第2章静力学

合集下载

流体力学第二章 流体静力学

流体力学第二章 流体静力学
第二章 流体静力学
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。

工程流体力学第2章流体静力学

工程流体力学第2章流体静力学

① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。


4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。

工程力学第2章静力学

工程力学第2章静力学
力使物体运动状态发生变化的效应称为力的外效应或运动效应(移动和转动)。
力使物体形状发生改变的效应称为力的内效应或变形效应;
力的单位,在采用国际单位为:
牛顿(N)、或千牛顿 (KN)
2.力的三要素
力对物体的作用效果取决于力的 大小、方向 与作用点
力的大小反映了物体间相互作用的强弱程度。
力的方向指的是静止质点在该力作用下开始运 动的方向。 力的作用点是物体相互作用位置的抽象化。
该定律是受力分析必须遵循的原则。
作用力与反作用力
2.4 力对点之矩
力对物体除了移动效应以外,还有对物体的转动效应。 观察扳手拧紧螺母的过程,说明拧紧程度与什么有关?
拧紧螺母时,其拧紧程度不仅与力 F 的大小有关,而 且与转动中心(O点)到力的作用线的垂直距离d有关 。
2.4.1 力对点之矩 —— 力矩
E
B
C
B
C
FNB
FNC
练习3
球W1、W2置于墙和板AB间,BC为绳索。 画受力图。
(b)
FNK
W2 FNK W2 FNH FNE
AF
Ay
FT FND W 1
AF
C
W2 FAx
B (d)
FT FD
D
FND W1
B
FNH
W1
A
K
W2
E FAx H (a)
FNE
FND W1
(c)
Ay
FNE
FNH
FT
2.2.1 公理1 力的平行四边形法则 作用于物体上同一点的两个力,可以合成为一个合 力。合力的作用点仍在该点,合力的大小和方向由以这 两个力为边构成的平行四边形的对角线确定,如图。

第二章流体静力学

第二章流体静力学

dy → 0, p y = pS 当四面体向A点收缩时,
同理 px = pz = pS
§2.2静力学基本方程(Euler静平衡方程):
取一个矩形微元六面体,其六个面分别与 坐标轴平行,设微元中心处的压强为 p。 由于 这是个微小体积,因此认为六个面上的压强各 自均匀分布,常用面上中心来做代表。

而面上中心处的压强又可以围绕六面体 中心做Taylor展开。展开式忽略二阶以上 的高阶量,有
1 ⎞ ⎛ p A = p⎜ x + dx ⎟ 2 ⎠ ⎝
p A = p + 0.5(∂p ∂x )dx
p B = p − 0.5(∂p ∂x )dx

这样,垂直于x轴的两个面上的表面力分 别为
[ p + 0.5(∂p ∂x )dx ]dydz [ p − 0.5(∂p ∂x )dx ]dydz
§2.3重力作用下静止流体内部的压强分布 [均匀液体的压强分布] 根据Euler静平衡方程 可以得到:
p = p0 + γh
第一部分是自由面上的压强,第二部分称 为剩余压强。
p = p0 + γh = γ ( p0 γ + h )
这种做法,称为虚水面方法。
[连通器] ( 1 )同种液体,表面自由压强相等。则两液面 等高,任一等高度的面上均为等压面。 ( 2 )同种液体,但表面自由压强不等。则自由 压强大者,液面低。 (3)不同液体(不相混)。密度大者液面低。
F = ∫ ρf dV
V
2、表面力——一个流体体积的表面上,受 到其他部分的流体或与之相接的固体的 作用力。这种力,只是作用在体积的表 面上而没有作用到体积内部的流体质点 上。 通常可以把表面力分解为法向的和 切向的分量,分别称为法向力和切向力。 单位面积上则称为法向应力和切应力。

静力学第二章

静力学第二章

§2–3
空间力偶
1、力偶矩以矢量表示,力偶矩矢
空间力偶的三要素 (1) 大小:力与力偶臂的乘积; (2) 方向:转动方向; (3) 作用面:力偶作用面。
F1 F2 F1 F2
力偶矩矢 M rBA F (4–10)
2、力偶的性质
(1)力偶中两力在任意坐标轴上投影的代数和为零 . (2)力偶对任意点取矩都等于力偶矩,不因矩心改变而改变 。 力偶矩
B
A
A O
α
FAB
FBA
B
M1
M2 D
FO
M1 O
M2 D FD
解:杆AB为二力杆。 由于力偶只能与力偶平衡, 则AO杆与BD杆的受力如图所示。 分别写出杆AO和BD的平衡方程: Mi 0 由 得 M1 r ·AB cosα= 0 F

M2 + 2r · BA cosα= 0 F
则得
因为
三式与(2-3)式比较
比较(2-3)、(2-5)、(2-6)、(2-7)式可得
M o ( F ) yFz zFy M x ( F )
x
M o ( F ) zFx xF M y ( F )
y
M o ( F ) xFy yFz M z ( F )
FAB = FBA
M2 = 2 M1
例2-5 如图所示机构的自重不计。圆轮上的销子A放在摇杆BC上的光
滑导槽内。圆轮上作用一力偶,其力偶矩为M1=2 kN· , OA = r =0.5 m。 m
图示位置时OA与OB垂直,角α=30o , 且系统平衡。求作用于摇杆BC上的力偶 的矩 M2 及铰链O,B处的约束力。 先取圆轮为研究对象。 解:

第二章 流体静力学

第二章 流体静力学

所以表面abcd的总压力为:( p
p dx )dxdy x 2
同理面aˊbˊcˊd ˊ的总压
p dx 力为: (p )dydz x 2
z
微团在X轴方向的表面
力和为:
(p p dx p dx )dydz ( p )dydz x 2 x 2
p
p dx x 2
位质量流体受到的质量力在水平面x轴和y轴的投影为零, 铅直方向z轴的投影为重力加速度g,根据
则有
dp g dz
dp ( f x dx f y dy f z dz)



积分得
p zc g
液体静止的基本方程
式中:g在本书中取值9.807m/s2;
z为测压处相对于边界条件(基准面)的高差。 c为常数,大小由边界条件确定。




若一个函数W(x,y,z)使质量力的投影等于这个函数的偏
导数,即
W fx x

fy
W y
fz

W z
则称函数W(x,y,z)为质量力势函数。 一个存在质量力势函数的力场,称为有势力场,相应的
质量力称为有势质量力,简称有势力。
等压面性质: • 等压面就是等势面; • 等压面与质量力垂直; •两种互不掺混液体的分界面也是等压面。
等压面:在静止流体内,由静压力相等的各点组成的面
自由面:静止液体和气体接触的面
水平面既是等压面也是自由面
液体静压强分布规律只适用静止、同种、连续液体
同一容器或同一连通器盛有多种不同密度的液体时,关键是找到等 压面
§2-4

液体的相对静止
辩证唯物主义:
①运动是普遍的、永恒的和无条件的,因而是绝

静力学(第二章)

静力学(第二章)

A FC
C
B
W
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例3 图示结构中各杆重力均不计,所有接触处均为光滑 接触。试画出:构件AO、AB和CD的受力图。
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例4 画出下列各构件的受力图
说明:三力平衡必汇交 当三力平行时,在无限 远处汇交,它是一种特 殊情况。
改变原力系对刚体的作用。
只适于刚体!
静力学基本公理
推理1
力的可传性
作用在刚体上某点的力,可沿其作用线移动, 而不改变它对刚体的作用。
力对刚体的作用决定于:力的大小、方向和作用线。 力是有固定作用线的滑动矢量。
静力学基本公理
根据力的可传性,作D 的受力图, 此受力图是否正确?
分析整个系统平衡时,作用力 是否可沿其作用线移动?
刚体静力学模型
1.3 接触和连接方式的抽象和理想化
自由体:
-约束
其运动没有受到其它物体预加 的直接制约的物体
刚体静力学模型
约束:对非自由体运动起制约作用的周围物体 约束反力:约束作用于被约束物体的力
非自由体:
其运动受到其它物体预加的直接制约的物体
刚体静力学模型 约束反力的特点:
大小:常常是未知的 作用点:接触点 方向:总是与约束所能阻止的物体运动方向相反 F G
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力 约束反力: 沿柔索而背离被约束物体,作 用于连接点。
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力
约束反力: 沿柔索而背离被约束物体,作用于连接点。
链条约束与约束力

第二章静力学(高中物理基本概念归纳整理)

第二章静力学(高中物理基本概念归纳整理)

积大小无关
三.摩擦力
3.静摩擦力:两物体间有相对运动趋势产生的摩擦力
方向:与相对运动趋势方向相反,平行接触面。大小:由“平衡条件” “牛顿第 二定律”或者由“牛顿第三定律”求得。
注意: ①静摩擦力存在极大值,即0<f ≤ fmax ②一般最大静摩擦力大于滑动摩擦力,有些题目中假设最大静摩擦力等于滑动摩擦力, 具体看题中条件。 ③摩擦力可以是动力,也可以是阻力。 ④运动的物体受的摩擦力不一定是滑动摩擦力,静止的物体受的摩擦力也不一定是静摩 擦力。 ⑤摩擦力的方向可以与运动方向相同,相反,成任意角度。(注意相对运动与运动的区 别) ⑥摩擦力可以做正功,也可以做负功、不做功。
六.共点力的平衡 2.解题方法:
合成法 分解法 正交分解法 三角形法
3.实例应用:
图解法;相似三角形问题;整体法、隔离法;临界问题;极值问题;圆周角;其它变式 训练(参考应用一、二中几何画板动态课件及例题)
祝你学业有成
2024年4月28日星期日8时28分6秒
注意:A 不受墙壁 支持力
注意:若匀速运 动,B不受摩擦 力
斜面地面均粗糙,B 物体不动,分析A减 速上升过程中各物体 受力情况。
五.共点力、力的合成与分解
1.共点力的合成:
共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力 叫做共点力。(注意三力平衡必共点,除平行力外) 合力与分力:如果某一个力单独作用的效果跟某几个力共同作用的效果相同,这一个力 就是那几个力的合力,这几个力就叫做那个力的分力。 注意:这是一种等效替代的思想。 力的合成:求几个力的合力的过程 遵循规律:平行四边形定则(三角形定则) 注意: ①合力是惟一的; ②只有同一物体所受的力才可合成;作用力与反作用力不可以合成 ③分力与合力在力的作用效果方面是一种等效替代关系,而不是物体的重复受力,故合 力与分力不能共存. 求合力的方法:①作图法②计算法 互成角度的合力与分力关系:0°30°60°90°120°180°…… 求二力,三力合力的范围:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

yD
=
Jc + yc A
yc
!压力中心 D 恒在平面形心 C 的下方。
为什么?
应用上述公式时应该注意: (1)没有考虑大气压的影响。 (2)在压力中心的计算式中y坐标原点的取法。
将y轴原点取在自由液面上。
[例题2-3] 如图所示,一矩形闸门两面受到水的压力,左 边水深H1 = 4.5m,右边水深 H2 = 2.5m ,闸门与水面成 α = 450
四.流体静压力的两个重要特性:
特性一:静压力方向永远沿着作用面内法线方向
p
τ
证明:
pn m
一方面,流体静止时只有法向力,没有切向力,静压力只 能沿法线方向;
另一方面,流体不能承受拉力,只能承受压力。所以,静 压力唯一可能的方向就是内法线方向。
特性二:静止流体中任何一点上各个方向的静压力
大小相等,与作用面方位无关。
说明: 实压力体(+):压力体内充满液体,垂直分力是向下的; 虚压力体(-):压力体内没有液体,垂直分力是向上的。 压力体液重并不一定是压力体内实际具有的液体重力,只 是一个虚构概念。
综上所述,压力体的画法可归纳为以下几步:
(1)将受力曲面根据具体情况分成若干段; (2)找出各段的等效自由液面。 (3)画出每一段的压力体并确定虚实。 (4)根据虚实相抵的原则将各段的压力体合成,得到最
受压曲面ab的压力体为V=BAabc。 面积Aabc为扇形面积aob与三角形 cob面积之差,所以有
θ
P
Pz
b
Pz = ρ gBAacb
图2-23 例2-4图
Pz = ρ gBAacb
=
ρgB
⎡α
⎢ ⎣
360
(π H )2 − sin α
1 2
H

H tgα
⎤ ⎥ ⎦
=
9800
×10
×
[
3.14 × 600( 5 3600 sin 600
ΔA ——微元面积;
(2–1)
ΔP ——作用在 ΔA 表面上的总压力大小。
二,压力的单位
上述即流体静压力,简称压力,用 N/m2,称为帕斯卡,简称帕。
表p 示,单位
常用的压力单位及换算关系: 帕(Pa)、巴(bar)、毫米汞柱(mmHg)、米水柱(mH2O) Kg=kgf/cm2
三,压力是一个标量,可分为:绝对压力,相对压力,真空。 什么情况下应该采用绝对压力?什么情况下应该采用相对压 力? 计算压降?计算总压力?计算作用点?计算作用力?
= 2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
[例题2-4]一个边长为1.2m的正方形平板竖直地置于液体中, 已知压力中心位于形心以下75mm处,求该正方形平板的上 缘在液面下的深度x=?
[解依] 题意可知 yc = x + 0.6, y D − y c = J c /( y c A ) = 0 .0 7 5
)2

1 2
52 tg 600
]
= 1002300N
故总压力大小、方向为
P = Px2 + Pz2 = 12250002 +10023002 = 1582790N
tgθ = Px = 125000 = 1.222 Pz 1002300
θ = 50o42'
思考题
1.何谓压力体? 答:它是由液体的自由表面、承受压力的曲面和 由该曲面的边线向上垂直引伸到自由液面或其延 伸面的各个表面所围成的体积。
2.绕垂直轴旋转的流体中, 等压面为旋转抛物面。
三、静力学基本方程式
(一)静力学基本方程的推出
如图示,单位质量流体所受 到的质量力即为重力可表示 为
X = Y = 0; Z = −g
dp + ρ gdz = 0
对于连续、均质的不可压缩流体 来说,其密度是常量,所以有
p + ρgz = c
欧拉方程当质量力 为重力时的情况
从物理角度看:
z 表示单位重力流体的位置势能;
p
γ 表示单位重力流体的压强势能;
z
+
p
γ
表示总势能。
思考题
一.选择题
c c 1学静.方力1两_程学层__为方静A__程止z_1_为液+ 体ρ2 zp1,g12 1上+=层ρcp21的,g2 2密下=度层c为的2 。密ρ因度1 ,,为故静ρ力2 ,
(A) > (B) = (C) < (D) 不确定
证明: z
C
py

1 2
pxdydz

1 2
pndydz +
X
1 ρdxdydz
6
=0
n
px
dz
pn
dy O dx
A
px = pn
py = pn pz = pn
x 由于方向n代表任意方向,所
以上式表明:静止流体中任
y
B
pz F (Fx , Fy , Fz )
意一点的流体静压力,无论 来自何方均相等,或者说与
总压力P的大小
P = ∫AdP = ρg sin α ∫A ydA
P = ρ g sin α y c A = p c A
大小:作用在任意形状平 面上的总压力大小等于该 平面的面积与其形心处压 力的乘积。
总压力P的作用方向: 必然为垂直地指向相应作用面。
二、压力中心
压力中心的概念:总压力的作用点称为压力中心,记作D点
4.根据静水压强的特性,静止液体中同一点各方向的压强 ( A)
A.数值相等 B.数值不等 C.仅水平方向数值相等 D.铅直方向数值最大
判断题:
5.静水压强的二个基本特性是:
a. 静水压强的方向永远垂直于作用面且指向它;
b.水中任一点的静水压强与它的作用面方位和其空间位置
有关。
()
6. 静水内任意一点的静水压强均相等。( )
流体平衡微分方程式(2-3) (欧拉平衡方程式)
(这是基础!)
二、等压面 定义: 流体中压强相等各点所组成的平面叫做等压面。
在等压面上
p=C
等压面的微分方程式是
dp = ρ(Xdx + Ydy + Zdz) = ρdU = 0 (2-5)
等压面方程:
Xdx + Ydy + Zdz = 0
等压面最重要的二个性质:
第二章 流体静力学
z 概念:压力、压力体 z 原理
¾压力的两个特性 ¾流体静力学平衡方程——欧拉平衡方程 ¾物体在流体中的潜浮原理
z 方法:微元体的分析方法 z 计算:静压力计算
§2-1流体静压力及其特性
定义式;单位;绝对和相对压力;两个特性
一.流体静压力的定义:
静压力(压强)定义式
p = lim Δ P = dP ΔA → 0 Δ A dA
作用方向无关。
思考题
1.静止流体的点压强值与__B_____无关 (A)位置 (B) 方向 (C) 流体种类 (D) 重力加速度 2.静压力的方向如何? 答:静压力方向永远沿着作用面内法线方向。
3.液体静压力的特征是_A_,__B___
A.静压力的方向为作用面的内法线方向 B.静压力的大小与方向无关 C.静压力的方向为作用面的切线方向 D.静压力的大小与压力的位置无关
所以
1.24 /12 (x + 0.6) ×1.22 = 0.075
解之可得x=1m。
第五节 作用在曲面上的总压力
在工程实际问题中,常见到一些储液容器如 水塔、油罐、分离器、锅炉、蒸馏塔等,是由圆 柱、圆锥、半球、球冠等曲面组成的。计算静止 流体对这些器壁的作用力,就属于静止流体作用 在曲面上的总压力问题。作用在曲面上的各点流 体静压力都垂直于器壁,这就形成了复杂的空间 力系,求流体作用在曲面上的总压力问题便成为 空间力系的合成问题。
2.压力体内______ (A) 必定充满液体 (C) 至少部分有液体
(B) 肯定不会有液体 (D) 可能有液体,也可能无液体
3.曲面壁上静水总压力的竖直分力等于压力体中的液体重量。
(√ )
第六节 物体在流体中的浮沉原理
yD
=
yc +
Jc yc A
=
L+ 2
b L3 12 ( L 2 ) bL
=
2L 3
根据合力矩定理,对通过O点垂直于图面的轴取矩,得
Pl0
=
P1
l1 3

P2
l2 3
=
P1
H1
3 sin α

P2
H2
3 sin α
所以
l0
=
P1 H 1 − P2 H 2
3 P sin α
= 140346 × 4.5 − 43316 × 2.5 3 × 97030 × 0.707
倾斜角。假设闸门的宽度 b = 1m ,试求作用在闸门上的总压
力及其作用点。
[解] 作用在闸门上的总压力系左右两边液体总压力之差, 即
P = P1 − P2
因此
l1 P
Hc1
=
H1 2
, A1
=b
l1
= b H1
sin α
;
H1
Hc2
=
H2 2
, A2
=b
l2
= b H2 。
sin α
l0
P1 l1
7. 静水压强是既有大小又有方向的矢量。( )
8. 静水压强可用带箭头的线段表示,其中线段的长度按一定 比例代表压强的大小,箭头的方向表示静水压强的方向。
9. 静水中压强的方向总是垂直指向受压面,可能是拉力。 ( )
第二节 流体静力学平衡方 一、流体平衡方程程式的建立 (1755年提出)
相关文档
最新文档