18种黄酮化合物
黄酮类化合物

1 简介黄酮类化合物的生理作用一直是人们关注的焦点。
早在1930年代,就有学者发现黄酮类化合物具有类维生素C的活性。
根据Pratt 的说法,黄酮类化合物是主要的抗氧化剂。
随着全球人口老龄化,老年病的防治和抗氧化抗衰老的研究受到广泛关注。
富含黄酮类植物资源的评价和筛选已成为农学、医学和食品科学研究的热点之一。
.甘草是我国常用的中药材之一,也是我国重要的植物资源。
甘草黄酮是甘草中最重要的活性成分之一,具有抗氧化、抗肿瘤、增强心血管功能、增强免疫力等作用。
因此,开展甘草深加工,充分利用甘草资源,提高资源附加值,前景十分可观。
1.1 甘草研究概况1.1.1甘草简介甘草(Glycyrrhizae radix,GR)又名甜草根、粉草、灵通、果老等,是豆科甘草属多年生草本植物。
甘草株高40~ 80cm,根茎粗壮,有地下茎,主根圆柱形,长1~ 2m,外皮红褐色至深褐色,茎横切面淡黄色或黄色,味甜,茎直立,密被白色短毛和刺状腺体,羽状复叶,小叶7 ~ 17片,卵形,圆形,长1~1 ~2.5cm宽3cm,总状花序腋生,花密:花冠蝶形,浅蓝紫色或紫红色,14~长25mm。
荚果长圆形、镰刀形或弯成环状,褐色,密被棘腺和短毛,种子2-8颗,扁圆形或肾形,黑色,花期6-7月,果期7-9月。
《中国药典》记载的药用甘草为乌拉尔甘草、甘草黄酮和光甘草的干燥根和根茎。
甘草属心、肺、脾、胃经[1] ,自古以来就被广泛用于药用。
1.1.2甘草的功效、药理作用人类使用甘草已有近 2400 年的历史。
中国医学文献记载,甘草最早见于《神农百草经》,列为上品。
东汉医仲景(公元2世纪)邪气金疮肿,在《伤寒论》中,74%的方剂中都使用了甘草。
梁朝名医弘景(公元5世纪)在名医弘景(公元5世纪)编纂的《名医》中称其为“美草、蜜饯、古国”。
明世珍在其《本草纲目》中将甘草列为1074种中药的第一味,并入第一册12册。
清代吴启君在其《植物名实图》中也对甘草进行了较为详细的考证。
黄酮类化合物的研究概况

黄酮类化合物的研究概况XiXi黄酮类化合物是广泛存在于自然界的一大类化合物,是色原烷的衍生物,其特点是具有C6—C3—C6 的基本骨架,并可根据中间吡喃环的不同氧化水平和两侧A、B 环上连接的各种取代基,而分为不同的黄酮类型,属于植物在长期自然选择过程中产生的一些次级代谢产物。
黄酮类化合物可以分为10 多个类别:黄酮、黄烷醇、异黄酮、双氢黄酮、双氢黄酮醇、噢弄、黄烷酮、花色素、查耳酮、色原酮等,现已发现约 4 000 余种黄酮类化合物,主要存在于植物的叶、果实、根、皮中,实验证明其具有广泛的生理和药理活性 (包括抗病毒、抗癌、抗氧化、抗炎、抗衰老等),因此对该化合物的研究已成为国内外医药界研究的热门话题,是一类具有广泛开发前景的天然药物,在医药、食品等领域均有巨大的应用前景。
1. 黄酮类化合物的功能作用1.1 抗氧化、清除氧自由基作用自由基被认为与炎症、自身免疫病、肿瘤、衰老等疾病的成因有直接关系。
黄酮类化合物具有清除自由基和抗氧化的能力,有人研究了从 4 种大麦麦叶中提取的黄酮类化合物对超氧阴离子自由基、羟自由基的清除作用,得出随着黄酮浓度的增加,清除率呈上升趋势的结论。
还有用化学荧光法对不同黄酮类化合物进行了分析测定,确定了它们的强抗氧化性。
1.2 调节心血管系统作用在心脏功能调节方面黄酮类化合物主要体现在抗心律失常和改善冠脉循环方面。
在血管功能的调节方面,芦丁能协同增效维生素 C 一起降低毛细血管脆性和通透性,维持毛细血管稳定性。
在调节血脂血压方面,山楂黄酮、大豆异黄酮等能降低高脂血症人群中的血清总胆固醇(TC) 、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)含量,并使高密度脂蛋白胆固醇(HDL-C)含量有一定程度的升高;黄酮类化合物降低血压主要表现在促进一氧化氮(NO)的生成和对血管平滑肌细胞异常凋亡的双向调节作用上。
在抗血栓方面,黄酮类化合物能改善血液流变性,以及对内皮细胞和黏附分子表达的影响。
黄酮类化合物综述

和转移,对多种癌症具有一定的治疗效果。
在保健品领域的应用
改善心血管健康
黄酮类化合物可以降低血压、改善血脂代谢,对预防和治疗心血 管疾病具有积极作用。
增强免疫力
黄酮类化合物能够增强机体的免疫力,提高抵抗力,对于免疫力 低下的人群具有保健作用。
抗衰老作用
黄酮类化合物具有抗氧化和抗炎作用,可以延缓细胞衰老,保持 机体健康状态。
报告范围
• 黄酮类化合物的结构和分类:本文将介绍黄酮类化合物的基本结构、分类以及 各类黄酮化合物的特点。
• 黄酮类化合物的理化性质和生物活性:本文将详细阐述黄酮类化合物的理化性 质,如溶解性、稳定性等,以及它们的生物活性,如抗氧化、抗炎、抗肿瘤等 。
• 黄酮类化合物的提取、分离和纯化方法:本文将介绍从天然产物中提取、分离 和纯化黄酮类化合物的常用方法和技术。
THANKS FOR WATCHING
感谢您的观看
代谢途径与产物
代谢途径
黄酮类化合物在植物体内可以通过多种代谢途径进行转化和降解,包括羟基化、甲基化、糖基化等。
代谢产物
黄酮类化合物的代谢产物丰富多样,包括黄酮、黄酮醇、异黄酮、花青素等,这些代谢产物在植物中 发挥着重要的生理功能,如抗氧化、抗炎、抗癌等。
05 黄酮类化合物的药理作用 及机制
抗氧化作用
生物活性与药理作用
抗氧化作用
黄酮类化合物具有显著的抗氧化活性,能 够清除体内的自由基,保护细胞免受氧化 应激损伤。
其他作用
黄酮类化合物还具有抗过敏、抗病毒、抗 寄生虫等多种生物活性和药理作用。
抗炎作用
黄酮类化合物能够抑制炎症反应,减轻炎 症症状,对于炎症性疾病具有一定的治疗 作用。
心血管保护作用
18种黄酮化合物

18种黄酮化合物1.⼉茶酸【中⽂名称】⼉茶酸【英⽂名称】 Catechin【⽤途】:可⽤作抗氧化剂。
与维⽣素E、⼭梨酸、L-抗坏⾎酸有协同的抗氧化效果,宜配合使⽤。
【物化性质】:淡黄⾊⾄淡褐⾊⾮结晶粉末。
对热稳定。
分d、L两种异构体,混合熔点132℃。
溶于⽔、⼄醇、丙⼆醇、⽢油等强极性有机溶剂,不溶于油脂。
在碱性介质中易被氧化。
L型的熔点为175~177℃,⽐旋光度[α]D20为-16.8。
d型的熔点为175~177℃,⽐旋光度[α]D20为+16.8。
2.表⼉茶素【中⽂名称】表⼉茶素【英⽂名称】Epicatechin【别名】EC, Epicatechol【分⼦式】C15H14O6【分⼦量】290.26806【化学分类】Catechins,Tannins【性状】⽩⾊粉末3.葛根素【中⽂名称】葛根素【英⽂名称】 Puerarin【别名】葛根黄素,葛根黄酮,黄⾖甙元8-C-葡萄糖甙【化学名】 8-beta-D-葡萄吡喃糖-4',7-⼆羟基异黄酮;4,7-⼆氢基-8β-D葡萄糖基异黄酮【分⼦式】 C21H20O9【分⼦量】 416.38【来源】为⾖科植物葛 Pueraria lobata(Willd.)Ohwi 根,野葛 P. thunbergiana Benth.根。
【物理性质】低含量的为棕⾊粉末,⾼含量为⽩⾊针状结晶粉末, mp 187℃。
甲醇中溶解,⼄醇中略溶,⽔中微溶,氯仿或⼄醚中不溶。
如果是针剂现在基本为要求99.5%以上的含量,⽽且有要求相关物质。
4.杨梅黄素(myricetin)5.葡糖苷(glucoside)【中⽂名称】葡糖苷【英⽂名称】glucoside【简介】⼀种以葡萄糖作为糖成分的配糖体。
是具有各种配质与葡萄糖还原基结合的结构,这类化合物总称为葡糖苷。
作为配质的有醇(例如⼭萝⼘叶⽚的甲基萄糖苷);酚(Vaccinium oxycoccus叶⽚的氢醌葡糖苷);异硫氰酸[例如芥(Brassica cernuaHemsl种⼦和⼭萮菜根茎的⿊芥⼦硫苷酸钾(sinigrin)];⾹⾖素;黄酮6.异槲⽪素【中⽂名称】异槲⽪素【英⽂名称】isoquercetin【物化性质】:⼜称异槲⽪素,罗布⿇甲素。
黄酮类化合物的提取

一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。
溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。
精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。
以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。
NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。
V水:V正丙醇=1:25最佳。
银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。
称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。
称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。
乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。
随水浴温度升高总黄酮提取率快速增加。
当温度80℃时提取率达最大。
提取时间为三小时为佳。
黄酮类化合物(英语:Flavonoid,又称类黄酮[1])是指基本母核为2-苯基色原酮类化合物,现在则泛指两个具有酚羟基的苯环通过中央三碳原子相互连接的一系列化合物。
他们来自于水果、蔬菜、茶、葡萄酒、种子或是植物根。
虽然他们不被认为是维生素,但是在生物体内的反应里,被认为有营养功能,曾被称为“维生素P”:黄酮类(英语:Flavones)是一类基于2-苯基色原酮-4-酮(2-苯基-1-苯并吡喃-4-酮)骨架的黄酮类化合物,如右图所示。
银杏叶黄酮的研究程序溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。
黄酮类化合物

常用CHCl3-MeOH作为流动相。
OH HO O
HO
OH O OH
OH
O
OH
O
硅胶柱色谱,以CHCl3-MeOH作为流动相
硅胶柱上各种溶剂的洗脱能力:
石油醚 < 苯 < 氯仿 < 乙醚 < 醋酸乙酯
< 吡啶 < 丙酮 < 乙醇 < 甲醇 < 水
(2) 聚酰胺柱色谱
原理: 通过分子中的酰胺羰基与黄酮类化合物分子上的酚羟 基形成氢键缔合而产生吸附作用。
OH
O O OH
OH OH O O
2.6.2 柱色谱法
常用吸附剂或载体有硅胶、聚酰胺及纤维素粉等,
也有用氧化铝、氧化镁及硅藻土。
(1) 硅胶柱色谱:
此法应用范围最广,主要适于苷元的分离,异黄酮、
二氢黄酮、二氢黄酮醇及高度甲基化的黄酮及黄酮
醇类。少数情况下,在加水去活化后也可用于分离
极性较大的化合物,如多羟基黄酮醇及其苷类等。
O
2
名称 黄酮醇类 Flavonols 异黄酮类 Isoflavones
三碳链部分 结构
O OH O
O
3
O
O
O
OH
O
O
其他黄酮类化合物结构类型:
黄烷-3-醇类 Flavan-3,4-ols
O OH
橙酮类 Aurones
O CH
O
黄烷-3,4-二醇类 Flavan-3,4-diols
O OH OH
口山酮类 Xanthones
O
O
O
花色素类 Anthocyanidins
+ O
高异黄酮类 Homoisoflavones
浅谈黄酮类化合物的来源及种类

浅谈黄酮类化合物的来源及种类来源:北京协和药厂作者:刘东旺发布时间:2009-06-08 阅读次数:2391 黄酮类化合物的来源黄酮类化合物类型多样,天然黄酮类化合物是植物体多酚类的内信号分子及中间体或代谢物,包括黄酮(flavone)、异黄酮(isoflavone)黄酮醇(flavonol)异黄酮醇(isoflavonon)、黄烷酮(flavanoe)、异黄烷酮(isoflavanone)、查耳酮(chalcone)等,最集中分布于被子植物中。
如黄酮类以唇形科、爵麻科、苦苣苔科、玄参科、菊科等植物中存在较多;黄酮醇类较广泛分布于双子叶植物;二氢黄酮类特别在蔷薇科、芸香科、豆科、杜鹃花科、菊科、姜科中分布较多;二氢黄酮醇类较普遍地存在于豆科植物中;异黄酮类以豆科蝶形花亚科和鸢尾科植物中存在较多。
在裸子植物中也有存在,如双黄酮类多存在松柏纲、银杏纲和凤尾纲等植物中。
黄酮类化合物具有能够改变机体对变能反应原、病毒及致癌物反应的能力,并保护机体组织不受氧化性侵袭的伤害,因此具有"天然生物反应调节剂"的美称。
黄酮类化合物一般存在于蔬菜和水果的可食性果肉中。
当把它们从中分离出来后,其味道有些发苦,如桔子、柠檬、葡萄和柚等这些柑桔类植物是黄酮类化合物特别丰富的来源。
许多植物如樱桃、葡萄、蔷薇果、青椒、花茎甘蓝、洋葱和番茄等,以及许多草药如越桔、银杏、乳蓟等都含有高质量的黄酮类化合物。
此外,多种植物的叶、干和根部也发现了一些黄酮类化合物,如山茶花报春黄甙(干燥后用来生产绿茶和黑茶)的叶子,松树皮和成熟和葡萄籽是各种黄酮类化合物的最好来源。
现代药理研究表明,黄酮类化学物质在心血管系统、内分泌系统和抗肿瘤方面具有明显的药理作用。
特别是黄酮类化合物的抗氧化性质,已经引起专家学者们的广泛关注。
许多以黄酮类成分为主的制剂已用于保健品、食品、和药品等领域。
2 黄酮类化合物的种类目前已经发现了四千多种黄酮类化合物,这些化合物由于其化学结核的不同而表现出不同的特性。
黄酮类化合物

三 链 分 构 碳 部 结
O OH O
O OH O
O O
续表:
+ O OH
3' 2 2' OH 1' 1 6 5 3 4
花 素 色 类 (anthocyanidins)
7
查 酮 耳 类 (chalcones)
6'
O OH
O
1 2 3
橙 酮 类 (噢 弄类 ) 口 (aurones) 4 黄 烷 -3,4-二 醇 类 Flavan-3,4-diols 双苯吡酮类 口山 酮 类 Xa nt hones
黄 类 合 的 要 构 型 酮 化 物 主 结 类
名称 黄 类 酮 (flavones) 二 黄 类 氢 酮 (flavanoes) 异 酮 黄 类 (isoflavones)
三碳链部分结构
O O O O O O
名称 黄 醇 酮 类 (flavonol) 二 黄 醇 氢 酮 类 (flavanonols) 二 异 酮 氢 黄 类 (isoflavanones)
芦丁、橙皮苷、d-儿茶素等有Vit P样作用,能降低血管脆性 及异常的通透性,可用作防治高血压及动脉硬化的辅助治疗剂。
HO
O
O
OH OH
r ut inos e
OH r ut inos e O O O CH3
OH O 芦丁 rutin
OH O
橙皮苷 hesperidin
芦丁、槲皮素、葛根素、立可定等均有明显的扩冠作用。
4.镁盐:Mg(OAc)2甲醇溶液,常在纸上进行 Mg(OAc)2 二氢黄酮(醇类) 天兰色荧光 Mg(OAc)2 黄酮(醇)、异黄酮 黄~橙黄~褐色
★5. 氯化锶反应:在氨性甲醇液中反应 SrCl2 邻二酚OH黄酮 绿色~棕色乃至黑色
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.儿茶酸【中文名称】儿茶酸【英文名称】 Catechin【用途】:可用作抗氧化剂。
与维生素E、山梨酸、L-抗坏血酸有协同的抗氧化效果,宜配合使用。
【物化性质】:淡黄色至淡褐色非结晶粉末。
对热稳定。
分d、L两种异构体,混合熔点132℃。
溶于水、乙醇、丙二醇、甘油等强极性有机溶剂,不溶于油脂。
在碱性介质中易被氧化。
L型的熔点为175~177℃,比旋光度[α]D20为-16.8。
d型的熔点为175~177℃,比旋光度[α]D20为+16.8。
2.表儿茶素【中文名称】表儿茶素【英文名称】Epicatechin【别名】EC, Epicatechol【分子式】C15H14O6【分子量】290.26806【化学分类】Catechins,Tannins【性状】白色粉末3.葛根素【中文名称】葛根素【英文名称】 Puerarin【别名】葛根黄素,葛根黄酮,黄豆甙元8-C-葡萄糖甙【化学名】 8-beta-D-葡萄吡喃糖-4',7-二羟基异黄酮;4,7-二氢基-8β-D葡萄糖基异黄酮【分子式】 C21H20O9【分子量】 416.38【来源】为豆科植物葛 Pueraria lobata(Willd.)Ohwi 根,野葛 P. thunbergiana Benth.根。
【物理性质】低含量的为棕色粉末,高含量为白色针状结晶粉末, mp 187℃。
甲醇中溶解,乙醇中略溶,水中微溶,氯仿或乙醚中不溶。
如果是针剂现在基本为要求99.5%以上的含量,而且有要求相关物质。
4.杨梅黄素(myricetin)5.葡糖苷(glucoside)【中文名称】葡糖苷【英文名称】glucoside【简介】一种以葡萄糖作为糖成分的配糖体。
是具有各种配质与葡萄糖还原基结合的结构,这类化合物总称为葡糖苷。
作为配质的有醇(例如山萝卜叶片的甲基萄糖苷);酚(Vaccinium oxycoccus叶片的氢醌葡糖苷);异硫氰酸[例如芥(Brassica cernuaHemsl种子和山萮菜根茎的黑芥子硫苷酸钾(sinigrin)];香豆素;黄酮6.异槲皮素【中文名称】异槲皮素【英文名称】isoquercetin【物化性质】:又称异槲皮素,罗布麻甲素。
黄色针状结晶(水),熔点225~227℃,几乎不溶于冷水,微溶于沸水,溶于碱溶液显深黄色。
黄色结晶),熔点206~208℃和232~236℃。
淡黄色针晶,熔点220~222℃(分解)。
结晶(热水),熔点230℃。
存在于锦葵科植物草棉(GossypiumherbaceumL.)的花,夹竹桃科植物红麻(Apocynum lanci-folium Rus.)的叶中,也可化学合成制得。
动物实验具有降血压作用。
毛细血管渗透性等试验表明具有抗炎作用。
对棉蛉芽虫的幼虫有毒杀作用。
具有降酶作用,为田基黄治疗肝炎的有效成分。
7.黄芩素【英文名称】:Baicalein【别名】:黄芩苷元,黄芩黄素,Noroxylin。
【化学名】:4H-1-benzopyran-4-one,5,6,7-trihy-droxy-2-phenyl-【来源】:提取来源:唇形科植物高黄芩的叶;并头草的叶和根;紫葳科植物木蝴蝶的种子和茎皮;车前科植物大车前的叶。
【性状】:黄色针状结晶(由乙醇中)【熔点】:264℃-265℃【溶解性】:溶于甲醇、乙醇、丙酮、醋酸乙酯及热冰醋酸,微溶于氯仿,溶于稀氢氧化钠呈绿棕色,但不稳定,易氧化成绿色。
【分子式】:C15H10O5【分子量】:270.24【旋光度】:-14°(水),-139°(吡啶)。
8.杨梅黄素【中文名称】杨梅黄素【英文名称】myricetin;myricetol;cannabiscetin【别名】杨梅树皮素,杨梅酮(杨梅黄酮)。
黄酮类化合物。
杨梅素,杨梅苷,杨梅甙,5,7-三羟基-2-(3,4,5-三羟基苯基)-4H-1-苯并呋喃-4-酮。
【分子式】:C15H10O8【分子量】: 318.24【物化性质】:黄色针状结晶(稀乙醇,熔点357~360℃。
微溶于沸水,溶于乙醇,几乎不溶于氯仿和醋酸。
存在于杨梅科植物日本杨梅(MyricanagiThunb.)的树皮,杨梅(M. rubra Sieb.et Zucc.)的树皮中。
也可化学合成。
具有抗菌、抗癌、祛痰、利尿、升高血压等作用。
其抑制眼醛糖还原酶的作用可能对治疗糖尿病、白内障有用。
9.三叶豆甙【中文名称】三叶豆甙【英文名称】Trifolin【别名】车轴草甙【分子量】448.38【物化性质】黄色粒状晶(甲醇),mp253~254℃,[α]21/D-36°(c=0.15,甲醇)。
药化作用浓度为50μg/mL时,对黄嘌呤氧化酶的抑制率为16.1%。
【成分分类】黄酮甙 flavonoidal glycoside10.紫云英苷【中文名称】紫云英苷【英文名称】Astragalin【别名】紫云英甙; 黄芪苷【分子式】 C21H20O11【分子量】448.3811.槲皮素【中文名称】:槲皮素【中文别名】:栎精,槲皮黄素【英文名称】:Quercetin,Meletin , Sophretin【植物来源】: 壳斗科植物伊比利亚栎Quercus iberica 皮和叶,小檗科植物红八角Dysosmaveitchii(Hemsl.et Wils.) Fu,金丝桃科植物红旱莲(湖南连翘)Hypericum ascyron L.全草,夹竹桃科植物红麻Apocynum lancifolium Rus. 叶。
【分子式】: C15H10O7【分子量】:302.23【含量】:98%【分子结构式】:12.毛地黄黄酮【中文名称】:木犀草素【英文名称】:Luteolin【中文别名】:黄色黄素黄示灵 5,7,3′,4′-四羟基黄酮毛地黄黄酮【分子式】:C15H10O6【分子量】:286.23【物化性质】:木犀草素属于黄酮.,熔点:328℃-330℃(一水合物)微溶于水,溶于碱溶液【临床应用】:木犀草素抗菌、抗炎、心血管作用、解痉、祛痰、抗癌、抑酶作用,抗氧化剂、利尿利胆。
【化学名】:5,7,3′,4′-四羟基黄酮【产品简介】:木犀草素为黄色晶体,属于黄酮. 熔点:328℃-330℃(一水合物)微溶于水,溶于碱溶液(一水合物)含量98%以上(HPLC) (%)13.山萘酚【中文名称】:山萘酚【英文名称】: Kaempferol【中文别名】: 3,4,5,7-四羟基黄酮【分子式】: C15H10O6【分子量】: 286.24【产品简介】:有害物质,-20℃保存,熔点: 276º溶于乙醇:20mg/ml(常温下)外观: 黄色粉末。
用途: 制造专用医药品安道尔班系列专用医药14.芹菜素【中文名称】:芹菜素【英文名称】:Apigenin【中文别名】:芹黄素,4,5,7-三羟基黄酮【分子式】:C15H10O5【分子量】:270.24【检测方法】:HPLC【物理性质】:黄色粉末,熔点347-348℃,几乎不溶于水,部分溶于热酒精,溶于稀KOH溶液。
15.异鼠李素【中文名称】异鼠李素【英文名称】 Isorhamnetin【化学名】 3,5,7-三羟基-2-(4-羟基-3-甲氧基苯基)苯并吡喃-4-酮【分子式】 C16H12O7【分子量】 316.27【来源】为胡颓子科植物沙棘Hippophae fhamnoides L.的果实。
【物理性质】淡黄色针状结晶 ,熔点307°C【药理作用】止咳祛痰,消食化滞,活血散瘀。
用于咳嗽痰多、消化不良、食积腹痛、跌扑瘀肿、瘀血经闭。
16.杜鹃素【中文名称】杜鹃素 (中药祛痰镇咳平喘药)【英文名称】Farrerol【中文别名】法尔杜鹃素【成分】本品为杜鹃花科植物满山红,所含祛痰有效成分已能人工合成。
【性状】黄色结晶性粉末,无臭,无味。
熔点229-232℃。
不溶于水,溶于乙醇、乙醚、易溶于丙酮。
【药理作用】本品具有粘痰溶解作用,用后可使痰内酸性粘多糖断裂,痰的粘滞性降低,痰液变稀,易于咯出。
因此,痰量逐渐减少,咳嗽亦减轻。
17.栀子宁【中文名称】栀子宁【英文名称】Gardeniae【别名】黄栀子,山栀子【科属】茜草科【形态特征】具六稜及六刀状可作染料或入药18.白杨黄素【中文名称】:白杨黄素【英文名称】:Chrysin【别名】:白杨素,5,7-氢黄酮,5,7-二羟基黄酮,柯菌【分子式】:C15H10O4【分子量】:254.24【检测方法】:HPLC【物理性质】:淡黄色棱柱形结晶熔点285℃,溶于氢氧化碱溶液,室温下溶解丙酮,微溶于乙醚、乙醇和氯仿,不溶于水。
【药理作用】:白杨素能抗癌、降血脂、防心脑血管疾病、抗菌、消炎等【产品来源】:紫葳科植物木蝴蝶的种子、茎皮【生产工艺】:主要由醇提、萃取、层析、结晶等工序完成【保存方法】:阴凉干燥、避光、避高温。