流体力学多相流自学作业

合集下载

流体力学课后作业

流体力学课后作业
4-5为什么溢流阀在调压弹簧的预压缩量一定时,进口压力会随着流量的变化而有所波动?
解:溢流阀出口接油箱,则其进出口压差为其进口压力,由孔口流量方程 可知,在面积不变,即弹簧压缩量不变时,流量增大,其进口压力会增加。
4-6减压阀的出口压力取决于什么?其出口压力为定值的条件是什么?
解:
减压阀出口压力取决于负载压力的大小:负载压力小于其调定压力时,出口压力为负载压力;负载压力大于其调定压力时,出口压力为其调定值。
解:
2图示系统为一个二级减压回路,活塞在运动时需克服摩擦阻力F=1500N,活塞面积A=15cm2,溢流阀调整压力py=45×105Pa,两个减压阀的调定压力分别为pj1=20×105Pa和pj2=35×105Pa,管道和换向阀的压力损失不计。试分析:
1)当DT吸合时活塞处于运动过程中,pB、pA、pC三点的压力各为多少?
4某液压泵的输出油压p=10MPa,转速n=1450r/min,排量V=100mL/r,容积效率ηv=0.95总效率η=0.9,求泵的输出功率与电动机驱动功率。
二、作业题
2-9某液压泵的最大工作压力p=10MPa,电机转速n=1450r/min,排量V=17.6mL/r,容积效率ηv=0.90总效率η=0.8,求电动机驱动功率
危害:容积缩小p↑高压油从一切可能泄漏的缝隙强行挤出,使轴和轴承受很大冲击载荷,泵剧烈振动,同时无功损耗增大,油液发热。
容积增大p↓形成局部真空,产生气穴,引起振动、噪声、汽蚀等
总之:由于困油现象,使泵工作性能不稳定,产生振动、噪声等,直接影响泵的工作寿命。
2液压泵的工作压力取决于什么?泵的工作压力与额定压力有何区别?
2如图所示两个结构相同相互串联的液压缸,无杆腔的面积A1=100*10-4m2,有杆腔的面积A2=80*10-4m2,缸1的输入压力p1=0.9MPa,输入流量q=12L/min,不计损失与泄漏,求

流体力学习题及答案-第三章

流体力学习题及答案-第三章

第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。

因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。

3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。

3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。

(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。

答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。

由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。

代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。

流体力学习题及答案

流体力学习题及答案
1-4图示为一水暖系统,为了防止水温升高时体积膨胀将水管胀裂,在系统顶部设一膨胀水箱,使水有膨胀的余地。若系统内水的总体积为8m3,加温前后温差为50℃,在其温度范围内水的膨胀系数为βT=9×10-41/℃,求膨胀水箱的最小容积。
题1-4图题1-5图
1-5图示为压力表校正器。器内充满压缩系数为βp=4.75×10-101/Pa的油液,器内压力为105Pa时油液的体积为200mL。现用手轮丝杆和活塞加压,活塞直径为1cm,丝杆螺距为2mm,当压力升高至20MPa时,问需将手轮摇多少转?
2-11两个充满空气的封闭容器互相隔开,左边压力表M的读数为100kPa,右边真空计V的读数为3.5mH2O,试求连接两容器的水银压差计中h的读值。
2-12水泵的吸入管与压出管的管径相同,今在其间连接一水银压差计,测得△h=120mm,问经水泵后水增压多少?若将水泵改为风机,则经过此风机的空气压力增加了多少?
2-29已知矩形闸门高h=3m,宽b=2m,上游水深h1=6m,下游水深h2=4.5m,求:(1)作用在闸门上的总静水压力;(2)压力中心的位置。
2-30在倾角α=60°的堤坡上有一圆形泄水孔,孔口装一直径d=1m的平板闸门,闸门中心位于水深h=3m处,闸门a端有一铰链,b端有一钢索可将闸门打开。若不计闸门及钢索的自重,求开启闸门所需的力F。
2-34金属的矩形平板闸门,宽1m,由两根工字钢横梁支撑。闸门高h=3m,容器中水面与闸门顶齐平,如要求两横梁所受的力相等,两工字钢的位置y1和y2应为多少?
题2-34图题2-35图
2-35一弧形闸门,宽2m,圆心角α=30°,半径r=3m,闸门转轴与水平面齐平,求作用在闸门上的静水总压力的大小与方向(即合力与水平面的夹角)。
2-4已知水银压差计中的读数⊿h=20.3cm,油柱高h=1.22m,油的重度γ油=9.0kN/m3,试求:(1)真空计中的读数pv;(2)管中空气的相对压力p0。

流体力学作业1

流体力学作业1

流体⼒学作业11.⼯程流体⼒学《科学出版社》18页,例1-3图1-5是滑动轴承⽰意图,直径60d mm =,长度140L mm =,间隙0.3mm δ=,间隙中充满了运动粘度6235.2810/m s ν-=?,密度3890/kg m ρ=的润滑油。

如果轴的转速500/min n r =,求轴表⾯磨擦阻⼒f F 和所消耗的功率p 的⼤⼩。

解:假设间隙是同⼼环形,因δ d ,间隙中的速度分布直线分布规律()u u r =,轴表⾯的速度梯度为60du rw dn dr πδδ== ⼜运动粘度µ=ργ=3.14ⅹ210-(Pa s ?)摩擦表⾯积 A dL π=根据⽜顿内摩擦定律,作⽤在轴表⾯的摩擦阻⼒为 f F =duA drµ?=4.33N 摩擦阻⼒消耗的功为 2260f f d n P F rw F π==?=6.8W 2. ⼯程流体⼒学《科学出版社》 46-47页,例2-4试推导装满液体的圆柱形容器,如图2-19所⽰,在下述条件下绕垂直轴作等⾓速度旋转时的压强表达ω式(a )容器的顶盖中⼼处开⼝(b )容器的顶盖边缘处开⼝解:等⾓速度旋转时压强的⼀般表达式为:22()2w r p g z c gρ=-+ (1)(a) 顶盖中⼼处开⼝则00,0r z p p ===时,,代⼊(1)式得0c p =,于是压强公式为:220()2w r p p g z gρ=+-(b )顶盖边缘开⼝,则0,0r R z p p ===时,得此时压强公式为2220()[]2w R r p p g z gρ-=-+3. ⼯程流体⼒学《科学出版社》 55-56页,例2-6如图2-26所⽰⼀弧形闸门,半径7.5R m =,挡着深度 4.8h m =的⽔,其圆⼼⾓43α=,旋转轴的位置距底为 5.8H m =,闸门的⽔平投影 2.7CB a m ==,闸门的宽度 6.4b m = 试求作⽤在闸门上的总压⼒的⼤⼩和压⼒中⼼。

流体力学课后作业答案

流体力学课后作业答案
2
v1
2
2g
h2
v2
2
2g
1
v1 2.572m/s, v2 =4.287m/s
F P P Q( 2v2 1v1 ) 1 2
1 2
列动量方程
P ghC1 A1 1 1 2
2
gh1 B 13.23kN P2 ghC 2 A2
gh2 B 4.763kN
26
4-20 环形断面管道中水温10℃,流量Q=400L/min, 流 当量粗糙高度K=0.15mm,d=75mm,D=100mm。求 体 在管长l=300m管段上的沿程水头损失。 力 Q 4Q 查水温得 解: v 1.94m/s 学 2 2 A (D d ) 6 2 1.308 10 m /s 2 2
流 2-7 测压管中水银柱差Δh=100mm,在水深h=2.5m处安 体 装测压表M,求其读数,并图示测压管水头线的位置。 力 学
测压管水头线 p0 h’ h M
解: p p0 w gh
Hg g h w gh (13.6 0.1 1 2.5) 9.8 37.83kPa
P Px Pz 121.85kN
2 2
=arctg
Pz Px
78.4

P指向圆柱中心
50
作图题1. 画出图中AB 面上的静压强分布图 形。 pa
ρgh1 ρgh2 ρgh3 pa+ρgh2 ρgh ρgh1 ρg(h-h2) ρgh pa+ρgh1
流 体 力 学
ρg(h-h2)
ρg(h+R)
/ 25 10
3
0.006
2 lg

多相流体力学作业

多相流体力学作业

多相流技术的发展现状自然界中物体的形态是多种多样的,但最常见的为固态、液态和气态。

处于固态的物体称为固体,处于液态的物体称为液体,处于气态的物体称为气体。

由于热力学中将物体中每一个均匀部分称为一个相,因此,各部分均匀的固体、液体和气体可分别称为固相物体、液相物体和气相物体或统称为单相物体。

由于液体和气体具有流动的特性,两者一般统称为流体。

因此,各部分均匀的气体或液体的单独流动可称为单相流体的流动或简称为单相流。

当流体各部分之间存在差异时,这一流体称为多相流体。

例如,气体和液体的混合物,气体和固体颗粒的混合物,液体和固体颗粒的混合物以及气体、液体和固体颗粒的混合物等都是多相流体。

多相流体简称为多相流。

多相流的特点为在多相流中各相之间存在分界面,且该分界面随着流动在不断变化。

例如,水夹带着气泡在管子中流动,水和每个气泡之间都存在分界面。

但是在流动过程中,每个气泡在水中的形状和位置随时在变化,小气泡有时还会合并成较大气泡。

因而水和气泡的分界面随着流动是在不断变化的。

所以,一般可将多相流定义为存在变动分界面的多种独立物质组成的流动。

由于固体物质具有一定的形状和体积,因而固体是无法与气体或液体混合成均匀的单相流体的。

因此,由固体颗粒与气体或液体组成的混合流动均属多相流。

各种液体混合在一起,有时可成为一种单相流体,如水与酒精的混合物;有时则不能,例如,水与油的混合或水与水银的混合等。

因此,各种液体的混合流动可能是单相流,也可能是多相流。

各种气体混合时,由于气体的扩散性强,一般都能混合均匀,成为一种单相流体。

因此,各种气体的混合物流动均可视为单相流。

多相流根据参与流动各相的数目一般可分为两相流和三相流两类,其中尤以两相流最常见。

两相流这一术语在20世纪30年代首先出现于美国一些研究生论文中。

随后逐渐见于正式出版的学术刊物上。

两相流可分为四种:气体和液体一起流动的称为气液两相流;气体与固体颗粒一起流动的称为气固两相流,液体与固体颗粒一起流动的称为液固两相流;两种不能均匀混合的液体一起流动的称为液液两相流。

流体力学习题集

流体力学习题集

第1章 绪 论习 题1-1 从力学分析意义上说流体和固体有何不同? 1-2 量纲与单位是同一概念吗? 1-3 流体的容重和密度有何区别与联系?1-4水的密度为1000 kg/m 3,2升的水的质量和重量是多少? 1-5 体积为0.5m 3的油料,重量为4410N ,该油料的密度是多少?1-6 水的容重g = 9.71 kN/m 3,m = 0.599 ´ 10-3Pa×s,求它的运动粘滞系数。

1-7 如图所示为一0.8 ´ 0.2m 的平板,在油面上作水平运动,已知运动速度u = 1m/s ,平板与固定边界的距离d = 1mm ,油的动力粘滞系数为m = 1.15 Pa×s,由平板所带动的油的速度成直线分布,求平板所受的阻力。

1-8 旋转圆筒粘度计,悬挂着的内圆筒半径r = 20cm ,高度h = 40cm ,内筒不动,外圆筒以角速度w = 10 rad/s 旋转,两筒间距d = 0.3cm ,内盛待测液体。

此时测得内筒所受力矩M = 4.905 N×m。

求油的动力粘滞系数。

(内筒底部与油的相互作用不计)1-9 一圆锥体绕其中心轴作等角速度w = 16 rad/s 旋转,锥体与固定壁面的间隙d = 1mm ,其间充满m = 0.1 Pa×s 的润滑油,锥体半径R = 0.3m ,高R = 0.5m ,求作用于圆锥体的阻力矩。

1-10 如图所示为一水暖系统,为了防止水温升高时体积膨胀将水管胀裂,在系统顶部设一膨胀水箱。

若系统内水的总体积为8m 3,加温前后温差为50°C,在其温度范围内水的膨胀系数为,求膨胀水箱的最小容积。

(水的膨胀系数为0.0005 /°C)1-11 水在常温下,由5at 压强增加到10at 压强时,密度改变多少?1-12 容积为4的水,当压强增加了5at 时容积减少1升,该水的体积弹性系数为多少?为了使水的体积相对压缩1/1000,需要增大多少压强?题1-7图u题1-8图第2章 流体运动学基础习 题2-1 给定速度场u x = x + y ,u y = x - y ,u z = 0,且令t = 0时x = a ,y = b ,z = c ,求质点空间分布。

流体力学课后习题与答案

流体力学课后习题与答案

第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。

求流线方程并画出若干条流线。

解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。

z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。

解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多相流及其应用1.两相与多相流的定义与分类在物理学中物质有固、液、气和等离子四态或四相。

单相物质的流动称为单相流,两种混合均匀的气体或液体的流动也属于单相流。

同时存在两种及两种以上相态的物质混合体的流动就是两相或多相流。

在多相流动力学中,所谓的相不仅按物质的状态,而且按化学组成、尺寸和形状等来区分,即不同的化学组成、不同尺寸和不同形状的物质都可能归属不同的相。

在两相流研究中,把物质分为连续介质和离散介质。

气体和液体属于连续介质,也称连续相或流体相。

固体颗粒、液滴和气泡属于离散介质,也称分散相或颗粒相。

流体相和颗粒相组成的流动叫做两相流动。

自然界和工业过程中常见的两相及多相流主要有如下几种,其中以两相流最为普遍。

(1) 气液两相流气体和液体物质混合在一起共同流动称为气液两相流。

它又可以分单组分工质如水—水蒸气的汽液两相流和双组分工质如空气—水气液两相流两类,前者汽、液两相都具有相同的化学成分,后者则是两相各具有不同的化学成分。

单组分的汽液两相流在流动时根据压力和温度的变化会发生相变。

双组分气液两相流则一般在流动中不会发生相变。

自然界中如下雨时的风雨交加,湖面和海面上带雾的上升气流、山区大气中的云遮雾罩。

生活中沸腾的水壶中的循环,啤酒及汽水等夹带着气泡从瓶中注人杯子的流动等都属于气液两相流。

现代工业设备中广泛应用着气液两相流与传热的原理和技术,如锅炉、核反应堆蒸汽发生器等汽化装置,石油、天然气的管道输送,大量传热传质与化学反应工程设备中的各种蒸发器、冷凝器、反应器、蒸馏塔、汽提塔,各式气液混合器、气液分离器和热交换器等,都广泛存在气液两相流与传热现象。

(2) 气固两相流气体和固体颗粒混合在一起共同流动称为气固两相流。

空气中夹带灰粒与尘土、沙漠风沙、飞雪、冰雹,在动力、能源、冶金、建材、粮食加工和化工工业中广泛应用的气力输送、气流千燥、煤粉燃烧、石油的催化裂化、矿物的流态化焙烧、气力浮选、流态化等过程或技术,都是气固两相流的具体实例。

严格地说,固体颗粒没有流动性,不能作流体处理。

但当流体中存在大量固体小粒子流时,如果流体的流动速度足够大,这些固体粒子的特性与普通流体相类似,即可以认为这些固体颗粒为拟流体,在适当的条件下当作流体流动来处理。

在流体力学中,尽管流体分子间有间隙,但人们总是把流体看着是充满整个空间没有间隙的连续介质。

由于两相流动研究的不是单个颗粒的运动特性,而是大量颗粒的统计平均特性。

虽然颗粒的数密度(单位混合物体积中的颗粒数)比单位体积中流体分子数少得多,但当悬浮颗粒较多时,人们仍可设想离散分布于流体中颗粒是充满整个空间而没有间隙的流体。

这就是常用的拟流体假设。

(3) 液固两相流液体和固体颗粒混合在一些共同流动称液固两相流。

自然界和工业中的典刑实例有夹带泥沙奔流的江河海水,动力、化工,采矿、建筑等工业工程中广泛使用的水力输送,矿浆、纸浆、泥浆、胶桨等浆液流动等。

其它像火电厂锅炉的水力除渣管道中的水渣混合物流动,污水处理与排放中的污水管道流动等。

(4) 液液两相流两种互不相溶的液体混合在一起的流动称液液两相流。

油田开采与地面集输、分离、排污中的油水两相流,化工过程中的乳浊液流动、物质提纯和萃取过程中大量的液液混合物流动均是液液两相流的工程实例。

(5) 气液液、气液固和液液固多相流气体、液体和固休颗粒混合在一起的流动称气液固三相流。

气体与两种不能均匀混合、互不相溶的液体混合物在一起的共同流动称为气液液三相流;两种不能均匀混合、互不相溶的液体与固体颗粒混合在一起的共同流动称为液液固三相流。

图1 两相流的范围2.两相流的研究和处理方法与普通流体动力学类似,研究两相流问题的方法可以分为理论研究和实验研究两方面。

从理论分析方法来看,仍然存在微观和宏观两种观点。

微观分析法就是从分子运动论出发,利用Boltzman(波尔兹曼)方程和统计平均概念及其理论,建立两相流中各相的基本守恒方程。

宏观分析法,就是以连续介质假设为基础,将两相流中各相都视为连续介质流体,根据每一相的质量、动量和能量宏观守恒方程以及相间相互作用,建立两相流的基本方程组,再利用这些两相流基本方程组去研究分析各种具体的两相流问题。

在许多实际问题中,我们所关心的不是单个物质粒子的运动而是大量粒子运动所产生的总结果,也就是所谓的宏观量,如压强、密度、温度、平均流速等。

从宏观观点分析两相流的方法又可以分为3类。

(1) 模型法即假定相互扩散作用是连续进行,其基本观点是:(1)两相流混合物体中的每一点都同时被两相所占据;(2)混合物的热力学和输运特性取决于各相的特性和浓度;(3)各相以自己的质量速度中心移动,相间相互扩散作用反映在模型内。

(2) 容积法假定过程处于平衡状态,可用平衡方程式进行描述,基本方法是:(1)认为流动是一维的;(2)对一个有限容积写出质量、动量和能量守衡方程;(3)守衡方程即可按混合物写出,也可按单独相列出。

(3) 平均法假定过程处于平衡状态,用平均的守衡方程进行描述,类似低通滤波的方法。

上述3种方法的共同点就是不考虑局部的和瞬时的特性,仅考虑相界面上流体微粒集中的相互作用,即宏观动力学。

3.两相与多相流的专用术语与基本持性参数一般用下角标1和2分别表示两相流中的两种相或组分,对液—气两相系统用下角l和g区分,对流体—固体两相系统用下角标f和s区分。

通常选定组分或相2为分散相或为分层流动中的轻相。

3.1 质量流量、质量流速和质量相含率(相分数)质量流量是指单位时间内流过通道总流通截面积的流体质量,用W表示。

两相流总的质量流量是各相质量流量之和,各相的质量流量分别用W1和W2表示,所以有W= W1+W2(kg/s)质量流速是单位流通截面积上的质量流量,用G表示,如流道的总流通截面积为A,各相所占的流通截面积分别为A1和A2,则有G=W/A G1=W1/A G2=W2/A各相质量流量与总质量流里之比称为质量相含率或质量相分数。

在气液两相流系统中,气体的质量相含率俗称为质量含气率或干度,用x表示;液体的质量相含率俗称为质量含液率。

气液两相流的质量含气率与质量含液率之和是1,所以有x=G g/G=W g/W1-x= G l/G=W l/W3.2 容积流量、容积流速和容积相含率容积流量是指单位时间流过通道总流通截面积的流体容积,用Q表示。

两相流总的容积流量同样是各相容积流量Q1和Q2之和,即Q= Q1+Q2=( W1/ρ1+W2/ρ2)容积流速是单位流通截面积上的容积流量,又称折算速度,是容积流量除以通道总流通面积A,用J表示。

J=Q/A= (Q1+Q2)/A=J1+J2J1= Q1/A= W1/(ρ1A)J2= Q2/A= W2/(ρ2A)各相的折算速度在两相流中是十分重要并常用的一个术语和参数,它表示两相混合物中任何一相单独流过整个通道截面积时的速度,称为该相的折算速度。

容积相含率是指各相容积流量与总容积流量之比。

在气液两相流系统气相的容积相含率又称为容积含气率,用β表示,液相的容积相含率称为容积含液率。

3.3 各相真实流速各相容积流量除以流动中各相各自所占流通截面积即为各相的真实流速。

用v i表示(i= 1,2,或i= l,g,为气液两相流;i=f,s为流体—固相两相流)。

v i=Q i/A i3.4 真实相含率或截面相含率某相的流动在任意流通截面上所占通道截面积与总的流通截面积之比称作该相的真实相含率或截面相含率。

对气液两相流,气相的真实相含率又称为截面含气率、真实含气率或空隙率,用α表示。

而液相所占截面积与总流通截面积之比称为截面含液率,用(1-α}表示。

即;α=A g/A 1-α=A l/A3.5 滑动比、滑移速度、漂移速度和漂移流率两相流中各相真实速度的比值称为滑动比。

气液两相流的滑动比用S表示,是气相真实速度与液相真实速度之比S=v g/v l滑移速度是指两相流各相真实速度的差,用v s表示v s= v g-v l=J g/α-J l/(1-α)漂移速度是指轻相(如气相)速度与两相混合物平均速度v H之差,用v D表示v D= v g-v H两相混合物平均速度指当滑动比S=1时两相混合物的速度。

漂移流率是指滑移速度v s的式两边乘以通分后的分母项,消去分母后的等式,用j D表示,有j D=(v g-v l) α(1-α)= J g(1-α)-J lα3.6 两相混合物的密度与比容两相流体的密度有两种表示法:(1)流动密度。

指单位时间内流过截面的两相混合物的质量与容积之比,即ρ0=W/Q(2)真实密度。

指流动瞬间任一流动截面上两相流混合物的密度,用ρm表示,定义如下:ρm=αρg+(1-α)ρm由截面含气率α与容积含气率β及滑移比S各自的定义可推得:⎪⎪⎭⎫ ⎝⎛-+=1111βαS 显然当S=1,即v g =v l ,两相间无相对速度时,α=β流动密度才等于真实密度。

比容是密度的倒数,因此,两相混合物的比容为:流动比容lg v ρββρ)1(10-+=; 真实比容l g m v ραρ)1(1∂-+=4. 气液两相流的流型和流型图4.1 垂直上升管中的气液两相流流型及其流型图气液两相流在垂直管中上升流动时的几种常见流型。

(1)细泡状流型细泡状流动是最常见的流型之一。

其特征为在液相中带有散布在液体中的细小气泡。

直径在1mm 以下的气泡是球形的。

直径在1mm 以上的气泡外形是多种多样的。

(2)气弹状流型气弹状流型由一系列气弹组成。

气弹端部呈球形而尾部是平的。

在两气弹之间夹有小气泡而气弹与管壁之间存在液膜。

(3)块块流型当管内气速增大时,气弹发生分裂形成块状流型。

此时大小不一的块状气体在液流中以混乱状态流动。

(4)带纤维的环状流型在这种流型中,管壁上液膜较厚且含有小气泡。

管子核心部分主要是气体,但在气流中含有由被气体从液膜带走的细小液滴形成的长条纤维。

(5)环状流型在这种流型中,管壁上有一层液膜,管子核心部分为带有自液膜卷入的细小液滴的气体。

环状流型都发生在较高气体流速时。

在受热管道中,当管壁温度高到足以使管壁液膜汽化时,流动结构就会发展到壁上无液膜,只有气相中还含有细小液滴的雾状流型。

图3表示有单组分气液两相流体在垂直上升受热管中的流型和管壁热流密度的关系。

在图中,温度低于饱和温度的液体以固定流量进入各受热管。

各受热管的热流密度依次自左向右逐渐增加。

由图3可见,随着热流密度的增大,各管中的沸腾点逐渐移向管子进口,各管中的流型也逐渐由单相液体、细泡状流型、气弹状流型、块状流型、环状流型、雾状流型一直发展到干饱和蒸汽和过热蒸汽流动。

在气液两相流中,在两相流量、流体的物性值(密度、粘度、表面张力等)、管道的几何形状,管道尺寸以及热流密度确定的条件下,要判断管内气液两相流的流型可应用流型图。

相关文档
最新文档