模拟电子技术实验
大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。
2. 掌握模拟电路的搭建和调试方法。
3. 培养实验操作能力和数据分析能力。
二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。
本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。
2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。
3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。
- 调整偏置电阻,使晶体管工作在放大区。
- 使用函数信号发生器输入正弦波信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。
- 输入不同电压信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。
- 输入不同频率的信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。
- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。
2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。
- 同相比例放大电路:输入电压为1V,输出电压为2V。
- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。
- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。
3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。
- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。
模拟电子技术实验报告

模拟电子技术实验报告模拟电子技术实验报告引言模拟电子技术是电子工程领域中的重要分支,它研究的是电子信号的传输、处理和控制。
在实际应用中,模拟电子技术被广泛应用于通信、娱乐、医疗等领域。
本篇实验报告将介绍我在模拟电子技术实验中的学习和实践经验。
实验一:放大电路设计与实验在这个实验中,我们主要学习了放大电路的设计和实验。
首先,我们通过理论计算和仿真软件的辅助,设计了一个放大电路。
然后,我们按照设计要求,选择合适的电子元件进行实验搭建。
在搭建完成后,我们使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们深入了解了放大电路的工作原理和特性。
实验二:滤波电路设计与实验滤波电路是模拟电子技术中常见的电路之一。
在这个实验中,我们学习了低通滤波器和高通滤波器的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个低通滤波器和一个高通滤波器。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们掌握了滤波电路的设计和调试方法。
实验三:振荡电路设计与实验振荡电路是模拟电子技术中的重要内容之一。
在这个实验中,我们学习了振荡电路的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个振荡电路。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器对电路进行测试和分析。
通过实验,我们了解了振荡电路的工作原理和特性,并学会了调试振荡电路的方法。
实验四:运算放大器设计与实验运算放大器是模拟电子技术中常见的电子元件之一。
在这个实验中,我们学习了运算放大器的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个运算放大器电路。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们掌握了运算放大器的工作原理和特性,并学会了调试运算放大器电路的方法。
实验五:电源设计与实验电源是模拟电子技术中不可或缺的一部分。
在这个实验中,我们学习了电源的设计和实验。
模拟电子技术实验报告

模拟电子技术实验报告实验目的评估模拟电子技术的运用和实验结果的分析。
实验器材- 双踪示波器- 函数信号发生器- 直流稳压电源- 万用表- 电阻、电容等元器件实验步骤第一步:直流电压放大1. 按照电路图连接好电路,并将直流稳压电源输出设为10V。
2. 测量放大电路的直流放大倍数。
3. 将输入信号从0.1V逐渐增加到1V,并记录对应输出信号的电压值。
第二步:换流电路1. 按照电路图连接好电路,并将函数信号发生器的输出设为正弦波。
2. 测量换流电路的输出波形,并与输入波形进行比较。
第三步:集成运放1. 按照电路图连接好电路,并将输入信号设为三角波。
2. 测量集成运放输出波形,并与输入波形进行比较。
结果和分析1. 在直流电压放大实验中,测得电路的直流放大倍数为15.4倍,输出信号的失真略微增加。
这是因为理想的运放模拟电路在直流部分可以达到无穷大增益,但实际电路因为存在漏电、器件参数的不同导致实际相对稳定的直流增益不可能太高,而且正负电源电压限制了输出信号的动态范围。
2. 在换流电路实验中,我们通过不同的电容选择和欧姆电阻配合,完成了信号的正弦波变换成半波直流脉冲的效果。
但由于电路的非线性和欧姆电阻的不稳定,导致了输出信号有一定的失真和频率降低的现象。
3. 在集成运放实验中,我们实现了三角波的变幻成矩形波的目的。
理论上,集成运放的输入阻抗无限大,输出阻抗无穷小,所以输出信号理论上等于输入信号。
而实际中,集成运放输出信号会受到负载、电源电压波动等因素的影响,导致实际输出信号与理论信号有一定偏差。
总结通过本次模拟电子技术实验,我们学习了基本的模拟电路设计和调试方法,深入理解了运放的基本原理,对模拟电子技术的应用和实验结果的分析有了更深入的认识。
模拟电子技术基础实验评分标准

模拟电子技术基础实验评分标准一、实验目的在模拟电子技术基础实验中,评分标准是非常重要的。
本文档将对模拟电子技术基础实验评分标准进行详细说明,以确保评分的公正性和准确性。
二、评分标准模拟电子技术基础实验的评分标准主要涉及以下几个方面:1. 实验报告(50分)•实验目的与原理(10分):学生能够准确描述实验目的和实验原理,清晰明了地阐述相关概念和原理。
•实验步骤与装置(10分):学生能够准确记录实验步骤和所使用的实验装置,包括使用的仪器、元器件和电路图等。
•实验结果与分析(20分):学生能够准确记录实验结果,并用图表等形式展示实验数据。
同时,学生能够对实验结果进行合理的分析和解释,从而得出正确的结论。
•实验总结与讨论(10分):学生能够对实验过程中遇到的问题进行总结和讨论,思考实验结果和结论的合理性,并提出改进的建议。
2. 实验操作(30分)•实验设备使用(10分):学生能够正确使用实验设备(例如示波器、信号发生器等),并按照实验要求进行操作。
•实验仪器调试(10分):学生能够熟练掌握实验仪器的操作方法,准确调试实验装置,保证实验得到准确的结果。
•实验数据记录(10分):学生能够准确记录实验数据,并遵循相应的记录格式和单位。
3. 实验结果和分析(20分)•实验结果准确性(10分):学生能够得出准确的实验结果,并能够使用正确的分析方法对实验结果进行求证和解释。
•问题分析能力(10分):学生能够对实验结果中的问题进行分析和讨论,找出问题所在,并提出解决办法和改进建议。
三、评分细则1. 分数划分根据上述评分标准,将每个方面的分数划分为:优秀(90-100分)、良好(80-89分)、中等(70-79分)、及格(60-69分)和不及格(0-59分)。
2. 评分要求评分时应根据实验报告和实验操作的表现,进行综合评价。
评分应准确无误,不偏袒个人情感,确保公正性和客观性。
同时,评分要求符合实验要求和实验室规章制度,不得违反学术道德和诚信原则。
模拟电子技术实验报告

一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。
二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。
三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。
2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。
3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。
4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。
四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。
2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。
2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。
模拟电子技术实验

模拟电子技术实验实验一常用仪器、仪表的测量一、实验目的1.掌握函数信号发生器的使用方法;2.掌握交流毫伏表的使用方法;3.掌握双踪示波器的使用方法;学会用示波器测量正弦信号的峰峰值、周期及频率。
二、实验原理在模拟电子技术实验中,函数信号发生器用来提供各种电源信号;交流毫伏表则用来测量交流电压的有效值;示波器能定性显示信号波形和定量测试。
按照图3-1框图连线,函数信号发生器把不同频率、不同幅值的信号送进示波器,用示波器进行观测,同时用交流毫伏表测量,最后把示波器测试的结果与交流毫伏表测试的结果加以比较。
图3-1 实验电路框图三、实验仪器与器件函数信号发生器;交流毫伏表;双踪示波器。
四、实验内容与步骤1.函数信号发生器和交流毫伏表的使用1)接通函数信号发生器的电源,选择输出正弦波信号,先调节“频率粗调”使输出频率为500Hz,再调节“正弦波衰减”为“0db”档,顺时针旋转“正弦波衰减幅度”旋钮,使表头输出电压为最大值。
2)接通交流毫伏表电源,将波段开关置电压档的最高量程(300V)。
3)将毫伏表开路电缆的红、黑两端分别与函数信号发生器正弦波输出红黑插座相接。
4)调节量程开关(从高量程向低量程调节)使毫伏表表头指针指在满刻度的2/3处。
5)准确读数。
6)分别测量函数信号发生器输出正弦波信号为1KHz、10KHz、“正弦波衰减”为20db、40db档时的最大输出电压值7)将测量值填入表3-1中。
2.双踪示波器的使用参考本书第一章示波器的使用,认识示波器面板的旋钮,熟悉旋钮的作用。
1)检查本机标准信号,并定量测量标准信号的时间、周期和幅度。
2)将函数信号发生器调在正弦波1KHz处,输出电压为3V。
3)用毫伏表测量正弦波的有效值,并填入表3-2中。
4)将函数信号发生器的正弦波信号输入示波器。
调节示波器有关旋钮,使荧光屏上出现一个稳定的正弦波信号,计算正弦波的峰峰值和周期。
5)计算公式如下:峰峰值计算:Up-p=volts/div档位数×Y轴格数周期计算:T=sec/div档位数×X轴格数3.将函数信号发生器输出电压改为10KHz、5V,再重复上述步骤。
模拟电子技术实验

实验一 共发射极放大电路1、实验目的(1)熟练掌握共发射极放大电路的工作原理,静态工作点的设置与调整方法,了解工作点对放大器性能的影响;(2)掌握放大器基本性能指标参数的测试方法。
2、实验设备(1)模拟电子线路实验箱 1台 (2)双踪示波器 1台 (3)函数信号发生器 1台(4)直流稳压电源 1台 (5)数字万用表 1台3、实验原理图1.1 所示是一个阻容耦合共发射极放大器。
它的偏置电路采用R b1 和R b2 组成的分压电路,并在发射极中接有电阻R e (Re =Re1+Re2),以稳定放大器的静态工作点。
当在放大器的输入端加输入信号u i 后,在输出端就可以得到一个与u i 相位相反,幅值被放大了的输出信号u o ,从而实现了放大。
(1)静态工作点U BQ = U CC R b2 /(R b1 + R b2)I CQ ≈I EQ =(U BQ -U BE )/ R e = U EQ / R eU CEQ ≈ U CC -I CQ (R C +R e )为使三极管工作在放大区,一般应满足: 硅管: U BE ≈ 0.7V U CC >U CEQ >1V (2)电压放大倍数图1.1共发射极放大器CCA u = -βR L ′/r be (注:R L ′=RL ∥RC )(3)输入、输出电阻R i = R b1∥R b2∥r be r be = r bb ′+(1+β)26mV / I EQ mA R o = r o ∥R C ≈ R C4、实验内容与步骤(1)线路连接按图1.1 连接电路,把基极偏置电阻R P 调到最大值,避免工作电流过大。
(2)静态工作点设置接通+12V 直流电源,调节基极偏置电阻R P ,使I EQ =1mA ,也即是使U EQ = 1.9V 。
然后测试各工作点电压,填入表1-1中。
(3)电压放大倍数测量调节信号源,使之输出一个频率为1kHz ,峰峰值为30mV 的正弦信号(用示波器测量)。
模电技术实验报告

一、实验目的1. 理解模拟电子技术的基本原理和实验方法。
2. 掌握晶体管放大电路的基本搭建和调试方法。
3. 学习信号的产生、传输和处理的实验技能。
4. 提高对电路性能指标的理解和测试能力。
二、实验原理模拟电子技术是研究模拟信号处理和传输的理论和技术。
本次实验主要涉及以下内容:1. 晶体管放大电路:利用晶体管的放大作用,将微弱的输入信号放大到所需的幅度。
2. 信号发生器:产生不同频率和幅度的正弦波信号,用于测试电路的性能。
3. 示波器:观察和分析信号的波形,测量信号的幅度、频率和相位等参数。
4. 万用表:测量电路中的电压、电流和电阻等参数。
三、实验内容及步骤1. 晶体管共射放大电路(1)搭建共射放大电路,包括输入端、放大电路和输出端。
(2)调整电路参数,使放大电路工作在最佳状态。
(3)使用信号发生器产生输入信号,观察输出信号的波形和幅度。
(4)测量放大电路的增益、带宽和失真等性能指标。
2. RC正弦波振荡器(1)搭建RC正弦波振荡器电路,包括RC振荡网络和放大电路。
(2)调整电路参数,使振荡器产生稳定的正弦波信号。
(3)使用示波器观察振荡信号的波形和频率。
(4)测量振荡器的振荡频率、幅度和相位等性能指标。
3. 差分放大电路(1)搭建差分放大电路,包括两个共射放大电路和公共发射极电阻。
(2)调整电路参数,使差分放大电路抑制共模信号,提高电路的共模抑制比(CMRR)。
(3)使用信号发生器产生差模和共模信号,观察输出信号的波形和幅度。
(4)测量差分放大电路的增益、带宽和CMRR等性能指标。
四、实验数据记录与分析1. 晶体管共射放大电路| 电路参数 | 测量值 || --- | --- || 输入信号幅度 | 0.1V || 输出信号幅度 | 5V || 增益 | 50 || 带宽 | 10kHz || 失真 | <1% |2. RC正弦波振荡器| 电路参数 | 测量值 || --- | --- || 振荡频率 | 1kHz || 振荡幅度 | 2V || 相位| 0° |3. 差分放大电路| 电路参数 | 测量值 || --- | --- || 差模增益 | 20 || 共模抑制比(CMRR) | 60dB |五、实验结论1. 通过本次实验,加深了对模拟电子技术基本原理的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一共射极单管放大电路的研究1. 实验目的(1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法;(3)熟悉常用电子仪器及模拟电路实验设备的使用。
2. 实验设备与器材实验所用设备与器材见表1.1。
表1.1 实验4.1的设备与器材序号名称型号与规格数量备注1 实验台1台2 双踪示波器0~20M 1台3 电子毫伏表1只4 万用表1只5 三极管1只6 电阻1kΩ/0.25W 1只R e7 电阻 2.4kΩ/0.25W 2只R S、R c、R L8 电阻20kΩ/0.25W 1只R b1、R b29 电阻500kΩ/0.25W 1只R b210 铝电解电容10μF/25V 2只C1、C211 铝电解电容50μF/25V 1只C e3. 实验电路与说明实验电路如图1.1所示,为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。
安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。
图1.1 共射极单管放大器实验电路I c/mA U ce/V u0波形失真情况管子工作状态2.0(5) 测量最大不失真输出电压的幅度置R C=2.4kΩ,R L=2.4kΩ,调节信号发生器输出,使U s逐渐增大,用示波器观察输出信号的波形。
直到输出波形刚要出现失真而没有出现失真时,停止增大U s,这时示波器所显示的正弦波电压幅度,就是放大电路的最大不失真输出电压幅度,将该值记录下来。
然后继续增大U s,观察输出信号波形的失真情况。
5. 实验总结与分析(1)用理论分析方法计算出电路的静态工作点,填入表1.2中,再与测量值进行比较,并分析误差的原因。
(2)通过电路的动态分析,计算出电路的电压放大倍数,包括不接负载时的A u、A us以及接上负载时的A u、A us。
将计算结果填入表1.3中,再与测量值进行比较,并分析产生误差的原因。
(3)回答以下问题:①放大电路所接负载电阻发生变化时,对电路的电压放大倍数有何影响?②怎样用测量信号电压的方法来测量放大电路的输入电阻和输出电阻?(4)心得体会与其他。
图2.1 带有电压串联负反馈的两级阻容耦合放大器4. 实验内容与步骤(1)电路安装①安装之前先检查各元器件的参数是否正确,区分三极管的三个电极,并测量其β值。
②按图2.1所示电路,在面包板或实验台上搭接电路。
安装完毕后,应认真检查连线是否正确、牢固。
(2)测试静态工作点①电路安装完毕经检查无误后,首先将直流稳压电源调到12V,再接通直流电源,输入信号暂时不接。
②用直流电压表分别测量第一级、第二级的静态工作点,记入表2.1。
表2.1 静态工作点测量数据U b/V U e/V U C/V I C/mA第一级第二级(3)测试基本放大器的各项性能指标①把R f断开后,其他连线不动,将信号发生器的输出信号调到频率为1kHz、幅度为50mV左右的正弦波,接到放大电路输入端U S,然后用示波器观察输出信号的波形。
在整个实验过程中,要保证输出信号不产生失真。
如输出信号产生失真,可适当减小输入信号的幅度。
②在u O不失真的情况下,用交流毫伏表测量U S、U i、U L,记入表3.2中,保持U S不变,断开负载电阻R L(注意,R f不要断开),测量空载时的输出电压U O,记入表2.2中。
(4)测试负反馈放大器的各项性能指标将实验电路恢复为图2.1的负反馈放大电路。
适当加大U S(约30mV),在输出波形不失真的条件下,测量负反馈放大器的A uf、R if和R Of,记入表3.2。
实验三基本运算电路的设计1. 实验目的(1) 研究由集成运算放大器uA741组成的比例、加法、减法和积分等基本运算电路的功能;(2) 学会上述电路的测试和分析方法。
2. 实验设备与器材实验所用设备与器材见表3.1示。
表3.1 实验设备与器材序号名称型号与规格数量备注1 实验台SL-162 1台2 双踪示波器0~20M 1台3 电子毫伏表1只4 万用表1只5 集成运算放大器μA741 1片6 电阻若干7 电容若干8 连接导线若干3. 实验电路与说明UA741引脚图集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路(1) 反相比例运算电路电路如图2.1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为f1iRU UR=-为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1 // R f。
(2) 反相加法电路电路如图2.2所示,输出电压与输入电压之间的关系为R R RU U U R =-+f f O i1i212()R 3=R 1 // R 2 // R f图3.1 反相比例运算电路 图3.2 反相加法运算电路(3) 同相比例运算电路k Ω图3.3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为R U U R =+f O i1(1)R 2=R 1 // R f当R 1→∞时,U O =U i ,即得到如图3.3(b)所示的电压跟随器。
图中R 2=R f ,用以减小漂移和起保护作用。
一般R f 取10k Ω,R f 太小起不到保护作用,太大则影响跟随性。
图3.3 同相比例运算电路(4)差动放大电路(减法器) 减法运算电路如图3.4所示。
图3.4 减法运算电路图 图3.5 积分运算电路对于图2.4所示的减法运算电路,当R 1=R 2,R 3=R f 时,有如下关系式f 0i2i11()R U U U R =-(5) 积分运算电路反相积分电路如图2.5所示。
在理想化条件下,输出电压u O (t )等于C 0idt+u (0)tu +=-⎰O 11u (t)R C式中,u C (0+)是t =0+时刻电容C 两端的电压值,即初始值。
如果u i (t )是幅值为E 的阶跃电压,并设u c (0+)=0,则u t R C R C =-=⎰t O o111E(t)Edt -即输出电压 u o (t )随时间增长而线性下降。
显然RC 的数值越大,达到给定的U o 值所需的时间就越长。
积分输出电压所能达到的最大值受集成运放最大输出范围的限值。
4. 实验内容与步骤实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。
(1)反相比例运算电路① 按图3.1连接实验电路,接通±12V 电源,输入端对地短路,进行调零和消振。
② 输入f =100Hz ,U i =0.5V 的正弦交流信号,测量相应的U o ,并用示波器观察u o (t )和u i (t )的相位关系,记入表3.2中表3.2 U i =0.5V ,f =100HzU i /VU 0/Vu i 波形 u o 波形A u实测值计算值(2) 反相加法运算电路① 按图3.2连接实验电路。
调零和消振。
② 输入信号i1U 、i 2U 采用直流信号,图2.6所示电路为简易直流信号源,由实验者自行完成。
实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区。
用直流电压表测量输入电压U i1、U i2及输出电压U O ,记入表3.4中。
图3.12 简易可调直流信号源 表3.4 反相加法器测量数据U i1/V 0.5 0.4 U i2/V 0.4 0.3 U O /V(3)积分运算电路实验电路如图3.5所示。
① 打开S 2,闭合S 1,对运放输出进行调零。
② 调零完成后,再打开S 1,闭合S 2,使u C (o)=0。
③ 预先调好交流输入电压U i =0.5V ,100HZ,接入实验电路,测量输出电压U O 。
5. 实验总结与分析(1) 整理实验数据,画出波形图(注意波形间的相位关系)。
(2) 将理论计算结果和实测数据相比较,分析产生误差的原因。
(3) 分析讨论实验中出现的现象和问题。
(4) 回答以下问题:① 在反相加法器中,如U i1 和U i2 均采用直流信号,并选定U i2=-1V ,当考虑到运算放大器的最大输出幅度(±12V)时,|U i1|的大小不应超过多少伏?② 在积分电路中,如R 1=100k Ω, C =4.7μF ,求时间常数。
假设U i =0.5V ,问要使输出电压U O 达到5V ,需多长时间(设u C (o)=0)?(5) 心得体会与其他。
实验四功率放大器(虚拟实验)一实验目的1 通过实验了解甲乙类功率放大器的工作原理、特性及使用方法,2特性及使用方法,掌握功率放大器的性能参数及主要指标的测量方法。
二实验原理如图4.1所示电路是一个OTL低频功率放大电路,其中Q3组成推动级(即前置放大级),Q1(NPN)和Q2(PNP)为对管,组成互补推挽OTL功率放大电路。
Q1和Q2都接成射极输出器的形式,因此具有输出电阻低,带负载能力强的优点,适合做功率输出级。
Q3管工作在甲类放大状态,集电极电流IC1为Q1和Q2提供合适的静态电流,从而使Q1和Q2工作在甲乙类状态,以避免输出出现交越失真。
A点的电位约为电源电压一半,A点与18K电阻一端连接形成交、直流电压并联负反馈,从而稳定了放大电路的静态工作点,又改善了输出的非线性失真。
三实验内容(1)启动Multisim10,输入并保存图所示电路。
图4.1 OTL低频功率放大电路(2)测试准备:输入幅度400mV、1KHz的正弦波,运行电路,用示波器观察u s、u o的波形,以确保电路正常工作。
逐渐增大输入信号,使得输出电压达到最大不失真。
解答:最大不失真645mvp;波形图(3)观测输入信号:用交流电压表和电流表分别测量输入信号电压、电流值,计算输入功率值,完成输入信号参数的测试,数据记录于表1。
表1输入信号参数的测试u i i i P i(4) 观测甲类放大输出信号:用交流电压表和电流表分别测量Q3输出信号电压、电流值,计算输入功率值,完成中间级信号参数的测试,数据记录于表2。
表2 中间级信号参数的测试u o1i o1P o1(5)观测最大不失真输出功率:用交流电压表和电流表分别测量输出信号电压、电流值,完成输出信号参数的测试,数据记录于表3。
表3 输出信号参数的测试u o i o P o(6)观测直流电源提供的功率:用万用表分别测量直流电源的电压,电流值,完成直流电源供电参数的测试,数据记录于表4。