集成电路模拟乘法器MC1496应用
基于模拟乘法器MC1496的调幅电路设计

《模数混合实用电路设计》报告题目:基于模拟乘法器MC1496的调幅电路设计专业:班级:学号:姓名:同组人:指导教师:时间: 2013.6.24---2013.7.7一、设计目的1.掌握集成模拟乘法器的基本原理。
2.掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点。
3.学习调制系数M及调制特性(m~Uom)的测量方法,了解m<1和m>1及m=1时的调幅波的波形特点。
二、设计要求学习和掌握振幅调制电路设计方法,学习相关器件的工作原理和基本参数,设计一个振幅调制电路。
学习并掌握电路仿真软件的基本操作。
具体要求1、振幅调制原理分析;2、学习应用EDA工具Multisim软件;3、列出需要的器件清单;4、进行功能仿真,并设计电路图;5、进行电路调试;6、写报告设计。
写上设计仿真过程,附上有关资料与图片及心得体会。
三、原理简述1、振幅调制原理振幅调制是用调制信号去控制载波的振幅,使其随调制信号线性变化,而保持载波的角频率不变。
普通调幅波的波形图:当载波频率ω>>调制信号频率Ω,0<ma<=1,则可其波形,从图中看出调幅波是一个载波振幅按照调制信号大小线性变化的高频振荡调幅信号频谱:将调幅波的数学表达式展开,可得到V(t)=V0(1+macosΩt)cosωt=V0cosωt+1/2maV0cos(ω0+Ω)t+1/2maV0cos(ω0—Ω)t可见V(t)是由ω0、ω0+Ω和ω0—Ω三个不同频率分量的高频振荡由图看出调幅过程实际上是一种频谱搬移过程,即将调制信号的频谱搬移到载波附近,成为对称排列在载波频率两侧的上、下边频,幅度均等于1/2maV0.由上述分析调幅波的波形和频谱可知,调幅前后,输出信号和输入信号的波频率分量都产生变化,即产生了频率变换,因此,振幅调制的实现一定要有非线性器件产生相乘作用才能实现。
2、低通滤波器原理利用电容同高频阻低频,电感通低频阻高频的原理.对于需要截止的高频,利用电容吸收电感、阻碍的方法不使它通过,对于需要的低频,利用电容高阻、电感低阻的特点是它通过。
基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现讲解

湖南大学工程训练HUNAN UNIVERSITY 工程训练报告题目:基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现学生姓名:秦雨晨学生学号: 20110803305专业班级:通信工程1103 指导老师(签名):二〇一四年九月十五日目录1 项目概述---------------------------------------------------------2 1.1引言---------------------------------------------------------21.1 项目简介----------------------------------------------------21.2 任务及要求--------------------------------------------------21.3 项目运行环境------------------------------------------------32 相关介绍--------------------------------------------------------33 项目实施过程----------------------------------------------------53.1 项目原理 ---------------------------------------------------53.2 项目设计内容------------------------------------------------93.2.1 调幅电路仿真--------------------------------------------93.2.2 检波电路仿真-------------------------------------------124 结果分析-------------------------------------------------------144.1调幅电路---------------------------------------------------144.2 检波电路---------------------------------------------------185 项目总结-------------------------------------------------------216 参考文献-------------------------------------------------------227 附录 --------------------------------------------------------231、项目概述1.1引言在高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
模拟乘法器MC14961596设计混频电路

实用标准文档班级:姓名:学号:指导教师:林森成绩:电子与信息工程学院信息与通信工程系混频器的设计1概述在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。
采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。
混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。
1.1混频器原理混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。
直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。
采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。
因为放大功能主要放在中放,因此可以用良好的滤波电路。
采用超外差接收后,调整方便,放大量﹑选择性主要由中频部分决定,且中频较高频信号低,性能指标容易得到满足。
混频器在一些发射设备中也是必不可少的。
在频分多地址信号的合成、微波接力通信、卫星通信等系统中也有其重要地位。
此外,混频器也是许多电子设备、测量仪器(如频率合成器、频谱分析仪等)的重要组成部分。
集成电路模拟乘法器MC1496应用——振幅调制

集成电路模拟乘法器MC1496应用——振幅调制集成电路模拟乘法器MC1496应用——振幅调制【摘要】分析了模拟相乘器MC1496的乘法特性,介绍了该乘法器在高频电子实验系统中的应用电路设计方法。
介绍了MC1496的实用电路--振幅调制。
【关键词】模拟乘法器;MC1496;振幅调制集成电路模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单,且性能优越。
广泛应用于无线通信、广播电视等方面。
在实验电路设计中经常采用MC1496。
1、MC1496的内部结构MC1496是双平衡四象限模拟乘法器。
内部电路图和引脚分布如图1(a)、(b)所示。
图1(a)中VT1、VT2与VT3、VT4组成双差分放大器,VT5、VT6组成的单差分放大器用以激励VT1~VT4。
VT7、VT8及其偏置电路组成差分放大器VT5、VT6的恒流源。
引脚8与10接输入电压UX,1与4接另一输入电压Uy,输出电压U0从引脚6与12输出。
引脚2与3 外接电阻RE,对差分放大器VT5、VT6产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。
引脚14为负电源端(双电源供电时)或接地端(单电源供电使),引脚5外接电阻R5。
用来调节偏置电流IS 及镜像电流I0的值。
2、集成模拟乘法器MC1496的应用举例--振幅调制振幅调制是使载波信号的峰值正比于调制信号的瞬时值的变换过程。
通常载波信号为高频信号,调制信号为低频信号。
用集成模拟乘法器MC1496构成的振幅调制器电路,如图3所示载波信号UC经过高频耦合电容C2从Ux端输入,C3为高频旁路电容,使8脚接地。
调制信号UΩ经低频耦合电容C1从Uy端输入,C4为低频旁路电容,使4脚接地。
调幅信号Uo从12脚单端输出。
器件采用双电源供电方式,所以5脚的偏置电阻R5接地,由式(4)可计算器件的静态偏置电流I5或I0=1mA。
集成电路模拟乘法器的应用

课程设计任务书题目集成电路模拟乘法器的应用专业、班级学号姓名主要内容、基本要求、主要参考资料等:一.主要内容用集成模拟乘法器MC1496设计调幅器和同步检波器二.基本要求1:电源电压12v 集成模拟乘法器 MC1496载波频率 f c=5MHZ 调制信号频率 fΩ=1KHZ2:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。
3:设计时间为一周。
三.主要参考资料1:李银华电子线路设计指导北京航天航空大学出版社2005.6 2:谢自美电子线路设计·实验·测试华中科技大学出版社2003.103:张肃文高频电子线路高等教育出版社2004.11完成期限:指导教师签名:课程负责人签名:年月日目录第一章mc1496的介绍第一节模拟乘法器的内部结构及原理 (4)第二节 mc1496的引脚图及其功能 (5)第三节 mc1496的内部结构及原理 (6)第二章 mc1496构成调幅器第一节调幅器的基本介绍 (10)第二节振幅调制器的原理图 (12)第三节振幅调制器的数据说明 (14)第三章 mc1496构成同步检波器第一节同步检波器的基本介绍 (14)第二节振幅同步检波器的原理图 (15)第三节振幅同步检波器的数据说明 (16)第四章设计体会 (18)主要参考文献振幅调制器的原理图振幅同步检波器的原理图摘要集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
集成模拟乘法器MC1496是目前常用的平衡调制/解调器。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。
把调制信号和载波同时加到一个非线性元件上经过非线性变换电路,产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
基于MC1496集成模拟乘法器的非线性幅度调制电路原理

一、 实验原理(实验主要内容及原理、设计思想、系统结构等) 基于MC1496集成模拟乘法器的非线性幅度调制电路原理,电路如下图:R81K C30.1USIG+1SIG-423CAR+8CAR-1014OUT+6OUT-12BIAS5VEEGADJGADJ U1M C 1496C10.1UC20.1UR175W 51KC11100U10410447UH2KLED -8V R551R275R31KR451R551R91KR103.9KR113.9KR12110KC9104L347UHC10104LED +12V2KQ13DG6R13510C70.1UFL220UHGNDR76.8KGNDGNDGNDC55/20PC40.1U C60.1U GNDGNDGNDGNDGND载波输入调制输入UOUTTP3+12V+8VINL11、双踪示波器:YB43602、频率计:YB33713、数字万用表:GDM-81354、高频实验箱:EL-GP-III5、高频信号发生器:YB1052B6、幅度调制、解调模块四、实验操作(实验步骤、程序、调试方法、中间结果、异常或错误处理等)1、接通高频实验箱的-8V和+12V电源;2、调节高频信号发生器,使其输出f C=10MHz、振幅为200mV的高频正弦信号接地TP1端作载波信号;从高频信号发生器左下端或高频实验箱的左边的音频信号发生器输出fΩ=1KHz、振幅为600mVpp的正弦调制信号到将双踪示波器的CH1接通Tp2,Ch2接通Tp3;3、仔细调节uΩ的振幅以及W和C5,适当调节示波器的Y轴灵敏度和X轴扫描时间(mS级),使示波出现m<1的调幅波,观察并测量调制系数m(注意m的测量计算方法);4、轻轻仔细调节uΩ的振幅以及W和C5,仔细适当调节示波器的Y轴灵敏度和X轴扫描时间(mS级),示波观察并记录m<1、m=1、m>1时调幅波的波形;5、保持f C=10MHz、振幅为200mV的高频正弦载波信号,fΩ=1KHz的音频信号不变,调节uΩ的大小,用示波器测量和计算m~uΩm曲线五、实验结果(实验最终结果及其分析处理)1、调幅波调制系数的测量记录计算在测量的调幅波中,高频信号发生器产生的载波频率f C=10MHz,振幅u C=200mV,音频信号fΩ=1KHz ,经MC1496最佳调制后,将双踪示波器水平扫描开关置0.2mS/dev 、垂直控制开关置0.2mV/dev 时,在显示屏测定调制波图形如图P-2所示。
模拟乘法器MC1496仿真分析

科技信息SCIENCE &TECHNOLOGY INFORMATION2010年第29期0引言在高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程,在实验中大多使用模拟乘法器MC1496构成相关功能电路;本文利用multisim10对软件仿真平台,以MC1496构成的调幅电路为实例进行软件仿真,分析在不同的条件下对MC1496的外特性的影响。
1创建模拟乘法器MC1496电路模块MC1496是根据双差分对模拟相乘器基本原理制成的乘法器芯片,用来实现调幅电路具有电路简单,调试方便的优点,但在multisim10的仿真元件库中没有这个元器件,因此必须创建MC1496的内部结构图,创建MC1496内部结构如图1所示,子电路如图2所示。
图1MC1496电路模块图2MC1496子电路2MC1496构成的调幅电路及检波电路仿真2.1MC1496构成的调幅电路利用已经生成的MC1496子模块,参考MC1496数据手册或实验指导书选择电路元件,创建双边带调幅仿真电路,如图3所示。
图3MC1496构成的调幅电路实验中,我们主要关注的是电阻R4,引脚5连接的对地电阻R5及2,3引脚间的电阻R23;R5决定了模拟乘法器的静态工作电流,为了保证MC1496工作于小信号放大状态,R5必须选择合适的值;R23来调正调制信号的输入线性动态范围,同时控制乘法器的增益。
2.2仿真电路数据测试(1)MC1496的直流工作点根据MC1496的特性参数,实际应用时,静态偏置电压(输入电压为0时)应满足下列关系(以图3为例,下式中vx 代表芯片x 脚的电压):v 8=v 10,v 1=v 4,v 6=v 1230V ≥v 6(v 12)-v 8(v 10)≥2V 30V ≥v 8(v 10)-v 1(v 4)≥2.7V 30V ≥v 1(v 4)-v 5≥2.7V通过仿真得出乘法器的直流工作点如图4所示:图4静态工作状态测试比较仿真测试值和理论估算值,符合MC1496的应用要求,但在实际调测电路的时候,可能会出现不一致的情况,一般的情况大多数为虚焊、无源器件(电阻)可能选择错误和芯片损坏等情况。
模拟乘法器作用及电路

摘要随着电子技术的发展,集成模拟乘法器应用也越来越广泛。
用集成模拟乘法器可以构成性能优良的调幅和检波电路,其电路元件参数通常采用器件典型应用参数值。
作调幅时,高频信号加到输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端。
集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
作调幅时,高频信号加到输入端,低频信号加到Y输入端;作检波时,同步信号加到X输入端,已调信号加到Y输入端。
调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。
还需注意:(1)Y 端输入信号幅度不应超过允许的线性范围,其大小与反馈电阻R有关,否则输出Y波形会产生严重失真;(2)X端输入信号可采用小信号(小于26mV)或者大信号(大于260mV),采用大信号可获得较大的调幅或解凋信号输出。
信息传输系统中,检波是用以实现电信号远距离传输及信道复用的重要手段。
由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。
关键词:模拟乘法器,调幅器,检波器,MC1496目录第一章、集成模拟乘法器的工作原理 (2)第一节、模拟乘法器的基本特性 (2)一、模拟乘法器的类型 (2)第二节、变跨导模拟乘法器的基本工作原理 (2)第三节、单片集成模拟乘法器 (3)第二章、集成模拟乘法器的应用 (4)第一节、基本运算电路 (4)一、平方运算 (4)二、除法运算器 (5)三、平方根运算 (5)四、压控增益 (5)第二节、倍频、混频与鉴相 (6)一、倍频电路 (6)二、混频电路 (6)三、鉴相电路 (6)第三节、调幅与解调 (7)一、信息传输的基本概念 (7)二、调幅原理 (8)三、采用乘法器实现解调(检波) (10)第三章、MC1496模拟乘法器构成的振幅器 (10)第一节、振幅调制的基本概念 (10)第二节、抑制载波振幅调制 (13)第三节、有载波振幅调制 (14)第四章、MC1496模拟乘法器构成的同步检波器 (14)总结 (17)参考文献 (18)附录 (18)第一章、集成模拟乘法器的工作原理第一节、模拟乘法器的基本特性模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路模拟乘法器MC1496应用
【摘要】分析了模拟相乘器mc1496的乘法特性,介绍了该乘法器在高频电子实验系统中的应用电路设计方法。
介绍了mc1496的实用电路--振幅调制。
【关键词】模拟乘法器;mc1496;振幅调制
集成电路模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单,且性能优越。
广泛应用于无线通信、广播电视等方面。
在实验电路设计中经常采用mc1496。
1、mc1496的内部结构
mc1496是双平衡四象限模拟乘法器。
内部电路图和引脚分布如图1(a)、(b)所示。
图1(a)中vt1、vt2与vt3、vt4组成双差分放大器,vt5、vt6组成的单差分放大器用以激励vt1~vt4。
vt7、vt8及其偏置电路组成差分放大器vt5、vt6的恒流源。
引脚8与10接输入电压ux,1与4接另一输入电压uy,输出电压u0从引脚6与12输出。
引脚2与3 外接电阻re,对差分放大器vt5、vt6产生串联电流负反馈,以扩展输入电压uy的线性动态范围。
引脚14为负电源端(双电源供电时)或接地端(单电源供电使),引脚5外接电阻r5。
用来调节偏置电流is及镜像电流i0的值。
2、集成模拟乘法器mc1496的应用举例--振幅调制
振幅调制是使载波信号的峰值正比于调制信号的瞬时值的变换
过程。
通常载波信号为高频信号,调制信号为低频信号。
用集成模拟乘法器mc1496构成的振幅调制器电路,如图3所示
载波信号uc经过高频耦合电容c2从ux端输入,c3为高频旁路电容,使8脚接地。
调制信号uω经低频耦合电容c1从uy端输入,c4为低频旁路电容,使4脚接地。
调幅信号uo从12脚单端输出。
器件采用双电源供电方式,所以5脚的偏置电阻r5接地,由式
(4)可计算器件的静态偏置电流i5或i0=1ma。
脚2与3间接入负反馈电阻re,以扩展调制信号的uω的线性动态范围,re增大,线性范围增大,但乘法器的增益随之减少。
电阻r6、r7、r8及rl为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态,所以阻值的选取应满足式(1)、(2)的要求。
对于图3所示电路参数,测量mc1496管脚的静态(uc=0,u ω=0)工作电压为
u8 u10u1 u4u6 u12 u2u3u5
6v 6v0v0v8.6v 8.6v - 0.7v-0.7v-6.8v
r1、r2与电位器rp组成平衡调节电路,改变rp可以使乘法器实现抑制载波的振幅调制或有载波的振幅调制。
2.1 抑制载波振幅调制
ux端输入载波信号uc(t),其频率fc=10.7 mhz,峰-峰值ucp-p=40 mv。
uy端输入调制信号uω(t),其频率fω=1khz,先使峰-峰值uωp-p=0,调节rp,使输出uo=0(此时u4=u1),在逐渐增加uωp-p,则输
出信号uo(t)的幅度逐渐增大,如图4(a)为抑制载波的调幅信号。
由于器件内部参数不可能完全对称,致使输出出现漏信号。
乘法器芯片管脚1和4分别接电阻r3和r4可以较好地抑制载波漏信号和改善温度性能。
2.2 有载波振幅调制
ux端输入载波信号uc(t),fc=10.7mhz,ucp-p=40mv,调节平衡电位器rp,使输出信号uo(t)中有载波输出(u1与u4不相等)。
再从uy端输入调制信号,fω=1khz,当ucp-p由零逐渐增大时,则输出信号uo(t)的幅度发生变化,有载波调幅信号的波形如图4(b)所示,调幅系数m为
其中,um max——调幅波幅度的最大值; um min——调幅波幅度的最小值
参考文献
[1]谢嘉奎,宣月清,冯军.电子线路(非线性部分)第四版[m].北京:高等教育出版社,2003.
[2]胡宴如,耿苏燕.高频电子线路[m].北京: 高等教育出版
社,2004.
[3]康华光.电子技术基础(模拟部分)[m].北京:高等教育出版社,2001.
【abstrac】the simulation analysis of the characteristics of mc1496 editor multiplication, introduces the
multiplication in high frequency electronics experiments on time-multiplier application circuit design method. mc1496 introduces the practical circuit - amplitude modulation. 【key words】simulation on
time-multiplier;mc1496;amplitude modulation
作者简介:
黄科文(1980-),男,本科,广东省韶关学院助理实验师;研究方向:物理机电工程。