雷达介绍资料中文版
雷达的知识简介

雷达的知识简介雷达是一种利用射频信号进行探测和测量的技术,广泛应用于军事、航空、气象、地质勘探、交通等领域。
雷达的原理是利用电磁波在空间中传播时的反射和散射现象,通过测量这些反射和散射信号的特性来获取目标的位置、速度、形状等信息。
雷达系统由发射器、接收器和信号处理器组成。
发射器产生一束高频电磁波并发射出去,这些电磁波会在目标上反射或散射,一部分被接收器接收到。
接收器将接收到的信号转化为电信号,并经过放大、滤波等处理后传送给信号处理器。
信号处理器对接收到的信号进行分析和处理,通过计算目标与雷达之间的距离、速度等参数来获取目标的相关信息。
雷达的工作原理是基于电磁波在空间中的传播和反射规律。
当雷达发射出的电磁波遇到目标物体时,部分能量会被反射回来,这部分反射信号称为回波。
根据回波的时间延迟和幅度等特征,雷达可以判断目标物体的位置、距离和速度等信息。
雷达系统中的发射器通常采用高频振荡器和功率放大器组成,能够产生高频电磁波。
这些电磁波的频率通常在几百兆赫兹到几十吉赫兹之间,具有较长的波长。
发射器将电磁波发射出去后,通过天线辐射到空间中。
接收器一般由天线、低噪声放大器、混频器等组成。
天线用于接收回波信号,并将其转化为电信号。
低噪声放大器用于放大接收到的微弱信号,以提高信号的可靠性和灵敏度。
混频器用于将接收到的高频信号与本地振荡器产生的信号进行混频,得到中频信号。
信号处理器是雷达系统中的核心部分,它通过对接收到的信号进行采样、滤波、放大、解调等处理,提取出目标的信息。
信号处理器利用雷达系统中的数学算法和信号处理技术,通过对回波信号的特征进行分析和处理,可以获取目标的位置、距离、速度、形状等信息。
雷达系统的性能取决于发射器的功率、接收器的灵敏度、天线的方向性和信号处理器的算法等因素。
发射器功率的大小决定了雷达的最大探测距离和目标的探测能力。
接收器的灵敏度决定了雷达对微弱回波信号的接收能力。
天线的方向性决定了雷达的目标定位精度和目标的方位角测量能力。
雷达简介

雷达的历史
1842年多普勒(ChristianAndreasDoppler)率先提出利用多 普勒效应的多普勒式雷达。
1921年业余无线电爱好者发现了短波可以进行洲际通信后,科 学家们发现了电离层。短波通信风行全球。
1934年,一批英国科学家在 R.W.瓦特领导下对地球大气层进 行研究。有一天,瓦特被一个偶然观察到的现象吸引住了。它发现荧 光屏上出现了一连串明亮的光点,但从亮度和距离分析,这些光点完 全不同于被电离层反射回来的无线电回波信号。经过反复实验,他终 于弄清,这些明亮的光点显示的正是被实验室附近一座大楼所反射的 无线电回波信号。瓦特马上想到,在荧光屏上既然可以清楚地显示出 被建筑物反射的无线电信号,那么活动的目标例如空中的飞机,不是 也可以在荧光屏上得到反映吗?
8
对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测 出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤 除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲 多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中 的活动目标。
脉冲多普勒雷达于 20世纪 60年代研制成功并投入使用。20世 纪 70年代以来,随着大规模集成电路和数字处理技术的发展,脉冲 多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦 察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备。 装有脉冲多普勒雷达的预警飞机,已成为对付低空轰炸机和巡航导弹 的有效军事装备。此外,这种雷达还用于气象观测,对气象回波进行 多普勒速度分辨,可获得不同高度大气层中各种空气湍流运动的分布 情况。
雷达简介

For personal use only in study and research; not for commercial use雷达简介雷达是利用无线电波来测定物体位置的无线电设备。
雷达(radar)原是“无线电探测与定位”的英文缩写。
雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。
雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
雷达的工作原理首先是发射机产生足够的电磁能量,经过收发转换开关传送给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。
电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。
天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。
由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。
接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。
根据电磁波的传播速度,可以确定目标的距离为:S=CT/2。
其中S:目标距离,T:电磁波从雷达到目标的往返传播时间,C:光速。
雷达测定目标的方向是利用天线的方向性来实现的。
通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。
两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。
测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。
雷达介绍资料汇总

雷达介绍资料汇总雷达是指射频波的电磁能在空间中以高速传输并经过反射、散射、折射等作用返回到雷达接收机,通过测量返回波的特性来获得目标的位置、速度、形状以及其他相关信息的设备。
雷达技术的应用范围非常广泛,包括军事、民用、科研等领域。
本文将对雷达的基本原理、分类、工作方式以及一些典型应用领域进行介绍。
雷达的基本原理包括发射系统、接收系统和信号处理系统。
发射系统负责产生并发射射频波,一般采用脉冲信号。
接收系统用于接收目标返回的波,通过接收天线接收并将其转换为电信号。
信号处理系统对接收到的信号进行处理,包括滤波、放大、解调、去杂等操作。
通过分析处理后的信号,可以获得目标的位置、速度、形状等信息。
雷达按照应用领域和工作频率可以分为军用雷达、民用雷达和科研雷达。
军用雷达主要用于军事侦查、导航、武器系统等方面,其工作频率一般较高。
民用雷达广泛应用于天气预报、航空导航、船舶定位等领域,其工作频率一般较低。
科研雷达用于天文观测、大气物理研究等方面,其工作频率较高。
雷达按照工作方式可以分为连续波雷达和脉冲雷达。
连续波雷达是指不间断地发送连续波信号,并通过接收到的信号中的相位差来确定目标的位置、速度等信息。
脉冲雷达是指发射脉冲信号并测量返回信号的时间延迟,通过计算时间延迟来确定目标的位置、速度等信息。
雷达的应用领域非常广泛。
军事方面,雷达用于目标侦测、火力打击等方面,如远程侦察雷达、防空雷达等。
民用方面,雷达用于天气预报、航空导航、船舶定位等方面,如气象雷达、航空雷达等。
科研方面,雷达用于天文观测、大气物理研究等方面,如射电望远镜、对流层雷达等。
总之,雷达是一种通过测量反射回来的射频波来获取目标信息的设备。
雷达具有广泛的应用领域,包括军事、民用、科研等方面。
雷达的工作原理包括发射系统、接收系统和信号处理系统。
根据应用领域和工作频率,雷达可以分为军用雷达、民用雷达和科研雷达。
根据工作方式,雷达可以分为连续波雷达和脉冲雷达。
346雷达原理-概述说明以及解释

346雷达原理-概述说明以及解释1.引言1.1 概述雷达(Radar)是一种利用无线电波进行探测和测量的技术。
它是通过发射电磁波并接收其反射信号来探测目标物体的位置、速度、方向和其他相关信息的一种工具。
雷达技术在军事、航空、天气预报、海洋勘测等领域具有广泛的应用。
雷达的原理很简单,它利用电磁波在空间中传播的特性进行工作。
当雷达发射器发出电磁波时,这些波会在空间中以光速传播,并在遇到目标物体时被反射回来。
接收器会接收到这些反射信号,并通过分析其强度、频率和时间延迟等参数来确定目标物体的位置和其他信息。
雷达系统通常由发射器、接收器、信号处理装置和显示器等组成。
发射器负责产生和发射电磁波,接收器则负责接收反射信号。
信号处理装置用来对接收到的信号进行处理与分析,从而提取出目标物体的相关信息。
最后,这些信息会通过显示器或其他方式展示给操作人员。
雷达技术的应用越来越广泛。
在军事方面,雷达可以用于目标跟踪、无人机探测、导弹防御等任务。
在航空方面,雷达常被用于飞行导航、防撞系统等。
在天气预报和海洋勘测中,雷达可以探测降雨、风暴和海洋浪涌等自然现象。
尽管雷达技术已经非常成熟,但随着科技的不断发展,雷达也在不断更新和改进。
比如,现代雷达系统通常采用多普勒效应,从而可以更准确地测量目标物体的速度。
此外,雷达系统还可以与其他技术结合,比如全球定位系统(GPS),从而提高测量的精度和准确性。
总之,雷达是一种非常重要的探测和测量工具。
它通过利用电磁波与目标物体相互作用的原理,可以获取目标物体的位置、速度和其他相关信息。
随着技术的不断发展,雷达在各个领域的应用也变得越来越广泛。
未来,我们可以期待雷达技术在更多领域发挥更大的作用。
1.2 文章结构文章结构是指文章整体的组织和布局方式,它对于提供清晰而有逻辑的文章表达至关重要。
本文将按照以下结构展开讨论346雷达原理。
首先,在引言部分1.1中,我们将概述346雷达原理的背景和基本概念,以便读者了解文章的背景和目的。
什么是雷达

什么是雷达雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它是由英文Radio Detection and Ranging(无线电探测和测距)缩写而来。
雷达系统能够发送出一束电磁波,并接收其反射回来的信号,通过分析这些信号的特征来确定目标物体的位置、速度、方向和其他属性。
雷达技术的发展历史可以追溯到20世纪初。
最初,雷达主要用于军事领域,用于探测和追踪敌方飞机和舰船。
随着科技的进步,雷达技术逐渐应用于民用领域,如天气预报、航空导航和交通控制等。
雷达系统由发射器、接收器和信号处理器组成。
当雷达发射器发出一束电磁波时,它会遇到目标物体并被反射回来。
接收器接收这些反射的信号,并将其传送给信号处理器进行分析。
雷达系统的探测原理基于“回波时间差”原理。
当雷达发射信号时,它记录下发射和接收之间的时间间隔。
通过测量这个时间间隔,可以确定目标物体与雷达系统之间的距离。
通过连续发射信号并记录回波时间差,雷达系统可以得到目标物体的运动信息,如速度和方向。
雷达系统还可以通过分析回波信号的特征来获得目标物体的其他属性。
例如,通过比较接收到的信号的强度和频率变化,雷达系统可以确定目标物体的大小、形状和材质。
这些信息对于区分不同类型的目标物体至关重要。
雷达技术的应用非常广泛。
在军事领域,雷达系统被用于飞机、舰船和导弹的导航和目标追踪。
在天气预报中,雷达系统用于探测降雨和研究气象现象。
在航空导航中,雷达系统用于引导飞机降落和防止碰撞。
此外,雷达技术还被用于交通控制、无人驾驶汽车和安防领域等。
与传统的光学传感器相比,雷达具有许多优势。
首先,雷达系统可以在复杂的天气条件下工作,如雨雪、雾和浓雾。
其次,雷达可以远距离探测目标物体,无需直接视线。
此外,雷达系统对目标物体的大小和形状并不敏感,因此可以在不同环境下进行可靠的探测。
然而,雷达技术也存在一些局限性。
由于雷达使用的是电磁波,因此在某些情况下可能会被其他电子设备干扰。
此外,雷达对目标物体的分辨率有限,无法对小尺寸的物体提供详细信息。
雷达的资料 (2)

雷达的资料1. 介绍雷达(Radar)是由Radio(射频)和Detection(侦测)两个词组成的缩写词,是一种利用电磁波进行远距离目标探测和测量的技术。
雷达技术广泛应用于航空、军事、气象、导航、地质勘探等领域。
本文将详细介绍雷达的原理、分类以及应用。
2. 原理雷达的工作原理基于电磁波的特性以及目标的反射。
雷达系统发射高频电磁波,这些波通过空间传播,并当波束遇到目标时,部分电磁波会被目标表面反射回来。
雷达接收器接收反射回来的波,并根据接收到的信号计算目标的位置、速度、距离等参数。
3. 分类根据使用的频率范围、工作方式和应用领域的不同,雷达可以分为不同的类型:- 基于频率范围的分类: - X波段雷达 - C波段雷达 - S波段雷达 - L波段雷达 - Ku波段雷达 - Ka波段雷达 - 基于工作方式的分类: - 连续波雷达(CW雷达) - 脉冲雷达 - 多普勒雷达 - 合成孔径雷达(SAR) - 基于应用领域的分类: - 军用雷达 - 气象雷达 - 航空雷达 - 地质勘探雷达 - 海洋雷达4. 应用雷达技术在各个领域中都有重要的应用。
以下是一些常见的雷达应用: ### 4.1 军事应用雷达在军事中起到了非常重要的作用。
它可以用于远距离探测敌方目标,提供战场情报,指引导弹和飞机等武器系统。
此外,雷达还可以用于侦测隐形飞机、导弹和潜艇等敌方威胁。
4.2 气象应用气象雷达用于测量降水、云团和其他气象现象,帮助气象学家预测天气变化。
通过测量反射回来的电磁波强度和频率变化,气象雷达可以提供降水的类型、强度和分布等信息。
4.3 航空应用航空雷达用于飞行安全和导航。
它可以检测飞行器和其他飞行物体,帮助飞行员避开障碍物,提供飞行路径规划和导航。
航空雷达在机场和航空监控系统中广泛使用。
4.4 地质勘探应用地质雷达可用于勘探地下的水、矿产、地层、沉积物和其他地质特征。
它可以通过检测不同类型物质的电磁波反射信号来提供地下结构和特征的图像。
雷达的知识简介

雷达的知识简介雷达是一种利用无线电波进行探测和测量的技术。
它可以通过发射电磁波并接收其反射来探测目标的位置、速度和其他特征。
雷达广泛应用于军事、航空、航海、气象和科学研究等领域。
雷达的工作原理是利用电磁波的特性,通过发射器产生的高频电磁波向周围空间传播。
当这些电磁波遇到物体时,会发生反射、散射和折射等现象。
接收器接收到反射回来的电磁波,并通过信号处理和分析,可以确定目标的位置、距离和速度等参数。
雷达的基本组成部分包括发射器、接收器、天线和信号处理系统。
发射器产生高频电磁波,并将其通过天线发射出去。
接收器接收到反射回来的电磁波,并将其转化为电信号。
天线用于发射和接收电磁波。
信号处理系统对接收到的电信号进行处理和分析,得出目标的相关信息。
雷达的应用十分广泛。
在军事领域,雷达可以用于侦察和监视敌方目标,帮助决策者做出正确的决策。
在航空和航海领域,雷达可以用于导航和防撞系统,提高航行安全性。
在气象预报中,雷达可以用于探测降水、风暴和气象现象,提供准确的天气预报。
在科学研究中,雷达可以用于探测和研究地壳的变化、大气层的结构和太空中的天体等。
雷达技术的发展也带来了许多创新和突破。
例如,通过多普勒雷达可以测量目标的速度,实现对运动目标的跟踪和监测。
通过合成孔径雷达可以提高图像的分辨率,实现对地面目标的高清观测。
此外,还有雷达干涉技术、相控阵技术等,不断推动着雷达技术的发展。
然而,雷达技术也存在一些局限性。
例如,由于电磁波的传播特性,雷达在大气层中的传播会受到影响,导致信号衰减和多径效应。
此外,雷达对目标的探测范围和分辨率也有一定限制,尤其在复杂的环境中。
雷达是一种重要的无线电技术,具有广泛的应用领域和深远的影响。
随着科技的进步和创新的推动,雷达技术将继续发展,为各个领域带来更多的创新和突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概述介绍Rockwell Collions WXR-2100型多扫描气象雷达在气象信息的处理和提炼方法上有革命性的突破,多扫描气象雷达是一种全自动雷达,它可以在不需要飞行员输入扫描角度和进行增益设置的情况下,不管在什么时候,不管飞机的姿态如何,对所有范围内重要的气象信息进行无杂波的显示。
当多扫描气象雷达工作在自动模式的时候,每个飞行员将会获得一般只有有经验的雷达操作员才能获得的气象信息,而飞行员只需进行简单的标准化航空公司飞行员培训。
多扫描气象雷达有效的减少了飞行员的工作负担,并增强了天气的探测能力,增加了机组及旅客的安全性。
多扫描雷达工作的关键在于雷达对雷雨底部反射部分的探测,然后通过先进的数字信号处理技术对地面杂波进行抑制。
为了对短、中、长距离范围内的气象进行更好的探测,多扫描气象雷达也集成了多雷达扫描功能,对扫描角度进行预设。
因此,在不同的飞行阶段,不同的探测距离,它的气象探测结果都十分出色。
真320海里探测和Qverflight Protection功能是多扫描气象雷达众多新特征中的两个。
多扫描气象雷达因为使用先进的运算法则来消除地面杂波,这使它能够跨越雷达视野的限制,为飞行员提供真正意义上的320海里气象资料。
Overflight Protection功能使机组人员能够躲开雷雨顶部渗透,这是如今导致飞机颠簸的主要原因之一。
Overflight Protection功能将那些对飞机造成威胁的任何雷雨信息保持在雷达显示屏上,直到它不在对飞机造成威胁为止。
系统描述重要的运行特点全自动工作:多扫描气象雷达设计工作在全自动模式,飞行员只需输入探测范围,而不需要输入扫描角度和进行增益设置。
理想的无杂波显示:Rockwell Collions第三代地面杂波抑制算法能减少约98%的地面杂波,这使它能理想的无杂波显示有威胁的气象信息。
在不同探测范围和飞行高度情况下良好的气象探测能力:多扫描气象雷达将从不同扫描角度获得的气象数据储存在存储器中,当飞行员选择了所要求的显示范围,不同角度的扫描信息将会从存储器中取出并一起显示。
通过多角度的扫描,可以获得近距离和远距离的气象信息,这使得不管飞机的姿态如何,不管何种探测范围,显示屏上所呈现的都是一幅最优化的气象图。
决策气象:多扫描气象雷达能够提供真正意义上的320海里决策气象信息。
Gain Plus:Gain Plus包括以下功能:传统的加减增益控制:多扫描气象雷达允许机组人员在人工或自动工作模式的时候进行增加或减小增益。
基于温度的增益控制:在高海拔的巡航高度,由于低的雷雨雷达反射率,将会基于温度对雷雨增益进行补偿。
路径衰减补偿和警报(PAC Alert):对距飞机80海里范围内的干扰性气象造成的衰减进行补偿,当补偿超过限制,一个黄色的PAC Alert杆将显示以提醒飞行员注意雷达阴影区。
Overflight Protection:Overflight Protection功能减少了在高海拔巡航高度时疏漏雷雨顶部渗漏的可能性。
多扫描气象雷达向下扫描波束的信息和它的信息存储能力将发挥作用,可以防止在飞机完全穿越有威胁的雷雨区之前,雷雨区图象在显示屏上消失。
海洋气候反射率补偿:多扫描气象雷达能对海洋雷雨反射率的减小进行增益补偿,以便在飞机飞越海洋时提供更精准的气象信息。
全面的低高度气象:在低高度时,多角度扫描的应用使雷达能够通过对飞机飞行路径的扫描来防止闯入拱形雷雨紊流区,能探测出飞机下方正在行成的雷雨,并能看到更大范围内的气象情况。
风切变探测:在起飞和着陆阶段,自动的风切变探测能力将起作用。
地图:地图模式能够探测出主要的地理特征,如城市,湖面,海岸线等。
全范围全模式下的同步显示更新:在自动模式下,机长和副驾驶的显示更新是同步进行的,即使他们选择了不同的显示距离和不同的工作模式。
工作原理雷雨的反射率了解多扫描气象雷达如何工作的关键在于了解雷雨的反射率。
一般来说,雷雨的反射率被划分成三个部分(见图3—1)。
图3—1 雷雨反射级别雷雨的下三分之一由于温度在冰点之上,所以全部由小雨滴组成,这部分是雷雨中对雷达波能量反射最强的部分。
中间部分由过度冷却的水和冰晶组成,由于冰晶是不良的雷达波反射体,所以这部分的反射率开始减小了。
雷雨的上部完全由冰晶组成,所以在雷达上几乎不可见。
另外,正在形成的雷雨在其上部可能会形成拱形的紊流波。
图3—2显示的是一个真实的雷雨。
图3—3显示的是随着扫描俯仰角度的增加相应得到它的一些雷达图。
在实际的人工操作中,通常是在能观察到最多的雷雨反射回波的角度和接收到最少地面杂波的角度之间选择一个折衷的扫描角度。
图3—2 雷雨图3—3 雷雨和在不同扫描俯仰角度时它相应的雷达图理想的雷达波束了解了雷雨的反射率和扫描角度对它的影响,我们可以设想一下探测天气的理想雷达波束的特性。
理想的雷达波束能够直接探测到飞机下方区域,探测出正在形成的雷雨,并且波束能沿地球表面的曲率延伸到雷达波传播的最远距离(图3—4)。
这样,理想的雷达波束能在任何时候显示出飞机到320海里外所有的重要气象信息。
图3—4 理想的雷达波束多扫描对理想雷达波的仿效多扫描雷达通过获取来自不同扫描角度的信息并将其合并进整个气象图中来仿效出理想的雷达波束。
Rockwell Collions的专利—地面杂波抑制算法被用来消除地面杂波,这使得飞行机组人员能看到0—320海里范围内所有的重要气象目标,而不受地面杂波的干扰(图3—5)。
图3—5 多扫描雷达对理想波束的模拟多扫描雷达的工作程序图3—6显示多扫描雷达的工作程序。
两个不同扫描角度的扫描数据被采集,并对飞机前方不同区域的回波信息进行优化。
一般来说,多扫描气象雷达通过自动调整波束的扫描角度和增益,上部扫描波束探测的是中间区域的气象信息,而下部波束探测的是较近和较远距离的气象信息(图3—7)。
这些信息被存在一个临时的数据库中,当机长或副驾驶选择了一个距离,计算机就回取出相应部分的数据信息,并对其进行合并和杂波抑制。
这样没,不管机组选择了哪个距离,都能得到最优的气象图。
图3—6 多扫描雷达工作程序图3—7 多扫描雷达上下波束的扫描更新速度除风切变模式外,多扫描气象雷达在其它所以模式下完整的进行一次数据处理的总时间是8秒,而在风切变模式下,多扫描和风切变总的处理周期为11.2秒。
因此,在一个数据处理周期内,所观察到的天气情况不会发生明显的改变,改变的只是天气和飞机的相对位置关系。
为此,多扫描气象雷达通过调整(图3—8)和旋转(图3—9)所存储的数据图片来补偿飞机的运动。
这样,Collions多扫描气象雷达在除风切变以外的所以工作模式下每4秒对雷达显示进行一次更新,而在风切变模式下的更新速度为5.5秒。
这种工作方式的一个值得注意的地方在于雷达天线的扫描不再与显示器的扫描相关联,这使得它可以在不妨碍对飞行员进行气象显示的情况下,让天线自由地完成多扫描功能。
图3—8 多扫描雷达对飞机运动进行的图像更新图3—9 多扫描雷达对航向改变进行的图像更新自动增益多扫描气象雷达工作在自动模式时,它能根据大气温度曲线使用不同的增益,以此来对不同时间,地理位置,海拔高度的影响进行补偿,从而在所有飞行阶段都能得到最优化的气象目标回波图。
增益的调整适应了飞机的飞行环境,并在多数情况下提供了最优化的气象图。
总结因为多扫描气象雷达通过角度的设置对飞机前方的气象目标进行探测,并能在有地面杂波的扫描角度所得的回波信息中筛选出重要的气象信息,所以它能基本无杂波的显示0—320海里范围内对飞机有影响的所有气象信息(图3—10)。
而且它的整个工作过程是全自动的,这使得飞行员只需关注对恶劣天气的躲避,而不用操心气象目标的探测和分析。
多扫描气象雷达用产生大量地面杂波的扫描角度来探测雷雨的反射部分,图3—10显示在地面杂波抑制关闭状态下的雷达图,气象目标都被大量的地面杂波所遮蔽了。
图3—10 多扫描雷达在地面杂波抑制(GCS)功能关闭时的显示图3—11演示的是在地面杂波抑制功能起作用时的雷达图(从0到160海里范围)。
完全无地面杂波的干扰,只有那些重要的气象目标是可见的。
值得注意的是雷达的扫描角度不在需要在减小地面回波的角度和能观察到最好气象目标回波的角度中折衷了。
图3—11多扫描雷达在地面杂波抑制(GCS)功能打开时的显示多扫描气象雷达的控制面板空客的多扫描气象雷达的控制面板是一个双系统、单功能的控制面板。
“双系统”是由于雷达系统可能包含有一套或两套发射/接收机,这是由飞机的构型决定的。
“单功能”意味着在模式、增益及扫描角度设置方面,机长和副驾驶都是相同的。
图4—1 空客飞机的双系统、单功能的控制面板显示指示空客的显示指示自动工作是空客飞机的标准工作模式,因此,当自动多扫描功能被选择后,EFIS上是没有指示的。
在人工模式下,MAN将在EFIS上显示在扫描俯仰角度代码的旁边。
图4—5上面一幅图显示在自动模式下工作的状态。
因为负1.5度俯仰角代码前没有指示。
MAN GAIN的显示是由于它的增益是某个位置的增益,而不是CAL(经过校准的)增益。
下面那幅图显示在人工模式下工作的状态,因为MAN显示在正2度俯仰角度代码的前方。
CAL(经过校准的)增益被选择了,因为MAN GAIN指示没有出现。
注意:当气象雷达在AUTO(自动)模式出现故障时,显示扫描俯仰角度的区域会显示A-15、A-15.5或者A-16的指示,并伴随有相应的故障信息显示(如:WXR SYS 或AUTOTILT FAIL)。
将雷达转换到MAN(人工)模式并按照雷达的标准操作程序进行操作。
图4—5 空客自动和人工工作模式指示如果自动功能故障,(气象情况)在机组人员来取消自动功能以前,将无气象情况显示,并有NO AUTOTILT显示(图4—6)。
图4—6 空客自动功能故障指示俯仰角度指示不管是波音还是空客的飞机,在自动工作模式,EFIS上显示的扫描俯仰角度是上下波束角度的平均值。
例如,在起飞阶段,上下扫描波束的角度相差4度,下面的波束角度为3度,而上面的波束角度为7度,所显示的扫描角度为5度。
随着飞机的爬升,两波束间的角度差越来越小,当达到地面以上10000英尺或更高时,上下波束角度差会维持在2度左右。
注意:由于EFIS显示系统的TILT指示为整数,所以在机长和副驾驶的NA V DISPLAY(导航显示)上显示的TILT值可能会有区别,这是由于显示系统的舍入差别造成的。
多扫描雷达自动工作模式多扫描气象雷达被设计成全自动工作模式,只要选择了自动功能和所要求的探测范围,自动模式开始工作。
一旦进入自动模式,雷达回调整扫描角度和增益,以便在任何距离和飞行条件下都能提供最优的气象图。
常规控制电源(开/关)空客:当SYS(系统)开关被选到1或2,雷达就上电了。