第四章 小结与思考(1) 作业
苏科版数学九年级下册《锐角三角函数小结与思考(1)》课件

练习1、如图,在Rt△ABC中,∠ACB=90°,CD是斜边 AB上的高,AB=5,AC=3,则sin∠BCD=_____.
B D
A
C
练习2、Rt△ABC中,∠C=900 ,sin A 5 12
求tanB,cosA
正切值随着锐角的度数的增大而_增__大__; 正弦值随着锐角的度数的增大而__增_大__; 余弦值随着锐角的度数的增大而__减_小__.
练习1、比较大小: (1)sin250____sin430 (2)cos70____cos80 (3)sin480____cos520 (4)tan480____tan400
练习2、已知:300<α<450,则: (1)sin α的取值范围:________; (2)cosα的取值范围:________; (3)tanα的取值范围:________.
2、知道直角三角形中的2个元素(至少有一边), 可以求出其它三个元素.
例1、在△ABC中,∠C=90°,a= 2,2b= 2,6解 这个直角三角形.
例2、如图,在△ABC中,∠A=30°,tanB= AC=2 3,求AB的长.
3 2
DB
A
C
例1.如图所示,小华同学在距离某建筑物6米的点A处 测得广告牌B点、C点的仰角分别为52°和35°,则广告 牌的高度BC为________米(精确到0.1米) (sin35°≈0.57,cos35°≈0.82,tan35°≈0.70; sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)
三角函数
正 切: tanA 正 弦: sinA
A的 对边 A的 邻边 A的 对边
斜边
余 弦: cosA
A的 邻边 斜边
八年级数学上册 4 实数小结与思考导学案(新版)苏科版

课题: 第四章 小结与思考姓名 班级学习目标: 1.回顾和整理本章所学的知识内容,使学生对本章内容有全面的了解.2.建立本章知识结构框图和对所学知识的简单应用. 学习重点:建立本章知识结构框图和对所学知识的简单应用. 学习难点:建立本章知识结构框图和对所学知识的简单应用.学习过程 :一、知识回顾1、表示 ;4的平方根是 ; 0.81的算术平方根是 ;的平方根是 ;的立方根是 ;64的平方根的立方根是 。
2、平方根等于它本身的数是算术平方根等于它本身的数是 ;立方根等于它本身的数是 .3.算术平方根的性质:a 0;= (0),a ≥= (0)a ≤,2= (0)a ≥.= 2= = == .5.实数: 称为无理数. 和 统称为实数._______数与数轴上的点是一一对应的.6.地球的半径约为36.410⨯km ,这个数据精确到 km.二.【问题探究】例1.求下列各式中x 的值(1)x 2-25=0 (2)(x +10)3=-27例2.下图是单位长度是1的网格. ⑴在图1中画出长度为10的线段AB ;⑵在图2中画出边长都是无理数的三角形ABC ;⑶在图3中画出以格点为顶点、面积为5的正方形.例3. (1)若2(21)0x -=,求y x 516-的算术平方根.(2)若x 、y 为实数,,214422-+-+-=x x x y 求x y 34-的平方根.三.【拓展提升】已知︱a -2013︱,求22013a -的值.四.【课堂小结】通过对本章知识的回顾,你有了哪些更深的认识?五.【课堂反馈】1.下列各数:0.33,2π-,432,1.0,1-3,3001.0中,无理数有( )A.2个B.3个C.4个D.5个2. 的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.若一个正数的平方根是2a+1和-a +2,则a= ,这个正数是 .4.由四舍五入法得到的近似数2.001万精确到 位.5.(1)满足x <x 是 ;(2)绝对值小于7的整数是6.a 、b 在数轴上的位置如图所示,那么化简2b b a --的结果是 .7.计算。
4.4小结与思考(1)

(2)每件服装的成本是多少?
(3)为保证不亏本,最多能打几折?
6. 旅游者游览某风景区,乘坐摩托艇顺水 而下,然后返回至登听处,已知水流速度为 2km/h,摩托艇在静水中的速度为18km/h, 为了使游览时间不超过3h,摩托艇驶出多 远就应掉头。
7、某同学在A、B两家超市发现他看中的随身听 的单价相同,书包单价也相同,随身听和书包单 价值和是452元,且随身听的单价比书包单价的 4倍少8元。 (1)求该同学看中的随身听和书包单价各是多 少元? (2)某一天该同学上街,恰好赶上商家促销, 超市A所有商品八折销售,超市B全场购物券满 100元返还购物券30元销售(不足100元不返还 券,购物券全场通用),但他只带了400元钱, 如果他只在一家购买看中的这两样商品,你能说 明他可以选择哪一家购买?若两家都可以,在哪 一家购买更省钱?
初中数学七年级上册 (苏科版)
4.4小结与思考(1)
(2)如果方程(m-1)x|m| + 2 =0是表示关于 x的一元一次方程,那么m= 。
例3 解下列方程
1. 学生问老师多少岁,老师说我像 你这么大 时你才2岁,你长到我这么大时,我就35岁了, 你算算老师、学生各多少岁? 2.用绳子量井深,把绳三折来量, 井外余绳 四尺,把绳四折来量,井外余绳一尺.求井深 及绳长.
8.一张长方形桌子可坐6人,按下图方式讲 桌子拼在一起。
。。。。。。
(1)一家餐厅有40张这样的长方形桌子,按照 上图方式拼成1张大桌子,共可坐多少人? (2)该家餐厅有n张这样的长方形桌子,按照 上图方式拼成1张大桌子,共可坐多少人?你有 哪些好的思考问题的方法?
3. 某商店以90元的相同价格卖出2件不同的 2件衬衫盈利了,还是亏损 了?
初中数学_《第四章 三角形》回顾与思考教学设计学情分析教材分析课后反思

教学设计本节课设计了六个教学环节:第一环节:课前准备——自我总结;第二环节:合作交流;第三环节:练习提高;第四环节:课堂小结;第五环节:评测练习;第六环节:作业第一环节课前准备活动内容:提前一天布置,让学生选择自己喜欢的方式梳理本章的知识,其中建议学生留出一个环节写出自己对本章的知识还有什么疑惑,或者可以写出在本章中留下印象最深刻的习题与大家分享和交流。
活动目的:由学生自己梳理本章的知识既可以锻炼学生自主学习的能力又可以调动学生学习的热情和兴趣,还可以加强学生在小组内活动交流的意识。
第二环节:合作交流活动内容:开课时由学生在小组内交流各自的知识总结,互相查缺补漏,先组内解决疑惑问题,小组长充分发挥组织能力,调动全组每一名学生参与。
然后选出一份全组最满意的一份总结做好全班交流展示的准备。
其它小组要主动与展示小组交流:可以纠正错误,补充不足,提出问题,表扬鼓励等。
活动目的:这个环节可以调动每个学生参与到课堂中来,真正做到让每个学生都成为课堂的主人。
第三环节:练习提高例1.如图,在△ABC中∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,则∠DAE=例2.三角形两边为3cm,7cm,且第三边为奇数,则三角形的最大周长是例3.如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC= .例4.实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD= ;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD= ;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度数;②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C=64°,则∠A的度数为活动内容:结合典型习题回顾重要知识点。
中心对称图形(小结与思考1)

总 课 题 课 题
中心对称图形 小结与思考 1
总 课 时
课型
Hale Waihona Puke 教学目标1、 回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行 梳理,使所学知识系统化。 2、 进一步丰富对平面图形相关知识的认识,能有条理的、清晰地阐述自 己的观点。 3、 通过“小结与思考”的教学,培养学生归纳、反思的意识。 以学生活动为主,让学生在反思与交流的过程中回顾本章知识,梳理所学 内容,体会数学思想方法。 引导学生用自己喜欢的方式梳理本章的知识,使所学内容系统化
例 3 是课 本例题, 本 认真观察图形, 题 可 以 示 思考:需要得出什 范 怎 样 说 么,才能说明一个 明 一 个 图 图形是中心对称 形 是 中 心 图形的理由。 对称图形 的方法, 具 有典型性。
课时设计__费亚军__
审核_____
_
师先帮助学生复习回顾把一个图形绕一点旋转的 基本画法。然后让学生动手画图,并指导。 例 2、知:△ABC 和一点 O,画△ABC 关于点 O 成中 心对称的三角形; (1)点 O 在△ABC 外; (2)点 O 与△ABC 的一个顶点重合 (3)点 O 是△ABC 的一边 BC 的中点 师引导学生分析,区别这三个小题的不同,然后让三个 学生板演,师作指导,并订正。 三位同学同时板 演这三小题
教学重点 教学难点 教具准备 教学过程
教 教师活动内容、方式
学
内
容 学生活动方式
设计意图
一、知识点复习 (一)中心对称与中心对称图形 1、图形的旋转。 在平面内,将一个图形绕一个定点旋转一定的角 学生温习概念 度,这样的图形运动称为图形的旋转,这个定点称为旋 转中心,旋转的角度称为旋转角。 师提问,学生回答 ①旋转前、后的图形全等。 ②对应点到旋转中心的距离相等。 ③每一对对应点与旋转中心的连线所成的角彼此相等。 2、中心对称。 把一个图形绕着某一个点旋转 180°,如果它能够与另 一个图形重合,那么称这两个图形关于这一点对称。也 称这两个图形成中心 对称, 这个点叫做对称 中心, 两个图形中的对 应点叫做对称点。 注意: ①中心对称是旋转的一种特例,因此,成中心对称的两 个图形具有旋转图形的一切性质。 ②成中心对称的 2 个图形,对称点的连线都经过对称中 心,并且被对称中心平分。 3、中心对称图形。 把一个平面图形绕着某一点旋转 180°,如果旋转
人教版数学五下第4章《分数的意义和性质》(分数与除法的关系)教案

人教版数学五下第4章《分数的意义和性质》(分数与除法的关系)教案一. 教材分析人教版数学五年级下册第四章《分数的意义和性质》主要讲述了分数与除法的关系。
这一章的内容是学生进一步理解分数概念,掌握分数的运算方法,以及理解分数在实际生活中的应用。
通过本章的学习,学生将能够理解分数的意义,掌握分数的加减乘除运算,以及分数与除法的关系。
二. 学情分析五年级的学生已经掌握了分数的基本概念和简单的运算方法,但是对于分数与除法的关系可能还不太理解。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过探究活动,理解分数与除法的关系,提高他们的数学思维能力。
三. 教学目标1.理解分数的意义和性质,掌握分数的加减乘除运算方法。
2.理解分数与除法的关系,能够运用分数解决实际问题。
3.培养学生的数学思维能力,提高他们的数学素养。
四. 教学重难点1.分数的意义和性质的理解。
2.分数与除法的关系的把握。
五. 教学方法采用问题驱动法、探究学习法、小组合作学习法等,引导学生主动参与,积极思考,通过探究活动,理解分数的意义和性质,掌握分数的运算方法,以及理解分数与除法的关系。
六. 教学准备1.PPT课件2.教学用具(如分数模型、卡片等)七. 教学过程导入(5分钟)我会通过一个实际问题引入分数的概念:“如果把一个苹果平均分成5份,你吃了2份,那么你吃了这个苹果的几分之几?”让学生思考并回答,引出分数的概念。
呈现(10分钟)我会用PPT课件呈现分数的意义和性质,以及分数与除法的关系。
通过分数模型的展示,让学生直观地理解分数的意义和性质。
同时,我会讲解分数与除法的关系,让学生明白分数就是除法的一种表现形式。
操练(10分钟)我会让学生进行一些分数的运算练习,如分数的加减乘除。
通过这些练习,让学生进一步理解和掌握分数的运算方法。
巩固(10分钟)我会用一些实际问题,让学生运用分数的知识解决。
如:“一个篮子里有5个苹果,小明拿走了3个,小明拿走了篮子里苹果的几分之几?”通过这些问题,让学生巩固分数的知识。
第四章一元二次方程小结与思考教学案+课堂作业

南沙初中初三数学教学案教学内容:一元一次方程小结与思考课 型:复习课 学生姓名:______ 教学过程:一、知识点归纳:1.方程的分类:2.一元二次方程:只含有 个未知数,并且未知数的最高次数是 的整式方程,叫做一元二次方程,其一般形式为 。
◆ 解一元二次方程的方法有:① ;② ;③ ;④ ;3.一元二次方程ax 2+bx+c=0的求根公式为x= 。
4.一元二次方程ax 2+bx+c=0的根的判别式。
二、例题:(一)一元二次方程的概念、一般形式的考查:1、下列方程中,是一元二次方程的是 ( )A 、x 2+3x +y=0 ;B 、 x+y+1=0 ;C 、 213122+=+x x ;D 、0512=++xx 2、关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为 ( )A 、1B 、-1C 、1或-1D 、213、(2008东营)若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 ( )A .1B .2C .1或2D .0(二)一元二次方程的解及其解法的考查1、(2007潍坊)关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是 ( )A .4B .0或2C .1D .1- 2、要使分式4452-+-x x x 的值为0,则x 应该等于( ) (A )4或1 (B )4 (C )1 (D )4-或1- 3、 必有一个根是则一元二次方程如果)0(0,02≠=++=+-a c bx ax c b a 。
4、若最简二次根式 x x 42- 与3x -10是同类二次根式,则x 的值是5、三角形的两边长分别是5和9 第三边的长为一元二次方程x 2-14x+48=0的根,则这个三角形的边长为______________。
6、若关于x 的一元二次方程220x mx -+=与2(1)0x m x m -++=有一个相同的实数根,求m 的值。
苏科版初二数学第四章小结与思考1

怀文中学2013—2014学年度第一学期教学设计初 二 数 学第四章实数小结与思考(1)主备::陈秀珍 审校: 毛云峰 日期:2013年11月28日 教学目标: 1. 进一步巩固实数的定义性质及其运算规律。
2. 熟练使用计算器求一些数值的估算值。
3. 能运用实数的运算解决简单的实际问题,提高对知识的应用能力。
教学重难点:无理数、平方根、算术平方根、立方根及实数的定义与性质,以及实数的运算法则。
教学内容:一、自主探究1.平方根和算术平方根(1)定义:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
(2)性质 正数有两个平方根,它们是互为相反数,通常记做:a x ±=。
0的平方根是0负数不存在平方根。
(3)算术平方根:如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a称为被开方数。
特别规定:0的算术平方根仍然为0。
(4)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
2.立方根(1).如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。
记做:3a ,读作,3次根号a 。
注意:这里的3表示的是开根的次数。
一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。
(2)平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
二、自主合作例1.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;的平方根是(4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?三、自主展示例2.(1)下列说法正确的是 ( )A .1的立方根是1±B .24±= C.81的平方根是 3± D.0没有平方根;(2)下列各式正确的是( ) A.981±= B.14.314.3-=-ππ C.3927-=- D.235=- (3)2)3(-的算术平方根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
峰山中学初一数学课堂作业
课题 第四章 小结与思考(1)
学号 姓名 日期 总第 次 等第
一、知识点:
一元一次方程:
只含有_______未知数,并且未知数的次数都是______,这样的方程叫 ___________________
练习一:
1.下列方程中是一元一次方程的是( )
A 3121-=-x x
B 02=-y x
C 02=x
D 3122
1-=-x x 2.当m= 时,关于x 的方程0122=-m x 是一元一次方程.
二.解方程。
解一元一次方程的一般步骤有:___________、________________、___________、
___________、_________________.
练习二:
1. 解下列方程
(1) 2(x-2)=2-7(x-2) (2)37462x x x -+=-
(3)3(2)1(21)x x x -+=-- (4)
4
7315=-a
(5)
15
334--=-x x (6)143321=---m m
三、方程的解:
使方程等号左右两边相等的___________________,叫做方程的解. 练习三:
1. 代数式112
a a a ---与的值相等,则a = .
2 若2a 与1-a 互为相反数,则a 等于_____________.
3. 当x 为何值时,代数式
236x -和214
x +-的值互为相反数?
4. 已知 2=x 是关于x 的方程m x m x 48)(2-=- 的解,求m 的值。