2016电磁感应现象和力学综合(yaoyao)

合集下载

[优选]人教版高中物理教材《电磁感应现象及应用》PPT讲练课件

[优选]人教版高中物理教材《电磁感应现象及应用》PPT讲练课件
【 (名校 师课 整堂 理】课获本奖专P题PT)-[人人教教版版高]中高物 中理物教理材 教《材电《 磁 感电应磁现感 象应及现应象 用及应》用PPT》讲PP练T上课 课件课pp件t 优(质最说新课版稿本()精推选荐)
【 (名校 师课 整堂 理】课获本奖专P题PT)-[人人教教版版高]中高物 中理物教理材 教《材电《 磁 感电应磁现感 象应及现应象 用及应》用PPT》讲PP练T上课 课件课pp件t 优(质最说新课版稿本()精推选荐)
(名师整理课本专题)人教版高中物 理教材 《电磁 感应现 象及应 用》PPT 讲练课 件ppt 优质说 课稿( 精选)
2.实验二:磁铁插入或拔出线圈时,线圈中的磁场发生变 化,从而引起了磁通量的变化,产生了感应电流.
3.实验三:开关闭合、断开、滑动变阻器的滑动触头移动 时,A 线圈中电流变化,从而引起穿过 B 的磁通量变化,产生了 感应电流.
三、电磁感应现象的应用 生产生活中广泛使用的发电机、变压器、电磁炉等都是应用 的电磁感应原理.
(名师整理课本专题)人教版高中物 理教材 《电磁 感应现 象及应 用》PPT 讲练课 件ppt 优质说 课稿( 精选)
【 (名校 师课 整堂 理】课获本奖专P题PT)-[人人教教版版高]中高物 中理物教理材 教《材电《 磁 感电应磁现感 象应及现应象 用及应》用PPT》讲PP练T上课 课件课pp件t 优(质最说新课版稿本()精推选荐)
【 (名校 师课 整堂 理】课获本奖专P题PT)-[人人教教版版高]中高物 中理物教理材 教《材电《 磁 感电应磁现感 象应及现应象 用及应》用PPT》讲PP练T上课 课件课pp件t 优(质最说新课版稿本()精推选荐)
【 (名校 师课 整堂 理】课获本奖专P题PT)-[人人教教版版高]中高物 中理物教理材 教《材电《 磁 感电应磁现感 象应及现应象 用及应》用PPT》讲PP练T上课 课件课pp件t 优(质最说新课版稿本()精推选荐)

2016年高考物理真题分类汇编选修3-2电磁感应

2016年高考物理真题分类汇编选修3-2电磁感应

2016年高考物理真题分类汇编:电磁感应[2016上海5].磁铁在线圈中心上方开始运动时,线圈中产生如图方向的感应电流,则磁铁(A)向上运动(B)向下运动(C)向左运动(D)向右运动【答案】B[2016上海19].如图(a),螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向。

螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内。

当螺线管内的磁感应强度B随时间按图(b)所示规律变化时(A)在t1~t2时间内,L有收缩趋势(B)在t2~t3时间内,L有扩张趋势(C)在t2~t3时间内,L内有逆时针方向的感应电流(D)在t3~t4时间内,L内有顺时针方向的感应电流【答案】AD[2016海南4].如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距。

两导线中通有大小相等、方向向下的恒定电流。

若A .金属环向上运动,则环上的感应电流方向为顺时针方向B .金属环向下运动,则环上的感应电流方向为顺时针方向C .金属环向左侧直导线靠近,则环上的感应电流方向为逆时针D .金属环向右侧直导线靠近,则环上的感应电流方向为逆时针【答案】D[2016全国II-20].法拉第圆盘发电机的示意图如图所示。

铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别于圆盘的边缘和铜轴接触,关于流过电阻R 的电流,下列说法正确的是A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍【答案】AB【解析】试题分析:A 、由电磁感应定律得,,故一定时,电流大小恒定,选项A 正确。

B 、由右手定则知圆盘中心为等效电源正级,圆盘边缘为负极,电流经外电路从a 经过R 流到b ,选项B 正确;C、圆盘转动方向不变时,等效电源正负极不变,2022wl Bl w E Bl +==E I R =w电流方向不变,故选项C 错误。

高中物理必修三第六章 第三节 电磁感应现象

高中物理必修三第六章 第三节 电磁感应现象

即学即用
判断下列说法的正误.
(1)只要闭合电路内有磁通量,闭合电路中就有感应电流产生.( × )
(2)穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生.
( ×)
(3)闭合电路的一部分导体做切割磁感线运动时,电路中会产生感应电流.
(√)
(4)不论电路是否闭合,只要电路中磁通量发生变化,电路中就有感应电流.
返回
Part 3
课时对点练
基础对点练
考点一 电磁感应现象的发现及认识
1.首先发现电流的磁效应和电磁感应的物理学家分别是
A.安培和法拉第
B.法拉第和楞次
C.奥斯特和安培
√D.奥斯特和法拉第
1820年,丹麦物理学家奥斯特发现了电流的磁效应;1831年,英国物 理学家法拉第发现了电磁感应现象,选项D正确.
√A.先增大,后减小
B.先减小,后增大 C.先增大,后减小,再增大,再减小 D.先减小,后增大,再减小,再增大
针对训练1
如图所示,固定的长直导线中通有恒定电流,一矩形线框从abcd位置向 右平移到a′b′c′d′位置的过程中,关于穿过线框的磁通量情况,下 列叙述正确的是 (线框平行于纸面且与导线相互绝缘) A.一直增加 B.一直减少 C.先增加后减少
1 2 3 4 5 6 7 8 9 10 11 12 13 14
5.(2022·信宜市第二中学高二开学考试)如图所示,1位置与3位置关于导 线对称,线框abcd以下列四种方式移动,哪种情况下磁通量的改变量 最大 A.由1位置平移到2位置 B.由1位置以bc为转轴转动到2位置
√C.由1位置平移到3位置


总 结
判断是否产生感应电流的技巧
1.电路闭合和磁通量发生变化是产生感应电流的两个条件,

电磁感应现象及应用-课件

电磁感应现象及应用-课件
摆动
不摆动
开关闭合,
滑动变阻器触片滑动
摆动
开关断开瞬间
摆动
实验结论: 磁铁插入和拔出的瞬间,螺线管中的
每一线圈都切割磁感线,有电流产生;磁铁停在
螺线管中时,没切割磁感线,无电流产生。
新知讲解
二、产生感应电流的条件
实验: 探究感应电流产生的条件
导体切割磁感线
改变了闭合电路在磁场中的面积
磁铁插入或拔出
中有没有感应电流? 为什么?






课堂练习
5.如图所示,把矩形闭合线圈放在匀强磁场中,线圈平面与磁感线平行,
下面能使线圈产生感应电流的是( C )
a



A. 线圈沿磁感线方向移动
B. 线圈沿垂直磁感线方向做移动
C. 线圈以ab边为轴匀速转动
D. 线圈以bc边为轴匀速转动

课堂小结
1.利用磁场产生电流的现象叫电磁感应, 产生的电流叫感应电流。
课堂练习
3.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲),然
后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么

课堂练习
4.矩形线圈ABCD位于通电长直导线附近,线圈与导线在同一个平面内,
线圈的两个边与导线平行。在这个平面内,线圈远离导线移动时,线圈中有没
有感应电流? 线圈和导线都不动,当导线中的电流I逐渐增大或减小时,线圈
磁铁的运动情况
表针的摆动情况
插入瞬间
摆动
拔出瞬间
摆动
停在线圈中
不摆动
实验结论: 磁铁插入和拔出的瞬间,螺线管中的
每一线圈都切割磁感线,有电流产生;磁铁停在

大学物理电磁感应现象与法拉第定律阐述

大学物理电磁感应现象与法拉第定律阐述

大学物理电磁感应现象与法拉第定律阐述电磁感应是电磁学中的重要概念,由迈克尔·法拉第在19世纪初提出的法拉第定律描述。

这一现象指出,当一个导体处于磁场中运动或者磁场的强度发生变化时,导体内会产生感应电流。

本文将详细介绍电磁感应现象以及法拉第定律的原理和应用。

一、电磁感应的基本原理电磁感应现象是指当导体运动于磁场中或磁场的强度发生变化时,在导体中就会产生感应电流。

这一现象是由磁场的磁力作用于运动中的导体电子所产生的。

电磁感应的基本原理可以归结为法拉第定律。

二、法拉第定律的阐述法拉第定律是描述电磁感应的基本定律,由迈克尔·法拉第于1831年提出。

根据法拉第定律,当一个闭合导路与磁场相连且磁场的磁通量发生变化时,导路中就会产生感应电流。

该感应电流的方向遵循楞次定律,即感应电流的方向使得它所产生的磁场与原磁场产生作用的磁场方向相反。

三、法拉第定律的数学表达法拉第定律可以用数学公式来表示。

根据法拉第定律,感应电动势的大小等于磁场的磁通量变化率。

数学上,法拉第定律可以表示为:ε = - dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,t代表时间,dΦ/dt代表磁通量的变化率。

四、电磁感应现象的实际应用电磁感应现象在我们日常生活中有许多实际应用。

以下介绍几个常见的应用场景:1.发电机发电机是利用电磁感应现象产生电能的装置之一。

通过将导体绕在旋转的磁场中,可以产生感应电动势,从而驱动电流流动,进而产生电能。

这种原理广泛应用于发电厂、风力发电机等发电设备中。

2.变压器变压器是利用电磁感应现象改变电压的设备。

通过将交流电流通过一个线圈,产生变化的磁场,再经过另一个线圈,就能产生感应电动势。

这样,可以在输入输出线圈之间实现电压的转换,从而达到变压的效果。

3.感应加热感应加热是利用电磁感应原理进行加热的技术。

通过通过交流电源产生高频电磁场,当导体材料放在此电磁场中时,导体会产生感应电流,进而产生热量。

电磁感应基础知识总结

电磁感应基础知识总结

电磁感应基础知识总结Hello,大家好,这里是法雕本周我们来说说电磁感应部分的基础知识!一样大家能将他们掌握好,为下面的四个专题:图像,电路,力学,能量问题打好基础。

(此篇文章不包括互感,自感,涡流等问题)该文章分为3部分:1.电磁感应现象与其产生条件2.楞次定律3.法拉第电磁感应定律———————————————————一.电磁感应现象与产生条件:首先,让我们应了解两位物理学家:奥斯特,法拉第。

物理学史:1.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,这种现象被称为电流磁效应。

2.1831 年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。

简单来说,电流的磁效应就是电磁;电磁感应是磁电,电磁感应中得到的电流叫感应电流,得到的电动势叫感应电动势。

我们可以类比电流和感应电动势的关系,得到感应电流和感应电动势的关系。

有了感应电流,接下来,就该研究感应电流的方向了。

现在我们介绍一下楞次定律!二.楞次定律物理学史:1834 年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律楞次定律告诉我们:感应电流的磁场总要阻碍引起感应电流磁通量的变化。

即:△Ψ是因,产生的感应电流是果。

这里面有一个重点也是它的核心:阻碍(用一张图来说明)在做题的过程中,有三个口诀(大家老师也说过吧,在以后的文章中会专门用3道题来探讨这3个口诀的作用)1.增反减同---磁通量变化2.来拒去留---导体相对运动3.增缩减扩---线圈补充:Ψ △Ψ △Ψ/△t(法感会用到)!:在求算这三个量时,它们均与线圈的匝数n无关。

就Ψ,如下图:均穿过一条,所以,当我们求磁通量时,不妨利用穿过平面的磁感线净条数来求这样会使问题简化。

还有一个问题:它们三者有关系吗?这里,我们不妨类比V △V a 高一我们知道a,△V与V无必然联系,一切皆有可能,那么Ψ,△Ψ,△Ψ/△t也是一样。

(在交流电一章我们会发现:对于交流电来说当Ψ最大即BS时,△Ψ/△t=0;当Ψ最小即0时,△Ψ/△t最大)我们继续回到楞次定律中干货:楞次定律使用步骤:1.原(原来的B方向)2.感(利用阻碍,判出感B的方向)3.电流(安培定则)在楞次定律的基础上,我们可以得到右手定则,右手定则需要掌握的就是右手的每个部位代表这什么:1.B穿掌心(不要怕,不痛的)2.拇指指运动3.四指即感应电流方向(内电路中,也就是电势高的方向)三.电磁感应定律:注意:1.在运用E=BLV时,L为导体棒的有效切割长度即导体棒在垂直于速度V方向上的投影长度。

电磁感应现象 课件

电磁感应现象   课件
电磁感应现象
一、划时代的发现
1.1820 年丹麦物理学家奥斯特发现了电流的磁效应,即“电能生磁”。 2.1831 年英国科学家法拉第发现了电磁感应现象,即“磁可以生电”。
思考电流的磁效应与电磁感应现象有什么区别?
提示:尽管这两种现象都说明了电现象与磁现象之间有密切的联系,但 它们是因果关系相反的两类现象,电流的磁效应是“电生磁”,而电磁感应现 象是“磁生电”。
●名师精讲●
1.产生感应电流的常见情况
(1)导线 ab 切割磁感线时,闭合回路产生电流(如图甲)。 (2)磁铁插入或拔出线圈时,回路中产生电流(如图乙)。 (3)如图丙,当开关 S 闭合或断开时,回路 B 中产生电流;滑动变阻器向 上或向下滑时,回路 B 中产生电流。
2.感应电流的产生条件 感应电流的产生条件,归根结底,是穿过闭合电路的磁通量发生变化,而 不是穿过闭合电路磁通量的有无或大小。即使闭合电路中有很强的磁场, 其磁通量尽管很大,但不发生变化时,仍无感应电流产生。
【例题 2】 如图所示,竖直放置的长直导线通有恒定电流,有一矩形线 框与导线在同一平面内,在下列情况中,线圈能产生感应电流的是( )
A.导线中电流变大 B.线框向右平动 C.线框向下平动 D.线框以 ab 边为轴转动 E.线框以直导线为轴转动
解析:本题考查的内容是感应电流的产生条件。 对 A 选项,因 I 增大而引起导线周围的磁场 增强,使穿过线框的磁通量增大,故 A 正确。 对 B 选项,因离开直导线越远,磁感线分布 越疏(如图甲所示),因此线框向右平动时,穿过 线框的磁通量变小,故 B 正确。 对 C 选项,由图甲可知,线框向下平动时穿过线框的磁通量不变,故 C 错 误。 对 D 选项,可用一些特殊位置来分析。当线框在图甲所示位置时,穿过 线框的磁通量最大;当线框转过 90°时,穿过线框的磁通量为零,因此可以判 定线框以 ab 边为轴转动时磁通量一定变化,故 D 正确。 对 E 选项,先画出俯视图如图乙所示,由图可看出,线框绕直导线转动时, 在任何一个位置穿过线框的磁感线条数均不变,因此无感应电流,故 E 错误。

电磁感应现象 课件

电磁感应现象 课件

二、电磁感应的产生条件 1.磁通量:穿过某一面积的磁感线条数叫作穿过该面积的磁通量. 2.磁通量公式:Φ=BS,其适用条件:①匀强磁场;②B 与 S 垂直. 3.磁通量单位:韦伯,简称韦,1 W b=1 T· m 2. 4.产生感应电流的条件:①闭合电路;②磁通量发生变化.
一、磁通量
活动与探究
引起磁通量变化的因素有哪些?
位置磁通量最大,若线框以 ab边为轴转动,则磁通量变小,故 C 对;若线框
以导线为轴转动,在任何情况下磁感线与线框所在平面均垂直,磁通量
不变,故 D 错.所以本题正确选项为 B 、C . 答案:B C
.
[思路点拨]本题关键是解决 Φ=BS 中的 S 和 B 必须垂直.
解析:线圈平面 abcd与磁感应强度 B方向不垂直,不能直接用 Φ=BS 计算,处理时可以用不同的方法.
方法一:把 S 投影到与 B 垂直的方向即水平方向,如图中 a'b'cd,S⊥=Scos θ,
故 Φ=BS⊥=BScosθ. 方法二:把 B 分解为平行于线圈平面的分量 B∥和垂直于线圈平面 的分量 B⊥,显然 B∥不穿过线圈,且 B⊥=Bcosθ,故 Φ=B⊥S=BScosθ. 答案:BScos θ
么没能探测到这种效应?
答案:安培在实验中利用多匝通电线圈来获得磁场,而线圈内悬挂
一闭合线圈,在多匝线圈通入恒定电流情况下,产生稳定的磁场,这样闭 合线圈内磁通量不变,所以根本没有产生感应电流,所以磁铁也就不能
使悬挂的可动线圈转动起来.
迁移与应用
例2
如图所示,竖直放置的长直导线通有图示方向的恒定电流 I,有一闭 合矩形金属线框 abcd 与导线在同一平面内,在下列情况中,能在线框中
二、产生感应电流的条件 活动与探究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:电磁感应现象和力学综合
一、电磁感应现象中的动力学问题
例题分析
1、如图所示,ab 和cd 是位于水平面内的平行金属轨道,间距为l ,其电阻可忽略不计,ac 之间连接一阻值为R 的电阻。

ef 为一垂直于ab 和cd 的金属杆,它与ad 和cd 接触良好并可沿轨道方向无摩擦地滑动,电阻可忽略。

整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动的距离为d 时,则: (1)杆ef 中的电流大小为 ,方向 ; (2)杆ef 所受的安培力为 ,方向 ; (3)对杆施外力的外力大小F= ,方向 ;
(4)外力对杆
ef 所做的功为W F = ; (5)安培力对杆ef 所做的功为W A = ;
(6)电流所做的功为W 电= ;电路中产生的焦耳热Q= ; (7)外力的功率P F = ,安培力的功率P A = ,电路中产生热功率P R = ,外力的功率、安培力的功率、热功率的大小关系是 。

(8)通过回路的电量q= 。

2、如图所示,空间存在B=0.5T ,方向竖直向下的匀强磁场,MN 、PQ 是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m , 电阻R=0.3Ω接在导轨另一端,ab 是跨接在导轨上质量为m=0.1kg 、电阻r=0.1Ω的导体棒和导轨间的动摩擦因素μ=0.2,。

从零时刻开始,对ab 棒施加一个牵引力F=0.45N 、方向水平向左的恒定拉力,使其从静止开始沿导轨做滑动,过程中棒始终保持与导轨垂直且接触良好。

求(1)ab 棒所能达到的最大速度; (2)试画出导体棒运动的速度—时间图像; (3) 当改变拉力的大小时,相对应的ab 棒能 达到的最大速度v m 也会改变,试画出v m -F 图线。

长直金属棒ab可以沿框自由滑动,框架足够长;回路总电阻为R且保持不变,当ab由静止开始下滑一段时间后,合上电键S,则ab将做()
(A)匀速运动 (B)加速运动(C)减速运动 (D)无法确定
【变式】
若先合上开关,当ab
由静止释放后( )
(A)ab的加速度将达到一个与R成反比的极限值
(B)ab的速度将达到一个与R成正比的极限值
(C)回路中的电流强度将达到一个与R成反比的极限值
(D)回路中的电功率将达到一个与R成正比的极限值
4、如图所示,U形导体框架宽L=lm,所在平面与水平面成α=30º角,电阻不计,匀强磁场与框架平面垂直,磁感应强度B=0.2T,导体棒ab质量为m=0.2kg,阻值R=0.1Ω,导体棒跨放在框架上且能无摩擦地滑动,求:
(1)导体棒ab下滑的最大速度。

(2)此时导体棒ab释放的电功率。

5、如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面,现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,
则它所受摩擦力可能()
(A)变为0 (B)先减小后不变
(C)等于F (D)先增大再减小
6、如图所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20 m,电阻R=1Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均忽略不计,整个装置处于磁感应强度B=0.50 T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得外力F与时间t的关系如图所示.求: (1)杆的质量m和加
速度a的大小; (2)杆开始运动后的时间t内,通过电阻R电量的表达式(用B、l、R、a、t 表示).
归纳总结:(思路、方法、步骤)
二、电磁感应现象中的能量问题
例题分析
7
、边长分别为L
、h,电阻为R ,质量为m 的矩形金属线框,自上而下匀速穿过宽度为h ,磁感应强度为B 的匀强磁场区域,求线框中产生的热量。

8、电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,
导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上.阻值r =0.5 Ω,质量m =0.2kg 的金属棒与轨道垂直且接触良好.从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q =0.1 J .(取g =10 m/s )求:(1)金属棒在此过程中克服安培力做的功W ;(2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理W -W =mv m 2
,…….由此所得结果是否正确;若正确,说明理由并完成本小题;若不正确,给出正确的解答.
课堂练习:
9、如图所示,有一边长为L 的正方形导线框,质量为m ,由高H 处自由落下,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边刚进入磁场时速度的一半。

此匀强磁场的宽度也是L 。

则线框在穿越匀强磁场中产生的焦耳热是( ) (A )2mgL (B )2mgL +mgH
(C )2mgL +3mgHl4 (D )2mgL +mgH/4
10、如图所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R ,匀强磁场垂直于斜面向上。

质量为m ,电阻不计的金属
棒ab在沿斜面与棒垂直的恒力F作用下沿导轨匀速上滑,上升高度h,在这过程中()(A)金属棒所受各力的合力所做的功等于零
(B)金属棒所受各力的合力所做的功等于mgh和电阻R产生的焦耳热之和
(C)恒力F与重力合力所做的功等于棒克服安培力所做的功与电阻R上产生的焦耳热之和(D)恒力F和重力的合力所做的功等于电阻R上产生的焦耳热
11、如图,矩形abcd为匀强磁场区域,磁场方向竖直向下,圆形闭合金属线圈以一定的速度沿光滑绝缘水平面向磁场区域运动。

下图是线圈的四个可能到达的位置,则线圈的动能可能为零的位置是()
12、在匀强磁场中把一矩形线框匀速拉出磁场区域外,第一次以匀速率v拉出,第二次以匀速率2v拉出,其他条件都相同,
那么前后两次所用外力大小之比
F1∶F2、产生热量之比Q1∶Q2、通过线框的电量之比q1∶q2应分别为()
(A)F1∶F2=2∶l,Q1∶Q2=2∶1,q1∶q2=2∶1
(B)F1∶F2=1∶2,Q1∶Q2=1∶2,q1∶q2=1∶1
(C)F1∶F2=1∶l,Q1∶Q2=1∶1,q1∶q2=1∶1
(D)F1∶F2=2∶l,Q1∶Q2=1∶1,q1∶q2=2∶1
13、长方形金属框中边长ab=2bc,放在磁感应强度为B的匀强磁场中。

今将它用同一速度从磁场中向上、向右匀速拉出,在两次拉出过程中,拉力之比F1∶F2=______;拉力做功之比W1:W2=_______;通过金属框的电量之比q1∶q2=_______。

14、如图,一无限长通电直导线固定在光滑水平面上,金属环质量为0.02kg,
在该平面上以v0=2m/s、与导线成60°角的初速度运动,其最终的运动状态是
________,环中最多能产生________J的电能。

15、如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T。

质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r。

现从静止释放杆ab,
测得最大速度为v m。

改变电阻箱的阻值R,得到vm与R的关系如图乙所示。

已知轨距为L=2m,重力加速度g取10m/s2,轨道足够长且电阻不计。

求:
(1)杆ab下滑过程中感应电流的方向及R=0时最大感应电动势E的大小;
(2)金属杆的质量m和阻值r;
(3)当R=4Ω时,求回路瞬时电功率每增加1W的过程中合外力对杆做的功W。

归纳总结:
一、电磁感应中的动力学问题
1.电磁感应与动力学、运动学结合的动态分析,分析方法是:
导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度
变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态.
2.分析动力学问题的步骤
(1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向.
(2)应用闭合电路欧姆定律求出电路中感应电流的大小.
(3)分析研究导体受力情况,特别要注意安培力方向的确定.
(4)列出动力学方程或平衡方程求解.
3.两种状态处理
(1)导体处于平衡态——静止或匀速直线运动状态.
处理方法:根据平衡条件——合外力等于零,列式分析.
(2)导体处于非平衡态——加速度不为零.
处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.
二、电磁感应中的能量问题:
1.思路:从能量转化和守恒着手,运用动能定理或能量守恒定律。

①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.
②能量转化特点:
其它能(如:机械能)安培力做负功电能 电流做功内能(焦耳热)
2.电能求解的三种方法:
①功能关系:电磁感应过程产生的电能等于该过程克服安培力所做的功:Q=-W安
②能量守恒:电磁感应过程中产生的电能等于该过程中其他形式能的减少量:Q=ΔE其他
③利用电流做功:电磁感应过程中产生的电能等于通过电路中电流所做的功:Q=I2Rt。

相关文档
最新文档