断路器辅助开关触点烧损现象分析及处理
断路器常见的问题及处理办法

高压断路器是电力系统中最重要的开关设备,它担负着控制和保护的双重任务,如断路器不能在电力系统发生故障时及时开断,就可能使事故扩大,造成大面积停电。
为了满足开断和关合,断路器必须具备三个组成部分;①开断部分,包括导电、触头部分和灭弧室。
②操动和传动部分,包括操作能源及各种传动机构。
③绝缘部分,高压对地绝缘及断口间的绝缘。
此三部分中以灭弧室为核心。
断路器按灭弧介质的不同可分为:油断路器,利用绝缘油作为灭弧和绝缘介质,触头在绝缘油中开断,又可分为多油和少油断路器。
压缩空气断路器,利用高压力的空气来吹弧的断路器。
六氟化硫断路器,指利用六氟化硫气体作为绝缘和灭弧介质的断路器。
真空断路器,指触头在真空中开断,利用真空作为绝缘和灭弧介质的断路器。
断路器的分合操作是依靠操作机构来实现,根据操作机构能源形式的不同,操作机构可分为:电磁机构,指利用电磁力实现合闸的操作机构。
弹簧机构,指利用电动机储能,依靠弹簧实现分合闸的操作机构。
液压机构,指以高压油推动活塞实现分合闸的操作机构。
气动机构,指以高压力的压缩空气推动活塞实现分合闸的操作机构。
操作机构还有组合式的,例如气动弹簧机构是由气动机构实现合闸,由弹簧机构分闸。
操作机构一般为独立产品,一种型号的操作机构可以配几种型号的断路器,一种型号的断路器可以配几种型号的操作机构。
下面就不同灭弧介质的断路器和不同型式操作机构分别介绍断路器在运行时最常见的故障,以及原因分析。
1.断路器本体的常见故障1.1油断路器本体序号常见故障可能原因1 渗漏油固定密封处渗漏油,支柱瓷瓶、手孔盖等处的橡皮垫老化、安装工艺差和固定螺栓的不均匀等原因。
轴转动密封处渗漏油,主要是衬垫老化或划伤、漏装弹簧、衬套内孔没有处理干净或有纵向伤痕及轴表面粗糙或轴表面有纵向伤痕等原因。
2 本体受潮帽盖处密封性能差。
其他密封处密封性能差。
3 导电回路发热接头表面粗糙。
静触头的触指表面磨损严重,压缩弹簧受热失去弹性或断裂。
断路器分合闸线圈烧毁的原因及预防措施

Electric Power Technology300《华东科技》断路器分合闸线圈烧毁的原因及预防措施张 锐(南京南电继保自动化有限公司,江苏 南京 210000)摘要:电网安全维护视域下,分析断路器分合闸线圈烧毁原因,针对电流过大、机械故障两项原因深入分析,进而针对性制定故障预防措施,确保断路器常态运行。
对于现场总协调项目经理来说,务必提高重视程度,根据现场电路器分合闸线圈实际情况,提出线圈安全控制的合理化建议,使断路器综合效益全面发挥。
关键词:断路器;分合闸线圈;烧毁原因;预防措施近年来,断路器分合闸线圈烧毁现象频繁出现,要想有效规避安全问题、排除安全风险,应在线圈烧毁原因分析的基础上,制定故障处理措施,将经济损失降到最低。
当前分析断路器分合闸线圈烧毁原因及预防措施具有必要性和迫切性。
1 断路器分合闸线圈控制的意义 断路器属于负荷开关,其作用从短路保护、过载保护两方面体现,即通过控制分合闸线圈充分发挥保护效用,为高效维修、便捷应用提供可靠支持。
当前,断路器分合闸线圈控制实践在电力系统中普遍存在,经就地控制、集中控制实现断路器的常态操控,满足成本节约、设备性能提升、设备全寿命周期延长等目的[1]。
集中控制主要在主控室完成,由于支持远距离控制,所以有远程控制之称。
2 断路器分合闸线圈烧毁的原因 2.1 电流过大 基于断路器工作原理可知,电磁力是断路器运行的内动力,然而电流是电磁力形成的主要源头。
正常来说,电磁力大小与电流大小呈正相关,电流值变大时,分合闸线圈实际热量超过受热的安全范围,极易出现线圈烧毁现象。
实际上,分合闸电流大小受操作机构这项因素影响较大,现今,弹簧操作机构广泛应用,据相关要求可知,电流应在5A 之内,但部分厂家分合闸线圈电流值超过规定值,约6.3A,最终线圈因过热面临烧毁威胁[2]。
当液压操动机构投用时,直流电压220V 对应合闸电流2.5A,实际上合闸电流值过大,进而出现线圈烧毁问题。
断路器常见故障及分析

断路器常见故障及分析蒋跃强高压断路器是电力系统中最重要的开关设备,它担负着控制和保护的双重任务,如断路器不能在电力系统发生故障时及时开断,就可能使事故扩大,造成大面积停电。
为了满足开断和关合,断路器必须具备三个组成部分;①开断部分,包括导电、触头部分和灭弧室。
②操动和传动部分,包括操作能源及各种传动机构。
③绝缘部分,高压对地绝缘及断口间的绝缘。
此三部分中以灭弧室为核心。
断路器按灭弧介质的不同可分为:①油断路器,利用绝缘油作为灭弧和绝缘介质,触头在绝缘油中开断,又可分为多油和少油断路器。
②压缩空气断路器,利用高压力的空气来吹弧的断路器。
③六氟化硫断路器,指利用六氟化硫气体作为绝缘和灭弧介质的断路器。
④真空断路器,指触头在真空中开断,利用真空作为绝缘和灭弧介质的断路器。
断路器的分合操作是依靠操作机构来实现,根据操作机构能源形式的不同,操作机构可分为:①电磁机构,指利用电磁力实现合闸的操作机构。
②弹簧机构,指利用电动机储能,依靠弹簧实现分合闸的操作机构。
③液压机构,指以高压油推动活塞实现分合闸的操作机构。
④气动机构,指以高压力的压缩空气推动活塞实现分合闸的操作机构。
操作机构还有组合式的,例如气动弹簧机构是由气动机构实现合闸,由弹簧机构分闸。
操作机构一般为独立产品,一种型号的操作机构可以配几种型号的断路器,一种型号的断路器可以配几种型号的操作机构。
下面就不同灭弧介质的断路器和不同型式操作机构分别介绍断路器在运行时最常见的故障,以及原因分析。
1.断路器本体的常见故障压缩空气断路器在高压系统已基本淘汰,压缩空气断路器本体的常见故障情况以及原因分析略。
2.断路器操作机构的常见故障3.结束语断路器的制造厂家很多,型号各种各样,只要是灭弧室的类型相同或操作机构的类型相同,虽然结构设计上略有不同,由于原理一样,断路器在运行中发生的常见故障也基本相同。
本文是根据几种典型的断路器设备在运行中发生的故障进行汇总整理的,断路器在运行中往往发生是几种常见故障的组合故障,需要根据故障的情况,进行综合分析,找出原因后,就可以方便、及时进行故障处理和制订反措。
断路器合闸线圈烧坏故障分析与处理

断路器合闸线圈烧坏故障分析与处理摘要:断路器是电力企业发电运行过程中的重要组件,在维持电力企业正常运转方面发挥着重要作用。
但是,断路器自身也存在一定的故障问题,比如合闸线圈烧坏问题就会影响断路器的正常运行。
目前,断路器在分合闸操作过程中,经常会出现线圈无法分合的问题,导致线圈被烧毁。
因此,相关工作人员必须要采取科学有效的方法来处理这一问题,确保故障问题能够得到及时处理。
本文将分析断路器合闸线圈发生烧坏的主要原因,并提出科学高效的处理措施。
关键词:断路器合闸线圈;烧坏故障;合闸回路;遥控触点在整个电力系统运行过程中,断路器是十分重要的基础设备。
断路器的主要作用就是能够在运行期间,用最短的时间排除故障问题,将损失降到最低。
所以保证断路器安全性和运行高效性十分重要。
相关工作人员要对实际情况展开分析,总结断路器合闸线圈发生烧毁的主要原因,进而提出对应的解决方法,为变电站的稳定运行提供保障。
1.断路器合闸线圈发生烧坏的主要原因随着我国对断路器运行安全性的重视程度不断提升,断路器正常工作效率也得到了明显提升。
但是在变电站实际运行期间,断路器经常会出现合闸线圈烧毁问题,对断路器后续正常运行造成了严重影响[1]。
所以,必须要对已经烧坏的合闸线圈进行及时更换,清除其中存在的杂物垃圾,这样才能够确保断路器维持在一个稳定运行状态。
从以往实际工作经验中可以得知,导致短路器合闸线圈烧坏的主要原因包括以下几方面:一是在工作缸密封圈更换之后,需要开展重新安装工作。
但是在回装期间,经常会忘记对断路器开关进行检查。
而且由于合闸线圈运行时间较长,分断路器也没有手动结合,进而导致合闸线圈出现了故障问题,发生了烧毁,供电企业效益也因此面临着巨大损失。
二是随着变电站运行周期越来越长,断路器会产生一定的震动现象,导致合闸铁芯螺栓出现了松动情况。
而且变电站经过长时间运行之后,也会导致铁芯顶杆长度发生了变化,一般都会变得非常短,二级闸阀无法顺利完成一系列动作,导致合闸线圈运行时间过长,整个运行过程也会处于一个带电状态。
断路器控制回路断线的原因分析及处理方法

断路器控制回路断线的原因分析及处理方法摘要:控制回路断线是用来检测断路器二次控制回路是否完整的预警信息。
当保护装置和后台发出“控制回路断线”的告警信号时,表明断路器控制回路不完好,断路器可能无法进行正常的分、合闸操作和保护跳闸操作,如果此时有故障发生,会出现断路器拒动保护越级跳闸,引发大面积停电,甚至会造成电力系统瘫痪等事故的发生,需要尽快处理该缺陷。
关键词:断路器;控制回路;断线原因;应对措施1 引言在电网的连接中,断路器是最关键的设备之一,用于控制电网线路及设备的通断,判定负荷电流的断开与送出状态。
此外,当电力系统中其他设备出现故障时,也可以运用断路器切断设备电路,保障设备与人员安全。
而控制回路是断路器发挥作用的核心构件,正常状态时可以手动控制断路器的分闸与合闸,故障发生时能够自动控制保护装置的分闸与合闸。
与此同时,为了确保断路器具有完整的合闸回路,控制回路能够监控指示断路器的分闸与合闸位置,确保其运行的稳定性。
由此看来,断路器控制回路的维护与检修就显得十分必要。
尤其是对于断线故障的处理,能够有效保障电路运行的安全性与稳定性,防止电力系统设备的损坏。
运行维护与检修人员应该对故障原因进行总结和归纳,为故障处理奠定基础。
2 断路器控制回路断线故障分析2.1断路器控制回路断线故障的原理分析一般来说,处于串联的跳闸与合闸位置中的继电器往往只有一个通电励磁,当断路器处于跳闸状态时,则位于跳闸位置上的继电器进行通电工作,反之,当断路器处于合闸状态时,则只能通过合闸位置上的继电器来进行通电活动,一旦跳闸与合闸双方位置上继电器的常闭接点同时被关闭,那么就会形成一个控制回路的断线问题。
在断路器正常的运营状态中,跳闸位置与合闸位置中的继电器的常闭接点一般不会出现同时关闭的现象,如果其出现同时关闭的情况,则会使得整个保护回路通电,从而有效的显示出控制回路断线的信号。
2.2断路器控制回路断线故障的原因分析能够导致断路器的控制回路出现断线故障的原因多种多样,当保护测控装置自身出现安全故障时,就会使得控制回路的开关出现失灵现象,从而引发控制回路的断线故障。
风力发电用箱变低压断路器触头烧损原因分析

风力发电用箱变低压断路器触头烧损原因分析摘要:电触头直接承担分断和接通电路并承载正常工作电流或在一定的时间内承载过载电流的功能。
各类电器的关键功能,如配电电器的通断能力、控制电器的电气寿命、继电器的可靠性,都取决于触头的工作性能和质量。
关键字:风力发电用箱变;框架式断路器;触头;烧损;接触电阻在新能源领域中箱变低压断路器会发生动静触头接触部分异常,断路器动触头的软连接有发热变色现象,箱变低压断路器触头发生发热变色或烧坏现象,绝缘件烧坏等质量现象。
1.电触头材料的基本特性(1)一般物理特性。
触头材料应具有合适的硬度和合适的弹性模数。
(2)电性能。
触头材料应具有较高的电导率以降低接触电阻,较低的二次发射和光发射以降低电弧电流和燃弧时间。
(3)热物理特性。
触头材料应具有高的热传导性,以便电弧或焦耳热源产生的热量尽快传输至触头底座。
2016年以来,某公司风电产品连续出现低压柜主开关(框架式断路器)触头烧损情况。
研究典型的低压框架式断路器触头烧损案例,查找断路器内部发热的主要原因,采取有针对性的措施预防类似故障发生,对风电场的安全运行有较重要的意义。
2.一起断路器触头烧损案例结合以往经验可知,出现触头接触不良时,可以明显感知到触头或对应的连接件温度远超环境温度。
在这样的前提下,会增加绝缘击穿等事故可能性,需要高度重视。
除此之外,断路器触头发热还将涉及热量扩散的问题,剩余的热量会过渡到其他元件上,这一点的危害较大。
并在电流冲击下,加剧破坏力度,会让母线电气性能出现波动,严重将诱发扭曲、烧毁事故。
事故一旦发生,影响就会比较严重,引起大范围停电十分常见,严重影响企业效益。
对于新能源来说,需要特别关心触头的性能,开关触头的发热隐患较大,可能导致开关烧损,从而直接迫使机组停机。
本文以一起风力发电用箱变低压断路器触头烧损为实例,对断路器进行温升试验和直流电阻测量,结果表明,触头烧损的主要原因在于断路器触头接触电阻大,并提出了相应的预防措施。
断路器及负荷开关常见缺陷的处理—高级工—演示文稿

处理办法: 可以通过做保护传动试验(最好是保护 测量元件加模拟故障量传动,如通一次电 流传动)验证和查明拒跳原因。同时,应 检查拒跳断路器的保护投入位置是否正确。
2、无保护动作信号掉牌,手动切断断路器前红灯不 亮,手动用控制开关操作仍拒跳。 原因是: 1)控制回路熔断器熔断或接触不良使保护失去电源, 2)控制(跳闸)断线。同时有“控制回路断线”信 号发出。 处理办法: 检查熔断器的完好性,用万用表或绝缘电阻表 检查控制回路。
2、跳闸铁芯不动,测量跳闸线圈两端的电压 正常,说明跳闸回路其他元件正常,可能 是跳闸线圈或连接端子未接通,线圈烧坏, 跳闸铁芯卡涩或脱落。 3、跳闸铁芯动作,分闸脱扣机构不脱落(液 压机构压力表指示不变化,分闸控制阀未 动作)。可能是:脱扣机构扣入太深、啮 合太紧,自由脱扣机构越过“死点”太多, 跳闸线圈剩磁大,使铁芯顶杆冲力不足, 跳闸铁芯行程不够,防跳保安螺丝未退出, 跳闸线圈有层间短路,分闸锁钩扣入太深。
断路器“拒合”“拒分”故障处理: 原因:有两个方面:一是电气方面故障; 二是机械方面原因。 从断路器分合闸时控制回路及音响信号 回路动作情况来加以分析: 根据断路器控制电路图可见。
断路器合闸前的状态: 断路器处于跳闸位置,辅助接点QF1、 QF3闭合,QF2断开,控制开关SA手柄处 于“跳闸后”位置(11-10)接通,回路+ FU1 SA(11-10) HG R1 QF1 KM FU2 —构成通路。绿灯发平光,表 明断路器在分闸位置,同时说明合闸回路 完好。由于回路中有电阻与绿灯,回路电 流达不到合闸接触器KM的动作值,KM不 会动作合闸。
3、运行中SF6气室漏气发出补气信号,但 红绿灯未熄灭,表示还未到闭锁压力,此 时应汇报调度,在保证安全的情况下进行 补气,但必须加强监视,在适当时候,安 排检查处理。
一起220kV断路器合闸线圈烧毁的原因分析及对策

。 I 寸———r——— ● — 0一…’ ● L |
.
图 3操 作机构 台闸控制 回路图
_
2 原因分析 : 、 ①查阅刚完成不久的此断路器动 作电压测试试验 , 合 闸最低动作 B相 电压为 15 , 0 7 小于 8 % 0 额定操作 电压值, 动作试 验合格。 除了线 圈挚子 固 排 有动作 电压偏高 , 施加 在线圈上 的系统电压不足 于使合 闸挚 子脱扣 , 断路 器 辅 助 开关 未转 换 线 圈长 期 带 电烧 毁 可 能 ; ②万用 表量取合 闸回路 6 2端 子 电压 为 一 1V 电压合 格 , 除系统 0 15, 排 电压偏低,满足不 了最 低动作 电压发 出合 闸指令后 拒动造成线 圈烧毁 可
类似障碍发生。 该 断 路 器 型 号 为 H L 4 ,配 分 相 式 B G O 2 P25 L I O A型 弹 簧操 作 机 构 ,9 9 19
黯
啪
。
Y3
一
Байду номын сангаас
60 1
: :
: :
l = 9
—
r
/ F -
j
_ —厂 _ ,
点
, 一
B N
不足 衔 铁 吸 力 不 够 不 能 撞 开 项 拒 绝脱 扣 而 无 法 合 闸 可 能 ;
分析 。 机构初始为断路器分闸, 没有气压, 合闸弹簧未储能, 手动状态 。 当满足 断路器分闸位置 , 储能完毕 , 气体压力 正常, 选择 开关 打向远控 时, 对应 B 1B 1K 、4触点 闭合 , G 、W 、9 s 机构合 闸回路为接通状态 。 正常操 作时, 当 发 出合 闸 脉 冲 后 , 闸 出 口继 电 器 H J 合 B b动 作 , 常 开 触 点 闭 合 , 闸 回 路 其 合 接通 , 电磁 铁 Y 3励 磁 带 电 , 于 H J I 线 圈 流 过 合 闸 电流 使 H J 自保 由 B b() Bb 持, 直至断路器合 闸使辅助触 点 B 1断开 ,B b即返 回。断路器后 台操 作 G HJ 频繁 , 隔时间短 , 考 虑间隔 时间而连 续传动试 验 , 间 无 中途 间 隔 时 间 只 有 4 O秒左 右 ,查 阅厂 家 断路 器 产 品手 册 ,规 定 :标准 操 作循 环 是 0 0 —. 3 — O 3 i— O 断路 器 和 继 电器 系 统 进 行 大 于 3次 合 闸操 作 试 验 时 , 闸 sC一mnC , 合 操 作 之 间 的 时 间不 应 小于 1 钟 。 因每 一 次 电 动 操 作 均 会 使 线 圈 发 热 , 分 发 热 后 需 要 时 间散 热 , 证 其 有 良好 通 流 能力 , 于 频 繁 操 作 , 圈通 流 后 热 保 由 线 量不 能及 时散 发, 产生 累积效应 , 温度逐渐 上升, 而线圈铜导线 的电阻随温 度升 高而增大,通流能力 随之减 小,依据麦克斯威尔吸力 推导公式 : F吸 = . 7 1) S5— 1— ( 斤 ) 式 中 ,w — 安 匝 值 ( ) s — 工 作 气 隙 的 15 (w 2 2 0 8 公 , 1— 安 ,— 有效 截面积 ( 米 2 , 厘 ) 5——工 作气隙总 长度 ( 厘米 ) 知: 圈对 衔铁 吸 可 线 力 F吸与流过线圈 电流 I的平方值成 正比, F吸随 I的平方数减小而递 即 减, 在操 作 成 功 若 干 次 N后 , N I N 1 3 次 的 重 合 闸试 验 中 , 闸 线 圈 在 + (+ >) 合 满 足 不 了低 电压 动 作 要 求 值 使 衔 铁 冲 击 力 量不 足 , 法 将 脱 扣 装 置 脱 扣 带 无 动合 闸拐臂动作 , 衔铁黏在合 闸挚子上 , 闸不 成功, 合 断路器辅助开关依然 在分位没有转换 , 串联在合 闸控制 回路 中的辅助触点 B 1的分 闸位置常 闭 G 触点 O O 卜 2保 持 在 闭合 位 置 , 制 回 路 一直 对 合 闸 线 圈 Y 控 3通 电, 圈 绝 缘 线 漆软化 , 引发 匝 间短 路 电流 开 始 增 大 , 速 线 圈 发 热 , 时 控 制 电源 空 气 开 加 此 关 并 未 断 开 , 合 闸 失 败 , 圈 彻 底 烧 毁 , 圈 内 的铁 芯 因发 热 膨 胀 卡 死 , 重 线 线