材料分析测试方法-XRD

合集下载

材料测试分析技术(绪论+XRD)-05

材料测试分析技术(绪论+XRD)-05

物相定性分析:确定物质(材料)由哪些相组成 物相定量分析:确定各组成相的含量
(一)、物相定性分析 物相定性分析的基本原理
(1)任何一种物相都有其特征的衍射谱,任何 两种物相的衍射谱不可能完全相同;多相样品的 衍射峰是各物相的机械叠加。 (2)制备各种标准单相物质的衍射花样并使之 规范化(PDF卡片),将待分析物质(样品)的衍
2、X射线衍射仪法
X射线衍射仪是广泛使用的X射线衍射装臵。
近年由于衍射仪与电子计算机的结合,使从操作、 测量到数据处理已大体上实现了自动化。这使衍 射仪在各主要领域中逐渐取代了照相法。
衍射仪测量具有方便、快速、准确等优点。
Rigaku D/max-RB型 X射线衍射仪
Rigaku D/max-2500/PC型 X射线衍射仪,
2、外标法
外标法是将待测样品中j相的某一衍射线条的强
度与纯物质j相的相同衍射线条强度进行直接比较,
即可求出待测样品中j相的相对含量。
外标法适合于两相系统
设有一由两相组成的混合物:
m m) 1 m) 2 ( ( 1 2 / I1 BC1 1 1 m 1 2 1 1/1 (I1 0 BC1 ) ( m) 1
1 m) ( I1 1 (I1 0 ) 1[ m) m)] m) ( ( 1 ( 2 2
I1 1 (I1 0 )
若两相的质量吸收系数相等,则有
外标法定量分析的具体做法
先配制一系列已知含量的α、β混合物,如含α
相20%、40%、60%和80%的混合物。测定这些混合物
品的取向,后者保证衍射线进入检测器。
§5
X射线衍射分析的应用
X射线物相分析
晶胞参数的确定

xrd测试原理及操作的基本流程

xrd测试原理及操作的基本流程

文章主题:xrd测试原理及操作的基本流程一、引言在材料科学与工程领域中,X射线衍射(XRD)是一种重要的分析技术,可用于对晶体结构、物相分析和晶体质量的表征。

本文将深入探讨XRD测试的原理和操作的基本流程,以便读者能够全面理解XRD 分析的重要性和实验方法。

二、XRD测试原理1. X射线衍射的基本原理X射线衍射是通过照射物质,观察衍射光的方向和强度来了解物质的结构性质。

当入射X射线与晶体的原子排列相互作用时,会出现衍射现象,从而得到关于晶体结构的信息。

2. 布拉格方程布拉格方程是描述X射线衍射条件的基本方程。

它表示为:nλ=2dsinθ,其中n为衍射级别,λ为入射X射线的波长,d为晶格间距,θ为衍射角。

3. 结晶衍射图样通过X射线衍射仪测得的数据可以绘制成结晶衍射图样,从中可以读取出晶面间距、晶格常数等信息。

三、XRD测试操作基本流程1. 样品制备与加载首先需要将待测样品研磨成粉末,并压制成均匀的薄片或圆盘。

然后将样品加载到X射线衍射仪的样品台上。

2. 仪器参数设置在进行XRD测试前,需要设置仪器的参数,包括X射线波长、入射角范围、扫描速度等。

3. 开始测试启动X射线衍射仪,开始进行测试。

X射线穿过样品,与晶体发生相互作用,产生衍射光,再由探测器接收并记录下来。

4. 数据分析与结果解读对从X射线衍射仪得到的数据进行分析与解读,可以得到有关样品晶体结构、晶胞参数等重要信息。

四、个人观点和理解作为X射线衍射技术的一种,XRD分析在材料研究和质量检测中起着关键作用。

通过XRD测试,不仅可以了解样品的晶体结构,还可以分析其中包含的物相。

掌握XRD测试的原理和操作流程对于科研工作者和工程师来说都是非常重要的。

五、总结与回顾通过本文的讨论,我们全面了解了XRD测试的原理及操作的基本流程。

X射线衍射技术的应用范围非常广泛,可以帮助我们更好地理解材料的性质和结构。

希望读者通过本文的介绍,能对XRD分析有更深入、全面和灵活的认识。

材料分析基础实验报告之X射线衍射(XRD)物相分析【范本模板】

材料分析基础实验报告之X射线衍射(XRD)物相分析【范本模板】

实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

当X射线波长与晶体面间距值大致相当时就可以产生衍射。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。

四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。

五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19—22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。

电压不超过40kV,管电流上限是40mA,一般为30mA。

(b)当超过4天未使用X光管时,必须进行光管的预热。

在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。

(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。

6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门.2、样品测试1)在电脑上启动操作程序2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令3)等待仪器自检完成后,设定好右边的控制参数;4)鼠标左键点击“开始测量”,保存输出文件;5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0。

材料表征-XRD分析实验

材料表征-XRD分析实验

材料表征-XRD分析实验目的1、了解X衍射的基本原理以及粉末X衍射测试的基本目的;2、掌握晶体和非晶体、单晶和多晶的区别;3、了解使用相关软件处理XRD测试结果的基本方法。

实验原理1、晶体化学基本概念晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。

②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。

③晶体结构=空间点阵+结构单元。

非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。

对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。

分子链段的排列与缠绕受结晶条件的影响易发生改变。

晶体的形成过程可分为以下几步:初级成核、分子链段的表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。

Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。

晶体内分子的排列方式使晶体具有不同的晶型。

通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。

反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。

2、X衍射的测试基本目的与原理X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。

散射波周相一致相互加强的方向称衍射方向。

衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。

由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald球上是产生衍射必要条件。

1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。

(完整版)XRD技术介绍

(完整版)XRD技术介绍

在劳厄等发现X衍射不久,W.L.布拉格(Bragg )父子对劳厄花样进行了深入 的研究,提出花样中的各个斑点可认为是由晶体中原子较密集的一些晶面反射 而得出的,并导出了著名的布拉格定律。
1913年英国布拉格父子(W.H .bragg .WL Bragg)建立了一个公式--布喇格公式。 不但能解释劳厄斑点,而且能用于对晶体结构的研究。
晶体的三维光栅 Three-dimensional “diffraction grating”
劳厄想到了这一点,去找普朗克老师,没得到支持后,去找正 在攻读博士的索末菲,两次实验后终于做出了X射线的衍射实 验。
晶体的三维光栅 Three-dimensional “diffraction grating” Laue spots proves wave properties of X-ray.
1954 化学
鲍林Linus Carl Panling
1962 化学
肯德鲁John Charles Kendrew 帕鲁兹Max Ferdinand Perutz
1962 生理医学 Francis H.C.Crick、JAMES d.Watson、 Maurice h.f.Wilkins
ቤተ መጻሕፍቲ ባይዱ
1964 化学
Dorothy Crowfoot Hodgkin
1985 化学 1986 物理 1994 物理
霍普特曼Herbert Hauptman 卡尔Jerome Karle 鲁斯卡E.Ruska 宾尼希G.Binnig 罗雷尔H.Rohrer 布罗克豪斯 B.N.Brockhouse 沙尔 C.G.Shull
φ
O .
φ
d A . φ. .B
C
d
晶面间距

XRD

XRD

X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。

将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等。

X射线衍射分析-样品要求1、金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。

2、对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。

因此要求测试时合理选择响应的方向平面。

3、对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。

4、粉末样品要求磨成320目的粒度,约40微米。

粒度粗大衍射强度底,峰形不好,分辨率低。

要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。

5、粉末样品要求在3克左右,如果太少也需5毫克。

6、样品可以是金属、非金属、有机、无机材料粉末。

用途1、物相分析衍射图晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。

制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。

鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。

目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。

材料现代测试方法-XRD

材料现代测试方法-XRD
You should know something misunderstood by many students: 布拉格公式用反射的模型解 释了衍射的方向性问题,晶 面并不反射X射线。
布拉格定律
hkl
h1 k1 l1
h2 k2 l2
h3 k3 l3
h4 k4 l4
h5 k5 l5
.
.
.
dhkl dh1k1l1 dh2k2l2 dh3k3l3 dh4k4l4 dh5k5l5 .
X射线的产生
• 封闭式X射线管
X射线的产生
• 旋转阳极靶X射线管
其他X射线源
• 放射源 • 同步辐射
X射线与物质的相互作用
• X射线与物质相互作用时,就其能量转换而 言,可分为三部分:1)一部分被散射;2) 一部分被吸收;3)一部分透过物质继续沿 原来的方向传播。
散射
相干散射(瑞利散射) 非相干散射 (康普顿散射)
1913年,英国Bragg(布喇格父子)导出X射线 晶体结构分析的基本公式,即著名的布拉格公式。 并测定了NaCl的晶体结构。(1915年获得诺贝尔 奖)
1
X射线的本质
X射线和可见光 一样属于电磁 辐射,但其波 长比可见光短 得多,介于紫 外线与γ射线之 间,约为10-2 到102埃的范围。 与晶体中的键 长相当。
c
d 21 3
b
o
a
晶面(213)及d213
c
d300
b
o
a
晶面(300)及d300
晶面指标hkl及晶面间距dhkl
思考1:对于给定的晶胞,对于任意三个整数hkl(000除外), 我们可以画出这个(hkl)晶面吗?相邻晶面的距离可知吗?

xrd 应力测试原理

xrd 应力测试原理

xrd 应力测试原理XRD 应力测试原理一、引言X射线衍射(X-Ray Diffraction,简称XRD)是一种广泛应用于材料科学领域的非破坏性测试方法,可以用来研究晶体结构、晶格常数、晶体取向和残余应力等信息。

本文将介绍XRD应力测试的原理和基本步骤。

二、XRD应力测试原理XRD应力测试是基于布拉格方程(Bragg's Law)的原理进行的。

布拉格方程描述了入射X射线与晶体晶面之间的相互作用关系。

当入射X射线与晶体晶面满足布拉格方程时,会发生共面干涉,产生衍射信号。

三、布拉格方程布拉格方程可以表示为:nλ = 2dsinθ其中,n为衍射级数,λ为入射X射线的波长,d为晶面间距,θ为衍射角。

四、应力引起的晶面间距变化晶体中的应力会引起晶面间距的变化。

根据胡克定律,应力与应变之间存在线性关系。

当晶体受到外力作用时,晶体中的原子会发生位移,导致晶面间距的变化。

因此,通过测量晶体中晶面间距的变化,可以间接推断出晶体中的应力信息。

五、应力测试步骤1. 样品准备:将待测试的样品切割成适当尺寸,并进行表面处理,以确保样品的表面光洁度和平整度。

2. 仪器调试:调整XRD仪器的参数,如入射角、发射角、入射深度等,以适应不同样品的测试需求。

3. 测量数据:通过XRD仪器发射X射线,并接收衍射信号。

记录衍射图谱,包括衍射角和相对强度。

4. 数据分析:根据布拉格方程,计算晶面间距,并绘制应力-晶面间距曲线。

5. 应力计算:根据已知晶体结构和材料参数,利用应力-晶面间距曲线,将晶面间距的变化转化为应力值。

六、应力测试的应用领域XRD应力测试在材料科学领域有广泛的应用。

主要应用于以下方面:1. 金属材料研究:通过测试金属材料中的残余应力,可以评估材料的强度、韧性和耐久性。

2. 薄膜应力测试:薄膜在制备过程中容易产生应力,通过XRD应力测试可以帮助优化薄膜的成长过程。

3. 焊接接头质量评估:焊接过程中产生的残余应力会对焊接接头的性能产生影响,通过XRD应力测试可以评估焊接接头的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Counts
40000
30000
20000
10000
– 可以根据峰的位置、数目和强度得到试样的结构信息。
X射线衍射可以得到的信息
• 物相鉴定
– 定性 – 定量
• • • • • •
晶胞参数的确定 晶面的择优取向生长 结晶度的测定 晶粒尺寸的测定(谢乐公式) 膜厚的测定 薄膜的应力分布
物相分析
• X射线衍射鉴别样品中的物相
– 石墨和金刚石 – Al2O3有近20中结构 – 化学分析、光谱分析(AAS)、X射线光电子能 谱(XPX)、俄歇电子(AES)、二次电子能谱 (SIMS)、X射线能谱仪(EDS)等
– 衍射峰位置不吻合
• 2θ d 晶胞的结构和大小( a、b、c等 )
– 出现空位或离子替代等情况
– 衍射峰数目不吻合
• 是否有衍射峰消失,原因? • 是否有新的衍射峰出现(一般衍射峰的强度较低),可 能出现新的物相。
– 衍射峰强度不吻合
• 晶面的优先生长等
检索
• 字母检索
– 估计试样中可能的数种物相 – 通过其英文名称将有关卡片找出 – 与待定衍射花样对比,可确定物相
• 数字检索(Hanawalt检索)
– 无法得知试样中物相的信息 – Hanawalt组合
• 将最强线的面间距d1处于某一范围,如:0.269- 0.265nm • 将面间距从999.99-0.00共分为40组
数字检索(Hanawalt检索)
• 根据XRD图谱和布拉格方程算出八强线对应晶面的 面间距d
多晶粉末衍射法:测定晶体的结构;
单色X射线源 样品台 检测器
X射线衍射方程
• 晶体的点阵结构是一致互相平行且等距离的 原子平面
– 衍射的基础——晶体的周期性和对称性
• 衍射光束服从反射定律
– 反射光线在入射平面中,反射角等于入射角 – 则这组晶面所反射的X射线,只有当其光程差是 X射线波长的整数倍时才相互增强,出现衍射
– 如吻合,则为该物质,
根据待测试样元素组成的信息
从标准卡片中找出只包括待测试 样元素的化合物的卡片
对比待测试样与标准卡片的衍射峰的 位置、衍射强度、衍射峰的数目
XRD(HA)
Peak List
00-001-1008
10
20 Position [°2Theta]
30
40
50
字母检索
• 如不吻合
布拉格方程的讨论
• 反射≠衍射 • 镜面可以任意角度反射可见光 • X射线只有满足布拉格方程的角上才能发生 反射,因此,这种反射亦成为选择反射。
• 晶面间距d,掠射角,反射级数n,和X射线的 波长λ 四个量,已知三个量,就可以求出其 余一个量。
布拉格方程的讨论
• (100)晶面发生二级衍射
– 2d100sinθ=2λ
X射线衍射
• (单晶或多晶)晶体与x射线所产生的衍射作用 • 衍射斑点或谱图
• 分析晶体结构
• 确定晶体所属的晶系(物相鉴定)、晶体的晶胞参数、 晶粒尺寸的大小、结晶度、薄膜的厚度和应力分布等
X射线衍射
– 实际的衍射谱上并非只在符合Bragg方程的2处出现强度 在2 的附近也有一定的衍射强度分布,成峰状,也叫衍 射峰。 – 符合Bragg方程的2处为峰顶。
X射线物理学基础
• X射线的本质
– 电磁波,波长较短,一般在0.05-0.25nm;
• 劳厄,1914年,晶体衍射实验;
– X射线具有波粒二相性
• 衍射:可见光
• 一定能量的光量子流
– h:普朗克常数=6.626-34J•S – E:能量; P:动量
X射线物理学基础
X射线物理学基础
• X射线的产生
– 分子模拟、量子力学计算
现代分析测试
• 材料的结构分析
– 衍射方法
• X射线衍射 (X-Ray Diffraction, XRD)
– 粉末衍射 » 微区、薄膜
» 高温、常温、低温衍射仪
– 四园单晶衍射
• 电子衍射(Transmission Electron Microscopy, TEM)
• 中子衍射
– 结构分析(XRD)
• 已知 ,测角,计算d;根据标准卡片,判断其物相(晶 体结构) • 根据d=f(h,k,l,a,b,c,α,β,γ,)可计算晶胞参数
• 已知面间距的晶体来反射从样品发射出来的X 射线,求得X射线的波长,确定试样的组成元 素
– X射线能量色散谱仪(EDS,EDAX)
• 已知d 的晶体(单晶硅),测角,得到特征辐射波长 , 确定元素,特征X射线分析的基础
– 原子内的电子分布在一系列量子化的壳层上, 按K、L、M、N……递增; – 最内层的能量最低 – 某层电子的能量
– 当冲向阳极靶的电子具有足够能量将内层电子 击出成为自由电子(二次电子);
• 原子:高能的不稳定 • 自发向稳态过渡:
X射线物理学基础
• X射线的产生
– K层出现空位, K激发态;
– L层跃迁至K层, L激发态;
• 假设在每两个(100) 中间均插一个原子分 布与之完全相同的面, 晶面指数(200) • (200)的面间距是d/2
– 2d100sinθ= 2×(2d200)sinθ=2λ – 2d200sinθ=λ
• (hkl )的n级衍射可看作(nh nk nl)的一级衍射
布拉格方程的讨论
• sin=λ/(2d)
– λ一定时,d减小,将增大; – 面间距小的晶面,其掠射角必须较大
• 掠射角的极限范围为0°-90° ,但过大或过小都会造成衍 射的探测困难
石英的衍射仪计数器记录图(部分)*右上角为 石英的德拜图,衍射峰上方为(hkl)值,
应用
• 已知波长的X射线,测量未知的晶体的面间距, 进而算出其晶胞参数
• X射线的应用
– 科学研究 (XRD) – 医疗(透视) – 技术工程 (无损探伤)
年 份 学 科 1901 物理 1914 物理 1915 1917 1924 1937 1954 1962 1962 1964 1985 1986 1994
得奖者 伦琴Wilhelm Conral Rontgen 劳埃Max von Laue 亨利.布拉格Henry Bragg 物理 劳伦斯.布拉格Lawrence Bragg. 物理 巴克拉Charles Glover Barkla 物理 卡尔.西格班Karl Manne Georg Siegbahn 戴维森Clinton Joseph Davisson 物理 汤姆孙George Paget Thomson 化学 鲍林Linus Carl Panling 肯德鲁John Charles Kendrew 化学 帕鲁兹Max Ferdinand Perutz Francis H.C.Crick、JAMES d.Watson、 生理医学 Maurice h.f.Wilkins 化学 Dorothy Crowfoot Hodgkin 霍普特曼Herbert Hauptman 化学 卡尔Jerome Karle 鲁斯卡E.Ruska 物理 宾尼希G.Binnig 罗雷尔H.Rohrer 布罗克豪斯 B.N.Brockhouse 物理 沙尔 C.G.Shull
面间距 化学式 英文名
衍射强度
晶间指数 实验条件
晶体学数据
来源制备等
PCPDFWIN软件(PDF)
X射线衍射可以得到的信息
• 1、物相鉴定
– 1.1定性
• 当X射线通过晶体时,每一种结晶物质都有自己的独特的 衍射花样,
衍射峰 的位置2 θ 根据布拉 格方程 晶面的 面间距dhkl 衍射峰的 相对强度 衍射峰的 数目 对照标准衍射图 谱可以判断该物质
2
2θ1(°) d 1(Å)
70000
11.628 20.928 7.610 4.245
29.271 30.500 34.127 34.410 41.521 50.176 3.051 2.931 2.627 2.606 2.175
unit:
ቤተ መጻሕፍቲ ባይዱ
1.818
60000
50000
mg/g 2.26 GSB 1.46 GSB 0.74 GSB 0.38 GSB 0.18 GSB Blank
• 穆斯堡谱 • Γ射线衍射
物质的结构分析
• 测定物质结构的本质
某种波,如微波、红外光、X射线; 或某种粒子,如光子、电子、中子等
试样
改变试样中原子 或分子的核或 电子的某种能态 入射波(粒子)的 散射、衍射或吸收
得到物质结构 的信息
试样中原子解离 或电子电离
产生与入射波长 不同的波或粒子
电磁光谱
• 与X射线及晶体衍射有关的部分诺贝尔奖获得者名单
衍射分析技术的发展
内 容 X射线的发现 晶体的X射线衍射 晶体结构的X射线分析 元素的特征X射线 X射线光谱学 电子衍射 化学键的本质 蛋白质的结构测定 脱氧核糖核酸DNA测定 青霉素、B12生物晶体测定 直接法解析结构 电子显微镜 扫描隧道显微镜 中子谱学 中子衍射
• 将最强线的面间距d1处于某一范围,如:0.269- 0.265nm • 将面间距从999.99-0.00共分为40组
字母检索
• 1、根据待测试样元素组成的信息;[Ca3(PO4)2] • 2、从标准卡片中找出只包括待测试样元素的化 合物的卡片[Ca、P、O] ; • 3、对比待测试样与标准卡片的衍射峰的位置、 衍射强度、衍射峰的数目
得到物质结构 的信息
产生与入射波长 不同的波或粒子
多晶粉末衍射分析
multiple crystal powder diffraction analysis
在入射X光的作用下,原子中的电子构成多个X辐射源,以
球面波向空间发射形成干涉光;
相关文档
最新文档