抛物线经典性质总结91182 (1)

合集下载

(完整版)抛物线的性质归纳及证明

(完整版)抛物线的性质归纳及证明

抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。

抛物线性质总结

抛物线性质总结

抛物线性质总结抛物线是一种基本的二次曲线,具有许多独特和有趣的性质,广泛应用于数学、物理和工程学中。

在这篇文章中,我将总结抛物线的性质,并探讨其在不同领域的应用。

首先,抛物线有一个明显的对称性质,称为轴对称性。

这意味着抛物线关于它的顶点对称。

顶点是抛物线的最高点或最低点,具体取决于开口方向。

对于标准形式的抛物线y=ax^2+bx+c,顶点的横坐标为x=-b/2a,纵坐标为y=c-b^2/4a。

因此,通过确定顶点,我们可以轻松找到抛物线的对称轴,并进行描绘和计算。

其次,抛物线的开口方向也是一个重要的性质。

当a>0时,抛物线开口向上,最低点是顶点;当a<0时,抛物线开口向下,最高点是顶点。

这种开口方向的不同导致了抛物线在几何图形、力学和光学等领域的多样应用。

例如,在建筑设计中,我们使用抛物线拱门来支撑大型建筑物的重量,因为抛物线拱门能够将力很好地分散到支撑结构上。

而在摄影和光学领域,抛物线镜头被广泛应用于望远镜、天文学观测仪器等设备中,因为它能提供更好的焦点和图像质量。

另一个重要的性质是抛物线的焦点性质。

抛物线上的每个点到焦点的距离与到抛物线直线轴的距离相等。

焦点是与抛物线曲线最紧密相关的点,并且在物理学、信号处理和通信系统中具有广泛的应用。

抛物线的焦点性质使得我们能够将信号或能量汇集在一个焦点上,从而实现聚焦效果。

抛物面天线、卫星接收器等设备都利用了这一性质。

另外,抛物线还具有切线性质。

对于任意一点P(x, y)上的抛物线,它的切线与抛物线在该点处的曲线相切。

这一性质使得我们可以了解抛物线在不同点的变化趋势,并且在微积分和优化问题中有广泛应用。

例如,在物理学中,我们可以利用抛物线切线的斜率计算物体在该点的速度和加速度,从而更好地理解运动的变化。

此外,抛物线还有一些其他有趣的性质,如焦半径和离心率。

焦半径是焦点到抛物线上的任意一点的距离,而离心率则描述了抛物线的扁平程度。

这些性质对于研究抛物线的形状、特征和应用都有重要意义。

应用题抛物线的性质

应用题抛物线的性质

应用题抛物线的性质抛物线是数学中经常出现的一种曲线形状,具有许多有趣的性质和应用。

本文将探讨抛物线的性质,并介绍一些实际中常见的应用。

一、抛物线的定义与性质抛物线是平面上的一条曲线,其定义可以用平面几何的语言来描述,也可以用二次函数的方程来表示。

一般来说,抛物线是由一个定点(焦点)和一条定直线(准线)确定的。

抛物线的性质如下:1. 对称性:抛物线具有对称轴的对称性。

对称轴是通过抛物线的焦点和准线垂直平分的直线。

任意一点到对称轴的距离相等。

2. 焦点与准线的关系:焦点到准线的距离等于焦距的两倍。

焦点和准线之间的距离被称为焦距。

3. 顶点坐标:抛物线的顶点为对称轴与抛物线的交点,也是抛物线的最高(或最低)点。

顶点的坐标可以通过方程求解得到。

二、抛物线的应用1. 抛物线的建筑设计:抛物线在建筑设计中有着广泛的应用。

比如,在设计圆顶建筑如圆顶体育馆或穹顶教学楼时,常常使用抛物线形状,因为抛物线形状能够均匀分散压力,提高建筑的稳定性。

2. 抛物线的发射轨迹:物体受到重力的作用下,竖直向上抛出时,其轨迹是一个抛物线。

这一性质在火箭发射、炮弹发射等领域有着广泛的应用。

利用抛物线轨迹,可以计算出物体的落点、最远射程等信息。

3. 抛物线的碰撞轨迹:在台球游戏中,当一个球以一定的速度和角度撞向另一个球时,其碰撞轨迹可以用抛物线来描述。

利用抛物线的性质,可以预测球的行进路线,帮助玩家制定击球策略。

4. 抛物线的光学:在凹面镜和抛物面反射器中,采用的镜面形状正是抛物线。

因为抛物面反射器能够使平行光线聚焦到一个点上,具有集光效果。

5. 抛物线的电磁波聚焦:抛物面拟似的天线,在通信和雷达领域中广泛使用。

抛物面天线能够将电磁波聚焦到一个点上,提高信号接收效果。

总结:抛物线是一种常见的曲线形状,在几何学、物理学、工程学和日常生活中都有着广泛的应用。

它的对称性、焦点与准线的关系以及顶点坐标等性质使得该曲线在各个领域发挥着重要的作用。

(完整版)抛物线常用性质总结

(完整版)抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。

结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。

结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。

(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。

结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。

证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。

则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。

(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。

证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。

由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。

高中抛物线性质总结

高中抛物线性质总结

高中抛物线性质总结高中数学中,抛物线是一种重要的二次曲线,具有许多重要的性质。

在学习和理解抛物线的过程中,我们需要研究和掌握这些性质。

本文将总结和介绍高中抛物线的一些重要性质。

首先,抛物线的定义对于理解它的性质至关重要。

抛物线是由一系列平面上满足特定关系的点组成的图形。

它的定义方程可以写成y=ax^2+bx+c的形式,其中a、b和c是实数,且a不等于零。

根据a的正负和b的零或非零,抛物线可以有不同的形状。

第一个要介绍的性质是抛物线的焦点和准线。

抛物线上的所有点到焦点的距离与到准线的距离相等。

这个性质被称为焦准性质,是抛物线最重要的性质之一。

焦点和准线的位置可以通过抛物线的定义方程来确定,其中焦点的坐标可以用a和b表示,准线的方程是x=-b/2a。

第二个要介绍的性质是抛物线的对称性。

抛物线的定点坐标是它的开口朝上或者朝下的端点,被称为顶点。

抛物线以顶点为中轴线对称,也就是说,如果点P(x, y)在抛物线上,那么点P'(-x, y)也在抛物线上。

这个性质可以用定义方程来证明。

第三个要介绍的性质是抛物线的切线和法线。

抛物线上的任意一点P(x, y)处的切线是过点P且与抛物线相切的直线。

切线的斜率等于抛物线在该点的导数。

法线是与切线垂直的直线,它的斜率等于切线的斜率的负倒数。

第四个要介绍的性质是抛物线的拐点。

抛物线在顶点处有一个拐点,也就是说,抛物线在开口朝上或者朝下端点处的切线是水平的。

第五个要介绍的性质是抛物线的焦直径性质。

对于抛物线上的任意一点P(x, y),它到焦点的距离等于它到准线的距离的二倍。

这个性质可以用定义方程和几何性质来证明。

第六个要介绍的性质是抛物线的判别式。

通过判别式可以判断给定的二次方程是否表示一条抛物线,并且可以确定抛物线的开口朝上还是朝下。

判别式的符号取决于二次方程的系数。

如果判别式大于零,那么抛物线开口朝上;如果判别式小于零,那么抛物线开口朝下;如果判别式等于零,那么二次方程表示一条抛物线。

抛物线性质和知识点总结

抛物线性质和知识点总结

抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。

其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。

a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。

2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。

抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。

3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。

抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。

当直线与抛物线相切时,两个交点重合。

当直线与抛物线没有交点时,这个抛物线不与这条直线相交。

4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。

5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。

6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。

抛物线知识点范文

抛物线知识点范文

抛物线知识点范文抛物线是一种经典的二次曲线,具有许多重要的数学和物理应用。

它的形状引人注目,其性质和方程式是学习数学的重要组成部分。

本文将介绍抛物线的定义、性质、方程式、焦点和直径、坐标系变换、最速下降问题、抛物线的应用等知识点。

1.定义:抛物线是一个平面曲线,其定义为到一个定点(焦点)和到一条定直线(准线)的距离的大小总是相等。

准线上的点称为焦点。

2.性质:-对称性:抛物线具有轴对称性,即任意一点P关于焦点和准线的投影点O的距离相等。

-切线性质:抛物线上的切线与过焦点F的直线垂直。

-焦半径性质:抛物线上任意一点到焦点的距离等于该点到准线的垂直距离。

-图形性质:抛物线上的点与焦距的比例等于与准线的垂直距离与焦距的比例的平方,即PF/FD=PD/FD^2-集中性:抛物线上的所有点都在焦点和准线之间。

3. 方程式:一般来说,抛物线的标准方程式为y = ax^2 + bx + c (其中a, b, c为常数,a≠0)。

这是一个二次函数,图像是一个关于y 轴对称的开口向上的曲线。

-当a>0时,抛物线开口向上,最低点为顶点。

-当a<0时,抛物线开口向下,最高点为顶点。

4.焦点和直径:-焦点:抛物线的焦点是指离准线和对称轴相等距离的点。

焦点与顶点的距离称为焦距。

-直径:抛物线的直径是指通过焦点的直线,且与该直线平行的对称轴称为抛物线的直径。

5.坐标系变换:可以通过坐标系的平移和旋转将抛物线的方程式转化为更简单的形式。

通过平移和旋转将抛物线的顶点移到坐标原点来简化方程式的形式。

6.最速下降问题:抛物线曲线上的点到焦点的距离最短。

这个性质被应用于物理学和工程学中的最优问题,如最短路径问题和最速下降问题。

7.抛物线的应用:-物理学中的抛物线轨迹:当物体在重力作用下发生自由落体运动时,其轨迹是一个抛物线。

-工程学中的抛物面反光器:抛物面反光器是一种能够将入射光汇聚到一个焦点的反射器,应用于车灯、太阳能收集器等设备。

抛物线知识点总结_高三数学知识点总结

抛物线知识点总结_高三数学知识点总结

抛物线知识点总结_高三数学知识点总结
抛物线是数学中的一种曲线,其形状像一个弯曲的弧形。

在高三数学中,我们学习了
抛物线的相关知识,包括定义、性质、方程、图像、焦点和准线等。

下面是抛物线的知识
点总结。

一、定义和性质:
1. 抛物线是平面解析几何的一个曲线,定义为动点P到定点F 的距离等于动点到定
直线l的距离的平方,即PF=PM^2,其中F为焦点,l为准线,M为动点P的投影点。

2. 抛物线对称轴是准线的垂直平分线,焦点到抛物线对称轴的距离称为焦距。

3. 抛物线的顶点是抛物线与对称轴的交点,对称轴的方程为x=h,其中h为顶点的横坐标。

二、方程和图像:
1. 抛物线的一般方程为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

2. 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 抛物线的顶点坐标为(-b/2a,f) ,其中f为抛物线的最小值或最大值,当a>0时,f为最小值,当a<0时,f为最大值。

4. 抛物线与y轴的交点为y轴截距,即(0,c)。

三、焦点和准线:
1. 抛物线的焦点坐标为(F,0),其中F为焦距。

2. 抛物线的焦点到顶点的距离等于焦点到准线的距离,即PF=pl,其中P为抛物线上的任意一点,l为准线的斜率。

四、其他知识:
1. 抛物线的标准方程为y^2=4ax,其中a为焦距的一半。

2. 抛物线的参数方程为x=t,y=2at^2,其中t为参数。

3. 抛物线的弧长公式为L=∫sqrt(1+(dy/dx)^2)dx,其中∫为积分符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档