人教版七年级数学 1.2有理数1.2.2数轴
2024秋季新教材人教版七年级上册数学1.2 有理数1.2.2数轴课件

(参照点)
东西向 (方向)
(距离)
在一条直线上 任取一点O为 基准点, 再用0 表示点O.
规定直线上,从点 O向右为正方向 (用箭头表示),从 点O向左为负方向.
选取适当的长度为 单位长度, 规定1个 单位长度(线段OA的 长)代表1 m长.
新知探究 知识点1 什么是数轴? 用上述方法,我们就可以把柳树、交通标志杆、槐树、电线
1 -3 -1.5 0 2 1 2.5
-4 -3 -2 -1 0 1 2 3 4
随堂练习 3.在数轴上,表示-2与4的点之间(包括这两个点)有__7__个点 表示的数是整数,它们表示的数分别是__-_2_,-_1_,0_,_1_,2_,_3_,4___,其中 负整数有__2__个.
-4 -3 -2 -1 0 1 2 3 4
选取适当的长度为单位长度,直线上从
原点向右,每隔一个单位长度取一个点,
依次表示1 ,2 ,3,⋯;从原点向左, 用类似方法依次表示-1,-2,-3 ⋯.
注意: 在同一条数轴上,
单位长度的大小
必须统一,也可
根据所表示的数
-4 -3 -2 -1 0 1 2 3 4
的大小灵活选取
单位长度.
新知探究 知识点2 如何画数轴?
杆与汽车站牌的相对位置关系表示出来了.
ED
OA B
C
-4.8 -3
01 3
7.5
我们就用负数、0、正数表示出了这条直线上的点.
新知探究 知识点1 什么是数轴? 思考2: 图中的温度计可以看作表示正数、0和负数的直线,它和刚刚画 出的直线有什么共同点? 相同点:都是用一条直线上的点表示正数、0、负数. 不同点:前一幅图是用一条水平直线上的点表示正 数、0、负数;而右图是用一条竖直的直线上的点表 示正数、0、负数.
初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(15)

章节测试题1.【题文】育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.【答案】小明在八中的西边,距离八中有700米,用数轴表示见解答.【分析】熟知“数轴的画法,并能结合已知条件画出如图所示的数轴”是解答本题的关键.以新华中学为原点,向东为正方向,200米为单位长度建立数轴,在所画数轴上标出表示八中和九中的点,再根据已知条件分析解答即可.【解答】以新华中学为原点,向东为正方向,200米为单位长度建立数轴,并在数轴上标出表示八中和九中的点如下图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,到达了A点,接着又向东走了500米,到达了B点,由图可知:这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.2.【题文】如图,把一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为______cm.(2)图中点A表示的数是______,点B表示的数是______.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.【答案】(1)5;(2)10,15;(3)70岁.【分析】读懂题意,理解(1)中的解题方法是解答本题的关键.(1)由题意可知,3AB=20-5,由此即可求得AB=5,从而得到木棒的长;(2)由(1)中所得AB=5结合图中的已知条件即可求得A和B所表示的数;(3)根据题意,设数轴上小木棒的A端表示小红的年龄,小木棒的B端表示爷爷的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【解答】(1)由题意结合图形可知3AB=20-5=15(cm),∴AB=5(cm),即此木棒的长5cm.故答案为5.(2)∵木棒AB的长为5cm,∴点A表示的数为:5+5=10,点B表示的数为5+5+5=15,故答案为:10,15;(3)根据题意,设数轴上小木棒的B端表示爷爷的年龄,A端表示小红的年龄,把小红与爷爷的年龄差看作木棒AB的长度,∵小红爷爷像小红现在这么大时,小红还要40年才出生,∴当将B向左移与A重合,A与-40重合,即此时小红的年龄是-40岁;∵小红像她爷爷在这么大时,小红爷爷已经125岁,∴当将A向右移与B重合,B与125重合,即此时爷爷的年龄为125岁,∴小红爷爷比小红大(125+40)÷3=55(岁),∴小红爷爷现在的年龄为125-55=70(岁).3.【答题】下列说法中错误的是()A. 规定了原点、正方向和长度的直线叫数轴B. 数轴上的原点表示数零C. 在数轴上表示的数,右边的数总比左边的数大D. 所有的有理数都可以用数轴上的点表示【答案】A【分析】(1)数轴是一条直线,它可以向两端无限延伸,但直线不一定是数轴.(2)数轴必须具备原点、正方向、单位长度这三个要素,缺一不可.(3)0是正数和负数的分界点;原点是数轴的“基准点”.【解答】A.规定了原点、正方向和单位长度的直线叫数轴,不是长度,故此选项错误;B.数轴上的原点表示数零,故此选项正确;C.在数轴上表示的数,右边的数总比左边的数大,故此选项正确;D.所有的有理数都可以用数轴上的点表示,故此选项正确.选A.4.【答题】下列数轴画得正确的是()A. B.C. D.【答案】C【分析】本题考查数轴的三要素及其画法.【解答】A.没有原点;B.单位长度不一致;D.负数排列顺序不正确;选C.5.【答题】如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. –1 【答案】D【分析】本题考查有理数在数轴上的表示.【解答】数轴上蝴蝶所在点表示的数可能为–1,选D.6.【答题】如图,数轴上点A表示的数是()A. –1B. 0C. 1D. 2 【答案】C【分析】本题考查有理数在数轴上的表示.【解答】数轴上点A所表示的数是1.选C.7.【答题】a、b在数轴上的位置如图,则下列说法正确的是()A. a是正数,b是负数B. a是负数,b是正数C. a、b都是正数D. a、b都是负数【答案】B【分析】本题考查有理数在数轴上的表示.【解答】∵由图可知,a在原点的左侧,b在原点的右侧,∴a为负数,b为正数.选B.8.【答题】如图所示,分别用数轴上的点A,B,C,D表示数,正确的是()A. 点D表示–2.5B. 点C表示–1.25C. 点B表示1.5D. 点A表示1.25【答案】C【分析】本题考查有理数在数轴上的表示.【解答】点D表示–1.5,点C表示–0.75,点B表示1.5,点A表示2.5.选C.9.【题文】小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,你能确定墨迹盖住的整数是哪几个吗?【答案】–6、–5、–4、–3、–2、1、2、3、4.【分析】本题考查有理数在数轴上的表示.【解答】根据图中数值,确定墨迹盖住的整数是–6、–5、–4、–3、–2、1、2、3、4.10.【题文】文具店、书店和玩具店依次坐落在上海南京路东西走向的大街上,文具店位于书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了60米,你知道此时小明的位置在哪儿吗?【答案】玩具店.【分析】本题考查数轴的三要素及其画法,数轴上两点间的距离.【解答】如图所示,故此时小明的位置在玩具店.11.【题文】已知数轴上点A在原点的左侧,到原点的距离为8个单位长度,点B在原点的右侧,从点A走到点B,要经过12个单位长度.写出A、B两点所对应的数;【答案】点A表示–8,点B表示4.【分析】本题考查数轴上两点间的距离以及数轴上的动点问题.【解答】∵数轴上点A在原点左边,到原点的距离为8个单位长度,∴点A表示–8,点B在原点的右边,从点A走到点B,要经过12个单位长度,∴点B表示4.12.【答题】下列说法正确的是()A. 没有最大的正数,却有最大的负数B. 数轴上离原点越远,表示数越大C. 0大于一切非负数D. 在原点左边离原点越远,数就越小【答案】D【分析】本题考查正数和负数,有理数的分类,在数轴上表示有理数.【解答】A.没有最大的正数;没有最大的负数,∵正数和负数都有无数个,它们都没有最大和最小的值,故错误;B.在数轴上,在原点右侧的数,离原点越远表示的数就越大,反之,在原点的左侧的数,离原点越远表示的数就越小,故数轴上离原点越远,表示数越大,没说是原点左边还是右边,∴错误;C.0大于一切负数,而不是非负数,故错误;D.在数轴上,在原点的右侧的数,离原点越远表示的数就越大,反之,在原点的左侧的数,离原点越远的表示的数就越小,故正确.选D.13.【答题】文具店、书店和玩具店依次坐落在一条南北走向的大街上,文具店在书店北边20米处,玩具店位于书店南边100米处.小花从书店沿街向南走了40米,接着又向南走了–60米,此时小花在()A. 文具店B. 玩具店C. 文具店北边40米D. 玩具店南边–60米【答案】A【分析】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.【解答】由题意,得50–70=–20,此时小花的位置在文具店,选A.,14.【答题】A为数轴上表示–1的点,将点A沿数轴向右平移3个单位到点B,则点B 所表示的数为______.【答案】2【分析】本题考查数轴上两点间的距离.【解答】∵A为数轴上表示–1的点,将点A沿数轴向右平移3个单位到点B,结合数轴可得点B所表示的数是2,故答案为2.15.【题文】如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示什么数?它们到原点的距离分别是多少?(2)将点B向左移动3个单位长度后,点B所表示的数是多少?(3)将点A向右移动4个单位长度后,点A所表示的数是多少?(4)要怎样移动A、B、C三点中的两个点,才能使三个点表示的数相同?移动方法唯一吗?若不是,请任意选择一种回答.【答案】(1)点A表示–4,到原点的距离是4;点B表示–2,到原点的距离是2;点C表示3,到原点的距离是3;(2)–5;(3)0;(4)见解答.【分析】本题考查数轴上两点间的距离.【解答】(1)由数轴可知,点A表示–4,到原点的距离是4;点B表示–2,到原点的距离是2;点C表示3,到原点的距离是3;(2)将点B向左平移3个单位长度后,所表示的数是–5;(3)将点A向右平移4个单位长度后,所表示的数是0;(4)移动方法不唯一.例如:将点A向右移动2个单位长度,将点C向左移动5个单位长度,此时A、B、C三点在B点处重合.16.【答题】若数轴上点A、B分别表示数2、–2,则A、B两点之间的距离可表示为()A. 2+(–2)B. 2–(–2)C. (–2)+2D. (–2)–2【答案】B【分析】本题考查数轴上两点间的距离.【解答】A、B两点之间的距离可表示为:2–(–2).选B.17.【答题】若数轴上表示–1和3的两点分别是点A和点B,则点A和点B之间的距离是()A. –4B. –2C. 2D. 4【答案】D【分析】本题考查数轴上两点间的距离.【解答】AB=|–1–3|=4,选D.18.【答题】在数轴上表示–2,0,6.3,15的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个【答案】C【分析】本题考查有理数在数轴上的表示.【解答】∵–2<0,∴–2在数轴上的点在原点左边,∵6.3>0,15>0,∴6.3和15在数轴上的点在原点右边,∵0在数轴是原点,∴在原点右边的点有2个,选C.19.【答题】电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于–,处,AP=2PB,则P站台用类似电影的方法可称为“______站台”.【答案】【分析】本题考查数轴上两点间的距离.【解答】AB=–(–)=,AP=×=,P:–==1.故P站台用类似电影的方法可称为“1站台”.故答案为:1.20.【答题】数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是______.【答案】0或2或﹣4或﹣6【分析】本题考查数轴上的两点间的距离.【解答】∵A,B两点间的距离是3,点A表示的数是﹣2,∴点B表示的数为1或﹣5,当点B表示的数为1时,B,C两点的距离是1,则点C表示的数为:0或2;当点B表示的数为﹣5时,B,C两点的距离是1,则点C表示的数为:﹣4或﹣6;故答案为0或2或﹣4或﹣6.。
人教版七年级数学上册:1.2.2《数轴》说课稿3

人教版七年级数学上册:1.2.2《数轴》说课稿3一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的内容,本节课主要介绍了数轴的定义、特点以及数轴上的基本运算。
数轴是数学中一种重要的工具,它将数的大小关系用一条直线上的点表示出来,使得复杂的数学问题直观化、简单化。
通过学习数轴,学生可以更好地理解实数的概念,掌握实数的运算规则,并为后续的数学学习打下基础。
二. 学情分析七年级的学生已经学习了有理数的概念,对实数的大小比较有一定的了解。
但是,学生对数轴的认识还比较陌生,需要通过本节课的学习,使他们能够熟练地运用数轴解决实际问题。
此外,学生对于数轴上的加减运算、乘除运算等基本运算规则也需要进行深入的理解和掌握。
三. 说教学目标1.知识与技能目标:理解数轴的定义,掌握数轴上的基本运算规则,能够运用数轴解决实际问题。
2.过程与方法目标:通过观察、实践、探究等方法,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的实际应用。
四. 说教学重难点1.教学重点:数轴的定义,数轴上的基本运算规则。
2.教学难点:数轴在实际问题中的应用,解决带有绝对值、相反数等复杂问题。
五. 说教学方法与手段本节课采用问题驱动法、合作探究法、案例教学法等多种教学方法,结合多媒体课件、数轴模型等教学手段,引导学生主动参与、积极思考,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数轴表示两个数的大小关系,从而引出数轴的概念。
2.自主学习:让学生通过阅读教材,了解数轴的定义和特点,掌握数轴上的基本运算规则。
3.合作探究:学生分组讨论,通过实际操作,探究数轴在实际问题中的应用,解决带有绝对值、相反数等复杂问题。
4.教师讲解:针对学生合作探究中的共性问题,进行讲解和解答,引导学生深入理解数轴的概念和运算规则。
人教版2024-2025学年七年级数学上册1.2.2 数轴(习题课件)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.如图,数轴上点 A 表示的数是2 024, OA = OB ,则点 B 表示的数是( B )
A. 2 024
B. -2 024
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3. [母题 教材P11练习T4] 在数轴上点 A 表示的数为+2,将 点 A 沿数轴向左平移3个单位长度到点 B ,则点 B 所表示 的数为( B )
A. 3
B. -1
C. 5
D. -1或3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4. [2024·青岛市北区月考]下列说法:
①规定了原点、正方向的直线是数轴;②数轴上两个不同
的点可以表示同一个有理数;③有理数-11 000在数轴上
无法表示出来;④任何一个有理数都可以在数轴上找到与
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7. 已知数轴上的点 A , B , C , D 分别表示-3,-1.5, 0,4.
(1)请在下面的数轴上标出 A , B , C , D 四点;
(2) B , C 两点之间的距离是 1.5 ;
(3)如果把数轴的原点取在点 B 处,其余条件都不变,那么点
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12. [新考向·知识情境化]如图,圆的直径为1个单位长度,该 圆上的点 A 与数轴上表示-1的点重合,将该圆沿数轴滚 动1周,点 A 到达点 B 的位置,则点 B 表示的数是( )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)

-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
人教版七年级数学上册 1.2.2 数轴 课件 (共25张PPT)

(1) 用数轴表示,,,的位置(建议以小敏家为原点).
(2) 一天,小敏从家里先去邮局寄信,之后以 /的速度往图
书馆方向走了约 ,试问:这时小敏约在什么位置?距图书馆和学
校各多少米?
(1) 用数轴表示,,,的位置(建议以小敏家为原点).
解:如图所示.
(2) 一天,小敏从家里先去邮局寄信,之后以 /的速度往图
书馆方向走了约 ,试问:这时小敏约在什么位置?距图书馆和学
校各多少米?
解:小敏在学校与图书馆之间,距图书馆约 ,距学校约 .
12.(几何直观)如图,在纸面上有一数轴,折叠纸面.
(1) 若表示1的点与表示−的点重合, 则表示−的点与表示____的点
数轴的三要素
单位长度
原点
正方向
规定了原点、正方向和单位长度的直线叫数轴.
数轴的概念
1.在数学中,用一条直线上的点表示数,规定了
正方向 和 单位长度
的水平直线叫做数轴.
原点
、
数轴的画法
1.画一条水平直线,定原点(如图),原点表示0.
2.规定从原点向右为正方向,那么相反的方向(从
原点向左)则为负方向.
第一章 有理数
1.2 有理数及其大小比较
1.2.2 数轴
1.知道数轴的三要素,正确认识三要素的重要性.
2.能正确地画出数轴,能用数轴上的点来表示有理数.
教学重难点
重点
数轴的概念与应用.
难点ቤተ መጻሕፍቲ ባይዱ
从直观认识到理性认识,从而建立数轴概念,掌
握数形结合的思想方法.
原点
正方向
单位长度
1.数轴的定义:规定了______、________和__________的直线叫作数轴.
屯昌县三中七年级数学上册第一章有理数1.2有理数1.2.2数轴教学设计2新版新人教版

数轴教学目标知识技能1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法从直观认识到理性认识,从而建立数轴概念。
通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
会利用数轴解决有关问题。
情感态度通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
教学重点1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
教学难点从直观认识到理性认识,从而建立数轴的概念。
情景引入1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。
”提疑:医生为什么通过体温计就可以读出任意一个人的体温?(体温计上的刻度)2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?(正数、零、负数)3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。
然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。
(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
教学过程一.数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右(或上)为正方向(箭头所指的方向),那么从原点向左(或下)为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…根据画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.二.数轴的相关概念1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.(说明:数轴像一支平放的温度计。
人教版数学七年级上册 第一章 有理数 1.2.2 数轴

人教版数学七年级上册第一章有理数1.2.2 数轴【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念【例题】1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.【巩固练习】一、选择题1.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点2.如图,有理数a,b在数轴上对应的点如下,则有( ).(A)a>0>b (B)a>b>0 (C)a<0<b (D)a<b<03.从原点开始向右移动3个单位,再向左移动1个单位后到达A点,则A点表示的数是( ). A.3 B.4 C.2 D.-24.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20065.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题1.已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为3,那么点B对应的数是.2. 若a为有理数,在-a与a之间(不含-a与a)有21个整数,则a的取值范围是.3.如图所示,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为.4.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?【答案与解析】一、选择题1.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.2.【答案】C3.【答案】C4.【答案】C【解析】若线段AB 的端点与整数重合,则线段AB 盖住2005个整点;若线段AB 的端点不与整点重合,则线段AB 盖住2004个整点.可以先从最基础的问题入手.如AB =2为基础进行分析,找规律.所以答案:C5.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B.二、填空题1.【答案】±2,±4【解析】解:∵点A 和原点O 的距离为3,∴点A 对应的数是±3.当点A 对应的数是+3时,则点B 对应的数是1+3=4或3﹣1=2;当点A 对应的数是﹣3时,则点B 对应的数是﹣3+1=﹣2或﹣3﹣1=﹣4.2. 【答案】1011-1110a a <≤≤<-或3. 【答案】5【解析】CD =AB =6,即A 、B 两点间距离是6,故点B 对应的数为5.4. 【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9/12/2019
第一章 有理数
1.2 有理数
1.2.2 数轴
1
9/12/2019
2
1.规定了__单__位__长__度___、____原__点_____和____正__方__向____的直线叫做数轴. 2.数轴的画法:先画一条直线,在直线上任取一点作为____原__点____,用 数0表示;一般选取原点向右(或向上)为_____正__方__向______,并用箭头表示, 根据需要取适当的长度作____单__位__长__度_______. 3.任何一个有理数都可以用数轴上的___点____表示. 4.一般地,若a是一个正数,则在数轴上表示数a的点在原点的__右__边, 与原点的距离是__a__个单位长度;表示数-a的点在原点的_左___边,与原点 的距离是___a_个单位长度.
9.(8分)指出数轴上点A,B,C,D表示的数.
解:A点表示0,B点表示1.5,C点表示-2,D点表示3
9/12/2019
11
10.(8 分)画数轴,并在数轴上表示下列各数: 2,-2.5,0,13,-4.
解:如图:
9/12/2019
12
9/12/2019
13
一、选择题(每小题5分,共15分) 11.下列说法中正确的是( D ) A.数轴上一个点可以表示两个不同的有理数 B.数轴上两个不同的点可以表示同一个有理数 C.有的有理数不能表示在数轴上,如-0.000 05 D.任何一个有理数都可在数轴上找到和它对应的唯一的一个点
15
二、填空题(每小题5分,共10分) 14.在数轴上,点A,点B分别表示-2,-1,任意写出一个在点A右边 且在点B左边的点表示的数____-__1_._5_(_答__案__不__唯__一__) ______. 15.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹 盖住部分的整数共有__7__个.
6
数轴上的点与有理数之间的关系 3.(3分)如图,在数轴上点A表示的数可能是( A.-2.6 B.-2.4 C.-3.6 D.-3.4
B)
9/12/2019
7
4.(3分)在数轴上表示-2的点是( A )
A.点A
B.点B
C.点C
D.点D
9/12/2019
8
5.(3分)a,b,c在数轴上的位置如图,则( D )
9/12/2019
21
(2)根据以上规律,直接写出从-3.9到3.9有__7__个整数,从-10.1到10.1 有__2_1_个整数.
(3)在单位长度是1 cm的数轴上任意画一条长度为1 000 cm的线段AB,线 段AB盖住的整数点最多有多少个?
9/12/2019
14
12.在数轴上,一点从原点开始,先向右移动2个单位长度,再向左移动 3个单位长度后到达终点,这个终点表示的数是( C )
A.5 B.1 C.-1 D.-5 13.(新乡月考)在数轴上到原点的距离等于2的点所表示的数是( C ) A.-2 B.2 C.±2 D.不能确定
9/12/2019
9/12/2019
局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其 路程为50×8=400(米),结合(1)中数轴知,C,D之间相距500米,B,C之 间相距250米,此时小敏在学校与图书馆之间,距图书馆约100米,距学校 约150米
9/12/2019
20
【综合应用】 18.(14分)(1)借助数轴,回答下列问题: ①从-1到1有3个整数,分别是_______-__1_,__0_,__1______; ②从-2到2有5个整数,分别是_____-__2_,__-__1_,__0_,__1_,__2_______; ③从-3到3有7个整数,分别是_____-__3_,__-__2_,__-__1_,__0_,__1_,__2_,__3____; ④从-100到100有__________2_0_1__________个整数; ⑤从-n到n有________(_2_n_+__1_) ______个整数.
9/12/2019
16
三、解答题(共35分) 16.(9分)如图,点A表示的数是-4.
(1)在数轴上标出原点O; (2)指出点B所表示的数; (3)在数轴上找一点C,它与B点的距离为2个单位长度,那么C点表示什 么数?
9/12/2019
17
解:(1)原点O在点A的右侧4个单位长度处,如图: (2)点B表示3 (3)C点表示1或5
__4__个单位长度; (2)数轴上表示-4 的点在原点的___左_____边,与原点的距离是__4__个
单位长度; (3) 与 原 点 的 距 离 是 4 个 单 位 长 度 的 点 有 __2__ 个 , 它 们 是 __4__ 和
__-__4___.
9/12/2019
10
8.(3分)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长 度得到点P′,则点P′表示的数是____.2
A.a,b,c均是正数 B.a,b,c均是负数 C.a,b是正数,c是负数 D.a,b是负数,c是正数
9/12/2019
9
6.(3 分)(洛阳月考)在数轴上表示-2,0,6.3,15的点中,在原点右边
的点有( C ) A.0 个 B.1 个 C.2 个 D.3 个 7.(3 分)(1)数轴上表示 4 的点在原点的___右_____边,与原点的距离是
9/12/2019
3
9/12/2019
4
数轴的概念和画法 1.(3分)关于数轴,下列说法最准确的是( D ) A.一条直线 B.有原点、正方向的一条直线 C.有单位长度的一条直线 D.规定了原点、正方向、单位长度的直线
9/12/2019
5
2.(3分)下列图中所画数轴正确的是( D )
9/12/2019
9/12/2019
18
17.(12分)小敏家、学校、邮局、图书馆坐落在一条东西走向的大街上, 依次记为A,B,C,D,学校位于小敏家西150米,邮局位于小敏家东100 米,图书馆位于小敏家西400米.
(1)用数轴表示A,B,C,D的位置; (2)一天小敏从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向 走了约8分钟,试问这时小敏约在什么位置?距图书馆和学校各约多少米?