AE CG =,∴Rt Rt ABE CDG △≌△.∴BE DG =.(2)当32BC AB =时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥,∴四边形ABFG 是平行四边形.∵Rt ABE △中,60B ∠=°,∴30BAE ∠=°, ∴12BE AB =. ∵32BE CF BC AB ==,, ∴12EF AB =. ∴AB BF =.∴四边形ABFG 是菱形.3.(2009 年佛山市)如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF 的长.【关键词】正方形知识的综合应用【答案】解(略).注:证明BCE CDF △≌△,给5分;根据三角形全等得10DF =,给1分.6. (2009年达州)如图7,在△ABC 中,AB =2BC ,点D 、点E 分别为AB 、AC 的中点,连结DE ,将△ADE 绕点E 旋转180︒得到△CFE .试判断四边形BCFD 的形状,并说明理由.F C BEAA DG C BF E【关键词】菱形的判定【答案】解:四边形BCFD 是菱形,理由如下:∵点D 、点E 分别是AB 、AC 的中点∴DE ∥= 12BC又∵△CFE 是由△ADE 旋转而得∴DE =EF∴DF ∥= BC∴四边形BCFD 是平行四边形又∵AB =2BC ,且点D 为AB 的中点∴BD =BC ∴BCFD 是菱形8.(2009肇庆)如图 5,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,.(1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).【关键词】菱形【答案】(1)证明:∵AC 是菱形ABCD 的对角线,∴AC 平分∠BCD .又∠ACD=30°,∴∠BCD =60°.∵∠BAD 与∠BCD 是菱形的一组对角,∴∠BAD =∠BCD =60°.∵AB 、AD 是菱形的两条边,∴AB AD =.∴△ABD 是正三角形.(2)解:∵O 为菱形对角线的交点, ∴123902AC OC OD BD COD ===∠=,,°. 在Rt COD △中,tan tan 30OD OCD OC=∠=°, ODBA∴tan30ODOC===°∴2AC OC==AC的长为9.(2009肇庆)如图,ABCD是正方形.G是BC 上的一点,DE⊥AG于E,BF⊥AG于F.(1)求证:ABF DAE△≌△;(2)求证:DE EF FB=+.【关键词】正方形【答案】证明:(1)∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°.∵ABCD是正方形,DE⊥AG,∴∠BAF+∠DAE=90°,∠ADE+∠DAE=90°,∴∠BAF =∠ADE.又在正方形ABCD中,AB=AD.在△ABF与△DAE中,∠AFB =∠DEA=90°,∠BAF =∠ADE,AB=DA,∴△ABF≌△DAE.(2)∵△ABF≌△DAE,∴AE=BF,DE=AF.又AF=AE+EF,∴AF=EF+FB,∴DE=EF+FB.10.(2009年广西钦州)(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;【关键词】矩形性质、全等三角形判定ADB图1【答案】证明:∵AF=BE,EF=EF,∴AE=BF.∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC.∴△DAE≌△CBF.11.(2009年广西梧州)如图,△ABC中,AC的垂直平分线MN交AB于A DEFCGB点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD .(1)求证:AD =CE ;(2)填空:四边形ADCE 的形状是 ★ .【关键词】垂直平分线、全等三角形、菱形判定【答案】(1)证明:∵MN 是AC 的垂直平分线∴OA =OC ∠AOD =∠EOC =90°∵CE ∥AB∴∠DAO =∠ECO∴△ADO ≌△CEO∴AD =CE(2)四边形ADCE 是菱形.∴DE =CF ;12. (2009年宜宾)已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长.第21题图AB C D E F M【关键词】菱形的性质,全等三角形的判定【答案】(1)略证:∵四边形ABCD 是菱形,∴AB ∥CD ,AB =AD . ∵AC ⊥EF ,∴AM =AE . ∵AE =21AB , ∴AM =21AD . ∴AM =DM .(2)提示:证明△AME ≌△DMF .DF =AE =2.菱形ABCD 的周长为16.16.(2009年娄底)如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .(1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. D AENM O【关键词】全等、四边形【答案】(1)证明:∵AB =AC点D 为BC 的中点∴∠BAE =∠CAEAE =AE∴△ABE ≌△ACE (SAS ) (2)当AE =2AD (或AD =DE 或DE =12AE )时,四边形ABEC 是菱形 理由如下:∵AE =2AD ,∴AD =DE又点D 为BC 中点,∴BD =CD∴四边形ABEC 为平行四形边∵AB =AC∴四边形ABEC 为菱形17.(2009恩施市)两个完全相同的矩形纸片ABCD 、BFDE 如图7放置,AB BF ,求证:四边形BNDM 为菱形.【关键词】菱形的判定、全等【答案】证明: ∵四边形ABCD 、BFDE 是矩形∴BM ∥DN ,DM ∥BN∴四边形BNDM 是平行四边形又∵AB =BF =ED ,∠A =∠E =90°∠AMB =∠EMD∴△ABM ≌△EDM∴BM =DM∴平行四边形BNDM 是菱形C DEM AB F N28.(2009年长春)如图,在矩形ABCD 中,点E F 、分别在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.【关键词】矩形的性质、直角三角形的有关计算、相似三角形有关的计算和证明【答案】解:∵四边形ABCD 是矩形,AB =6∴∠A =∠D =90°,DC =AB =6又∵AE =9∴在Rt △ABE 中,由勾股定理得:BE =117692222=+=+AB AE ∵ABE DEF △∽△, ∴EFBE DE AB =,即EF 11726= ∴EF =3117 30.(2009年郴州市)如图9,E 是正方形ABCD 对角线BD 上的一点,求证:AE=CE .【关键词】是正方形【答案】证明:因为四边形ABCD 是正方形所以 AB BC =ABD CBD ??又BE 是公共边所以ABE CBE △≌△所以 AE CE =38.(2009年衢州)如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ . DC EB AA B C DE F【关键词】矩形的性质与判定【答案】证明:(1) ∵ 四边形ABCD 是矩形,∴ ∠ABC =∠BCD =90°.∵ △PBC 和△QCD 是等边三角形,∴ ∠PBC =∠PCB =∠QCD =60°,∴ ∠PBA =∠ABC -∠PBC =30°,∠PCD = ∠BCD -∠PCB =30°.∴ ∠PCQ =∠QCD -∠PCD =30°.∴ ∠PBA =∠PCQ =30°.(2) ∵ AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,∴ △PAB ≌△PQC ,∴ PA =PQ .39.(2009年舟山)如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ .【关键词】矩形的性质与判定【答案】证明:(1) ∵ 四边形ABCD 是矩形,∴ ∠ABC =∠BCD =90°.∵ △PBC 和△QCD 是等边三角形,∴ ∠PBC =∠PCB =∠QCD =60°,∴ ∠PBA =∠ABC -∠PBC =30°,∠PCD = ∠BCD -∠PCB =30°.∴ ∠PCQ =∠QCD -∠PCD =30°.∴ ∠PBA =∠PCQ =30°. AC BD PQACB D P Q AC BD PQ(2) ∵ AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,∴ △PAB ≌△PQC ,∴ PA =PQ .44.(2009年南充)如图5,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF BF EF =+.【关键词】正方形的性质、全等三角形的判定 【答案】证明:ABCD 是正方形,90AD AB BAD ∴=∠=,°.DE AG ⊥,90DEG AED ∴∠=∠=°.90ADE DAE ∴∠+∠=°.又90BAF DAE BAD ∠+∠=∠=°,ADE BAF ∴∠=∠.BF DE ∥,AFB DEG AED ∴∠=∠=∠.在ABF △与DAE △中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABF DAE ∴△≌△.BF AE ∴=.AF AE EF =+,AF BF EF ∴=+.46.(2009年湖州)如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,.(1) 求证:BED CFD △≌△;(2)若90A ∠=°,求证:四边形DFAE 是正方形.DC BAEFG ACB D P Q【答案】(1)DE AB DF AC ⊥,⊥,90BED CFD ∴∠=∠=°,AB AC =,B C ∴∠=∠, D 是BC 的中点,BD CD ∴=,BED CFD ∴△≌△.(2)DE AB DF AC ⊥,⊥,90AED AFD ∴∠=∠=°,90A ∠=°,∴四边形DFAE 为矩形.BED CFD △≌△,DE DF ∴=,∴四边形DFAE 为正方形.53.(2009年肇庆市)如图 ,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,.(1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).【答案】(1)证明:∵AC 是菱形ABCD 的对角线,∴AC 平分∠BCD .又∠ACD=30°,∴∠BCD =60°.∵∠BAD 与∠BCD 是菱形的一组对角,∴∠BAD =∠BCD =60°.∵AB 、AD 是菱形的两条边,∴AB AD =.∴△ABD 是正三角形.(2)解:∵O 为菱形对角线的交点, ∴123902AC OC OD BD COD ===∠=,,°. 在Rt COD △中,tan tan 30OD OCD OC=∠=°, ODBA D C BEAF∴tan30ODOC===°∴2AC OC==AC的长为54.(2009年肇庆市)如图,ABCD是正方形.G是BC 上的一点,DE⊥AG于E,BF⊥AG于F.(1)求证:ABF DAE△≌△;(2)求证:DE EF FB=+.【答案】证明:(1)∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°.)∵ABCD是正方形,DE⊥AG,∴∠BAF+∠DAE=90°,∠ADE+∠DAE=90°,∴∠BAF =∠ADE.)又在正方形ABCD中,AB=AD.)在△ABF与△DAE中,∠AFB =∠DEA=90°,∠BAF =∠ADE,AB=DA,∴△ABF≌△DAE.(2)∵△ABF≌△DAE,∴AE=BF,DE=AF.又AF=AE+EF,∴AF=EF+FB,∴DE=EF+FB.69.(2009年广东省)在菱形ABCD中,对角线AC与BD相交于点O,56AB AC==,.过点D作DE AC∥交BC的延长线于点E.(1)求BDE△的周长;(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP DQ=.【答案】解:(1)因为四边形ABCD为菱形,所以BE AD AC DE∥,∥,故四边形ABCD为平行四边形,则有5AB AD BC CE====,所以10BE BC CE=+=,6AC DE==,A Q DEB P COA DEFCGBA DEFCGB图6又6113522OA AC AB OA ⎛⎫==== ⎪⎝⎭,,垂直于OB , 所以在Rt ABC △中有222AB OB OA =+, 所以1482OB BD BD ===,, 故三角形BDE 的周长为861024BD DE BE ++=++=(2)因为四边形ABCD 为菱形,所以OB OD BE AD =,∥,则DBC ∠=DOQ ∠ 又BOP DOQ ∠=∠,所以BOP △全等于DOQ △故有BP DQ =∴30CAD ∠=°.C M BN A D(图25-2)CB MA ND(图25-1)。

09年全国各地中考试题分类汇编——四边形2

09年全国各地中考试题分类汇编——四边形2

(09广东广州)如图12,边长为1正方形ABCD被两条与边平行线段EF、GH分割为四个小矩形,EF与GH交于点P。

(1)、若AG=AE,证明:AF=AH;(2)、若∠FAH=45°,证明:AG+AE=FH;(3)、若RtΔGBF的周长为1,求矩形EPHD的面积。

(09贵州黔南州)如图8,l1、l2、l3、l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25。

(1)、连结EF,证明△ABE、△FBE、△EDF、△CDF的面积相等。

(2)求h的值。

(09湖北十堰)如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).(09广西南宁)在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE EF⊥,2BE=. (1)、求EC∶CF的值;(2)、延长EF交正方形外角平分线CP P于点(如图13-2),试判断AE EP与的大小关系,并说明理由;(3)、在图13-2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.(09广东湛江)已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O A、不重合),现将POC△沿PC翻折得到PEC△,再在AB 边上选取适当的点D,将PAD△沿PD翻折,得到PFD△,使得直线PE PF、重合.(1)若点E落在BC边上,如图①,求点P C D、、的坐标,并求过此三点的抛物线的函数关系式;(2)若点E落在矩形纸片OABC的内部,如图②,设OP x AD y==,,当x为何值时,y取得最大值?(3)在(1)的情况下,过点P C D、、三点的抛物线上是否存在点Q,使PDQ△是以PD为直角边的直角三Q图①图②第28题图8图13-1A D图13-2DAF PF(09河北省)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形;(3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必说明理由)(09黑龙江牡丹江)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.(09黑龙江绥化)如图l ,在四边形A8CD 中,AB=CD ,E 、F 分别是BC 、AD 的中点,连结EF 并延长,分别与BA 、CD 的延长线交于点M 、N ,则∠BME=∠CNE(不需证明).(温馨提示:在图1中,连结BD ,取BD 的中点H ,连结HE 、HF ,根据三角形中位线定理,可证得HE=HF ,从而∠HFE=∠HEF ,再利用平行线的性质,可证得∠BME=∠CNE .)问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB=CD ,E 、F 分别是BC 、AD 的中点,连结EF ,分别交DC 、AB 于点M 、N ,判断△OMN 的形状,请直接写出结论.问题二:如图3,在△ABC 中,AC>AB ,D 点在AC 上,AB=CD ,E 、F 分别是BC 、AD 的中点,连结EF 并延长,与BA 的延长线交于点G , 若∠EFC=600,连结GD ,判断△AGD 的形状并证明.(09湖北仙桃)如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到图14-1AHC (M ) DEF G (N )G 图14-2AH C DEBFNM AH CDE 图14-3BFG M N图3ADFEC BA ECF BD图1ADBE 图2(第25题A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.(1)求NC ,MC 的长(用t 的代数式表示);(2)当t 为何值时,四边形PCDQ 构成平行四边形?(3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)探究:t 为何值时,△PMC 为等腰三角形?(09湖北黄石)如图甲,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连结AD ,以AD 为一边且在AD 的右侧作正方形ADEF 。

2009年中考数学分类汇编专题测试——特殊平行四边形

2009年中考数学分类汇编专题测试——特殊平行四边形

2009年中考数学分类汇编专题测试一一特殊平行四边形、选择题 1. (08山东省日照市)只用下列图形不能镶嵌的是( )A.三角形 B .四边形 C .正五边形 D .正六边形2、 (2008浙江义乌)下列命题中,真命题是 () A 两条对角线垂直的四边形是菱形 B •对角线垂直且相等的四边形是正方形 C.两条对角线相等的四边形是矩形 D •两条对角线相等的平行四边形是矩形3、 ( 2008山东威海)将矩形纸片 ABC [按如图所示的方式折叠,得到菱形 AECF 若AB= 3,则BC 的长为A. 1B . 2C. 2 D .,34. ( 2008年山东省临沂市)如图,菱形 ABCD 中,/ B = 60°, AB= 2, E 、F 分别是BC CD 的中点,连接 AE 、EF 、AF ,则厶AEF 的周长为()A. 2.3 B . 3、3 C.4.3 D .35. (2008 年山东省潍坊市)如图 ,梯形 ABCD 中,AD// BCAD=ABBC=BD/ A=100° ,则/ C =()A.80 °B.70 °C.75° D.60°ADB C6. (2008年辽宁省十二市)下列命题中正确的是( )A 两条对角线互相平分的四边形是平行四边形 B. 两条对角线相等的四边形是矩形 C. 两条对角线互相垂直的四边形是菱形ABAECD. 两条对角线互相垂直且平分的四边形是正方形7. (2008年浙江省绍兴市)如图,沿虚线EF将L ABCD剪开,则得到的四边形ABFE是()A梯形B.平行四边形 C.矩形 D.菱形8. (2008年天津市)在平面直角坐标系中,已知点A( 0, 2), B(一2、、3 , 0), 0( 0,_2 ),D(2.3 , 0),则以这四个点为顶点的四边形AB0D是()A.矩形B.菱形C.正方形D.梯形9(2008年沈阳市)如图所示,正方形ABCD中,点E是CD边上一点,连接AE ,交对角线BD 于点F,连接CF,则图中全等三角形共有()A. 1对B. 2对C. 3对D. 4对10. (2008年四川巴中市如图2.在ABCD中,对角线AC和BD相交于点O,则下面条件能判定ABCD是矩形的是()A. AC=BDB. AC _ BDC. AC 二BD 且AC _ BDD. AB 二AD11. (2008年江苏省南通市)下列命题正确的是()A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形12. (2008年江苏省无锡市)如图,E, F, G, H分别为正方形ABCD的边AB , BC , ABCD的面积之比为(A. B. 4D.CD , DA上的点,且AE 二BF 二CG 二DH=-AB,则图中阴影部分的面积与正方形13. (2008广州市)如图2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是(...5 D 614.(2008 云南省)菱形的两条对角线的长分别是8,则这个菱形的周长是A. 24 B . 20 C. 10 D. 5宁夏)平行四边形15.(2008平行四边形ABCD是矩形,A.C.AE=BCAC L BDABCD中 , AC, BD是两条对角线,如果添加一个条件,即可推出那么这个条件是()B. AC=BDD . ABL BDC16.(2008年江苏省连云港市)已知AC为矩形ABCD的对角线,则图中• 1与.2 一定不相等的是()B BC CB BA. D17.. (2008山东东营)如图中,动点P从点B出发,沿1,在矩形ABCDBC CD DA运图1 图动至点A 停止.设点P 运动的路程为x , △ ABP 的面积为y ,如果y 关于x 的函数图象如图2 所示,则△ ABC 的面积是()A. 10B. 16C. 18D. 2018.. (2008泰安)如图,下列条件之一能使平行四边形 ABCD 是菱形的为()① AC _ BD ②.BAD =90③ AB = BC ④ AC = BD19. (2008年湖南省邵阳市) 如图(二),将ABCD 沿AE 翻折,使点B 恰好落在 AD 上 的点F 处,则下列结论不一定成立 的是( )21. ( 2008年山东省威海市)将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF 若AB= 3,贝U BC 的长为A. 1C.③④D.①②③A. AF =EFB.AB 二 EFC. AE 二 AFD. AF 二 BE20. (2008年上海市) 如图 2,在平行四边形 ABCD 中,如果 AB =a , AD =b ,那么 a b 等于(A. BDB. ACC. DBD. CAD图(二)22.(2008广东深圳)下列命题中错谟.的是 ( )A.平行四边形的对边相等E.两组对边分别相等的四边形是平行四边形 C.矩形的对角线相等D.对角线相等的四边形是矩形23. (2008湖北襄樊)顺次连接等腰梯形四边中点所得四边形是()A.菱形B. 正方形C. 矩形D.等腰梯形24. (2008黑龙江哈尔滨)如图,将边长为8cm 的正方形纸片 ABCD 折叠,使点D 落在BC 边中 点E 处,点A 落在点F 处,折痕为MN 则线段CN 的长是().(A ) 3cm ( B ) 4cm (C ) 5cm ( D ) 6cm二、填空题1. (08浙江温州)如图,菱形ABCD 中,A =60;,对角线BD = 8 ,2、(2008浙江义乌)如图,直角梯形纸片 ABCD ADLAB AB=8, A[=C[=4,点E 、F 分别在线段AB AD 上,将△ AEF 沿 EF 翻折, 点A 的落点记为P.(1 )当AE=5, P 落在线段CD 上时,PD=▲;(2)当P 落在直角梯形ABCD^部时,PD 的最小值等于 ▲3、(2008山东烟台)红丝带是关注艾滋病防治问题的国际性标志 •将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为 ____________ cm 2.4. _______________________________________________ ( 2008年山东省临沂市)如图,矩形 ABCD 中, AB= 2, BC= 3,对角线AC 的垂直平分线 分别交AD BC 于点E 、F ,连接CE,贝U CE 的长 _______________________________________________ .〔* 10 « 图}A E D5、( 2008浙江杭州)如图,一个 4 2的矩形可以用3种不同的方式分割成 2或5或8个 小正方形,那么一个 5 3的矩形用不同的方式分割后,小正方形的个数可以是6 (2008浙江宁波)如图,菱形 OABC 中,Z A =120;, OA = 1,将菱形OABC 绕点O 按 顺时针方向旋转90:,则图中由BB , BA , AC , CB 围成的阴影部分的面积是 ____________ .9. ( 2008年四川省南充市)如图,四边形ABC D 中 , E , F , G H 分别是边AB, BC CD DA 中点•请你添加一个条件,使四边形EFGH 为菱形,应添加的条件是 ____________ •□□□□7.(2008年天津市)如图,在正方形 ABCI 中,E 为AB 边的中点,G F 分别为AD ,BC 边上的点,若 AG =1 , BF =2 , /GEF =90,则GF 勺长为 _______ .8 .(2008年沈阳市)如图所示,菱形 ABCD 中,对角线 AC , BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是 __________ (只填一个条件即可).匕或OC FBF10.(2008新疆乌鲁木齐市)如图3,在四边形 ABCD 中,AD // BC , D = 90,若再添 加一个条件,就能推出四边形 ABCD 是矩形,你所添加的条件是 _______________ •(写出一种 情况即可)11.(2008黑龙江黑河)如图,矩形 ABCD 中,AB=3cm, AD = 6cm,点E 为AB 边上的 任意一点,四边形 EFGB 也是矩形, 且 EF =2BE ,贝V S A AFC 二12. (2008 桂林市)如图,在梯形 ABCD 中,AD//EC,AE = CD,AC 丄ED,A D= 6, BC= 8,则梯形的高为 _____________________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 B C D A ODA B F C D E O 第4题图 第5题图 2009中考数学四边形分类一、选择题 1、(2009安徽芜湖4)下列命题中不成立...的是( ) A .矩形的对角线相等B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形2.(2009福建漳州8)如图,要使ABCD成为矩形,需添加的条件是( ) A .AB BC = B .AC BD ⊥ C .90ABC ∠=° D .12∠=∠3.(广西桂林10)如图, ABCD 中,AC 、BD 为对角线,BC=6,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .244.(广西桂林12)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ). A .2 B .4π- C .π D .π1-5.(2009广西梧州18)如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO等于( ) A .352 B .31 C .32D .216.(广西南宁7)如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) .210cm B .220cmC .240cmD .280cm第3题图 第2题图7.(2009河北衡阳10)如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .34 C .23D .28.(2009齐齐哈尔9) 在矩形ABCD 中,1AB AD AF =,平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF EC 、交于点H ,下列结论中:AF FH =①;BO BF =②;CA CH =③;④3BE ED =,正确的是( )A .②③B .③④C .①②④D .②③④9.(2009齐齐哈尔10)如图是一张矩形纸片ABCD ,AD=10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE=6cm ,则CD=( ) A .4cm B .6cm C .8cm D .10cm10.(2009湖北武汉9)如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( ) A .70° B .110° C .140° D .150°11、(2009湖北孝感7)如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上,小明认为:若MN EF =,则MN EF ⊥.小亮认为:若MN EF ⊥,则MN EF =.你认为( ) A .仅小明对 B .仅小亮对 C .两人都对 D .两人都不对A B CDA ′ G DBC AD A B COE FHF ED B A C B C O A A D EMN DA A ' A D E P 第6题图 第7题图第8题图 第9题图 第10题图第14题图第15题图第16题图第17题图12.(2009哈尔滨9)如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若20A BC '∠=°,则AB D '∠的度数为( ).A .15°B .20°C . 25°D .30° 13.(2009辽宁抚顺)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使P D P E +的和最小,则这个最小值为( )A. B. C .3 D14.(2009山东淄博8)如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为( ) A .9B .10.5C .12D .1515.(2009山东淄博11)矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为( )A . 8B .112C . 4D .5216.(2009山东威海10) 如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( ) A .AD BC = B .CD BF = C .A C ∠=∠ D .F CDE ∠=∠17.(2009山东日照5)如图,在□ABCD 中,已知AD =8㎝,AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于()(A )2cm (B )4cm(C )6cm(D )8cmABCD EFPEBAFC D ABCDE第11题图第12题图第13题图A DE P C BF 第18题图第19题图 第1题图第2题图 第3题图18.(2009浙江杭州8)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( )A .35°B .45°C .50°D .5519.(2009四川内江4)如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA=OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是 A. ①② B.①④ C.②③④ D.①②④20.(2009四川内江4)如图在矩形ABCD 中,若AC =2AB ,则∠AOB 的大小是( )A. 30°B. 45°C. 60°D.90°二、填空题1.(2009北京12)如图,正方形纸片ABCD 的边长为1,M N ,分别是AD BC 、边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E ,若M N ,分别是AD BC ,边的中点,则A N '= ;若M N ,分别是AD BC ,边上距DC 最近的n 等分点(2n ≥,且n 为整数),则A N '= (用含有n 式子表示).2.(2009福建莆田6)如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.3.(2009广西贺州12)如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.4.(2009河南10)如图,在ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,M A 'DE A B N A B D D C B A O O1 A B CD C A B第4题图 第5题图 第7题图第8题图 第9题图 第10题图1OE =,则AB 的长是 . 5.(2009齐齐哈尔19)如图,边长为1的菱形ABCD 中,60DAB ∠=°.连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作的第n 个菱形的边长为___________.6、(2009齐齐哈尔20)用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是____________. 7.(2009湖北鄂州)如图,四边形ABCD 中,AD BC ∥.已知BC CD AC ===AB =,则BD 的长为______________.8、(2009江西15)如图,一活动菱形衣架中,菱形的边均为16cm ,若墙上钉子间的距离16cm AB BC ==,则1=∠ 度.9.(2009辽宁本溪14)如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .10.(2009浙江南充11)如图等腰梯形ABCD 中,AD BC ∥,6047B AD BC ∠===°,,,则梯形ABCD 的周长是 .OD C EB AC 1D 1 D 2 C 2D C A BA DC B B AHC O第11题图11.(2009四川达州15)如图6,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).12(2009山西太原20)如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD=B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .13.(2009广东湛江13)如图,在梯形ABCD 中,A B C D ∥, 90A B ∠+∠=°,511CD AB ==,,点M N 、分别为AB CD 、的中点,则线段MN = .三、解答题 1、(2009安徽芜湖21)如图,在梯形ABCD 中,AD BC ∥,9038BD CD BDC AD BC =∠===,°,,.求AB 的长.A D CB OBM 第13题图第12题图学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案? 3.(2009安徽20)如图,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰. 能拼成一个.....矩形(非正方形). (1)画出拼成的矩形的简图; (2)求xy的值. 4、(2009北京19)如图,在梯形ABCD 中,AD BC ∥,904514B C AD BC ∠=∠===°,°,,,E 为AB 的中点,EF DC ∥交BC 于点F ,求EF 的长.yxAD BE F阅读下列材料: 小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG .请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并 指明拼接成的平行四边形(画出一个..符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ .请在图4中探究平行四边形MNPQ 面积的大小(画图..并直接写出结果).6.(2009福建宁德20)如图:点A 、D 、B 、E 在同一直线上,AD=BE ,AC=DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)图1 图2 图3A DGC BE Q HF M N P 图4A FED C B如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;(4分) (2)连接FC ,观察并猜测∠FCN 的度数,并说明理由;(4分) (3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB=a ,BC=b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请用含a 、b 的代数式表示tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明.(5分)8.(2009福建莆田19)已知:如图在ABCD中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、. (1)观察图形并找出一对全等三角形:△________≌△___________,请加以证明; (2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?N M B E C D F G图(1)图(2) M B E A C DF G N E B M OD N C A如图,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F ,求证:△ADE ≌△ABF.10(2009广东18)在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E . (1)求BDE △的周长; (2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.11.(2009广东清远)如图,已知正方形ABCD ,点E 是AB 上的一点,连结CE ,以CE 为一边,在CE 的上方作正方形CEFG ,连结DG .求证:CBE CDG △≌△._F _E _ D _C _B _A A Q DE B C OE B C G DFA如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF 的长.13.(2009广东广州24)如图,边长为1的正方形ABCD 被两条与边平行的线段EF GH 、分割成四个小矩形,EF 与GH 交于点P .(1)若AG AE =,证明:AF AH =; (2)若45FAH ∠=°,证明:AG AE FH +=;(3)若Rt GBF △的周长为1,求矩形EPHD 的面积.14.(2009广西玉林)矩形ABCD 中,点E 、F 分别在AB 、BC 上,DEF △为等腰直角三角形,90102DEF AD CD AE ∠=+==°,,,求AD 的长.DF C B E AA E D HGPB FCD A B C E如图:在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O . (1)图中共有 对全等三角形;(2)写出你认为全等的一对三角形,并证明.16.(2009广西梧州23) 如图(7),△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN于E ,连结AE 、CD . (1)求证:AD =CE ;(2)填空:四边形ADCE 的形状是 .17.(广西崇左24) 如图,在等腰梯形ABCD 中,已知AD BC ∥,24AB DC AD BC ===,,,延长BC 到E ,使CE AD =.(1)证明:BAD DCE △≌△;(2)如果AC BD ⊥,求等腰梯形ABCD 的高DF 的值.AD OCBDBA ENMOD AB E F18.(2009广西崇在25)如图-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图-2),试判断AE EP 与的大小关系,并说明理由;(3)在图-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.19.(广西贺州24)(1)请用尺规作图:作BC D '△与△BCD 关于矩形ABCD 的对角线BD 所在的直线对称(要求:在原图中作图,不写作法,不证明,保留作图痕迹).(2)若矩形ABCD 的边AB=5,BC=12,(1)中BC '交AD 于点E ,求线段BE 的长.图-1 A DC B E 图-2 B C ED A F PF A B C D20.(2009贵州安顺25)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连结BF 。

相关文档
最新文档