(完整版)抛物线常用性质总结
(完整版)抛物线的性质归纳及证明

抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。
完整版)抛物线知识点归纳总结

完整版)抛物线知识点归纳总结抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。
以下是对抛物线知识点的详细总结。
1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上一点的距离的轨迹。
2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。
3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。
4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。
5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,由方程x=-b/2a给出。
6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。
7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。
8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对称轴是直线x=-b/2a。
9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴的纵坐标最小(或最大)的点。
10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一个交点的直线。
11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。
12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +c = 0得到。
13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。
14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。
15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。
16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。
17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。
18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。
(完整版)抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
抛物线经典性质总结30条

抛物线经典性质总结30条抛物线焦点弦性质总结30条基础回顾1.以AB为直径的圆与准线L相切;2.W上;43∙y∣∙^2 = -p2;4∙AAC1B = W;5.SFBy 90;6.I^I = X l+x2÷p = 2(x3 + ⅜= 2f2 Sln α7 _Li=I・PFI IBFI P,8.A、0、B三点共线;10.29.B、0、A三点共线;P2SbAoB = ---- ;2sinα10.3切线方程 y 0y m xx质深究 )焦点弦与切线 1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置 有何特殊之处?结论 1:交点在准线上 先猜后证:当弦 AB x 轴时,则点 P 的坐标为2p ,0在准线上.证明 : 从略2.PP;AF1 cosBF 1 cos4. 5. 6. 7. 8. 9. 10 1 2 PK AB = y3 tanCC' 1AB ( AA' BB');11 12A'B' C'F y 2; p x 2-24 AF BF ;1 A'B' . 213. 性 (P2)3(定值); 3. BC '垂直平分 B 'F ;AC '垂直平分 A 'F ; C 'F AB;AB 2P ;S V2AOBAB结论 2 切线交点与弦中点连线平行于对称轴结论 3 弦AB不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立?结论 4 过抛物线准线上任一点作抛物线的切,则过两切点的弦必过焦点先猜后证:过准线与x 轴的交点作抛物线的切,则过两切点AB的弦必过焦点.结论 5 过准线上任一点作抛物线的切线,过两切的弦最短时,即为通径.3、AB是抛物线y22px (p> 0)焦点弦,Q 是的中点,l 是抛物线的准线,AA 1ABBB1 l ,过A, B 的切线相交于P,与抛物线交于点M.则有结论6PA⊥ PB.结论7PF⊥ AB.结论8 M平分PQ.结论9 PA平分∠ A1AB,PB平分∠ B1BA.结论10FA FB 2 PF二) 非焦点弦与切线思考:当弦 AB 不过焦点,切线交于 P 点时, 也有与上述结论类似结果:相关考题1、已知抛物线 x 24y 的焦点为 F ,A ,B 是抛物线上 的两动点,且 AF FB ( >0),过 A ,B 两点分别作 抛物线的切线,设其交点为 M ,1)证明: FM AB 的值;( 2)设 ABM 的面积为 S ,写出 S f 的表达式,并 求 S 的最小值.2、已知抛物线 C 的方程为 x 24 y ,焦点为 F ,准结论 11 SPAB min结论 12结论 13 结论 14 结论 15 结论 16 xpy 1y2 ,2py py 1 y 22PA 平分∠ A 1AB ,同理 PB 平分∠ B 1BA . PFA PFB 点 M 平分 PQ FA FB PF线为l ,直线m交抛物线于两点A,B;(1)过点A 的抛物线C的切线与y 轴交于点D,求证:AF DF ;(2)若直线m过焦点F,分别过点A,B 的两条切线相交于点M,求证:AM⊥BM,且点M在直线l 上.3、对每个正整数n,A n x n,y n 是抛物线x24y上的点,过焦点F的直线FA n交抛物线于另一点B n s n,t n ,(1)试证:x n s n 4(n≥1)(2)取x n 2n,并C n为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:FC1 FC2 FC n 2n2 n 11(n≥ 1)抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当重要的作用。
抛物线性质和知识点总结

抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
超详细抛物线知识点归纳总结

引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线及其性质知识点大全推荐文档

抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
抛物线和性质知识点大全

抛物线和性质知识点大全1.抛物线的定义:抛物线是一个平面曲线,其距离一个定点(焦点)和一个定直线(准线)的距离都相等。
2.标准方程:抛物线的标准方程是y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
3.抛物线的焦点:抛物线的焦点是一个点,其到抛物线上的任意一点的距离与该点到抛物线的准线的距离相等。
4.抛物线的准线:抛物线的准线是一个直线,与抛物线的对称轴平行,并且距离对称轴固定的距离。
5.抛物线的对称轴:抛物线的对称轴是垂直于准线,通过焦点和抛物线的顶点的一条直线。
6.抛物线的顶点:抛物线的顶点是曲线的最高或最低点,即y轴距离最大或最小的点。
7.抛物线的焦距:抛物线的焦距是焦点到顶点的距离。
焦距等于准线与对称轴的距离的两倍。
8.抛物线的直径:抛物线的直径是通过焦点和曲线上两个对称的点的线段。
直径等于焦距的两倍。
9.抛物线的离心率:抛物线的离心率是焦距与准线与顶点的距离的比值。
离心率等于110.抛物线的焦点方程:如果抛物线的焦点为(F,p),则焦点到顶点的距离为p,焦点的横坐标为F,抛物线方程为(x-F)^2=4p(y-c),其中c为抛物线的顶点纵坐标。
11.抛物线的顶点方程:如果抛物线的顶点为(h,k),则抛物线方程为(y-k)=a(x-h)^212.抛物线的对称性:抛物线具有对称性,对称轴将抛物线分成两个对称的部分。
13.抛物线的焦点和准线的关系:抛物线上任意一点的到焦点的距离等于该点到准线的距离的两倍。
14.抛物线的切线:抛物线上任意一点处的切线与该点到焦点的连线重合。
15.抛物线的渐近线:当抛物线的开口向上时,抛物线没有水平渐近线;当抛物线的开口向下时,抛物线有一条水平渐近线。
16.抛物线的面积:抛物线所围成的面积等于焦点到顶点的纵坐标与准线的距离之积的1/317.抛物线的长度:抛物线的长度等于8/3倍焦距的立方根。
18.抛物线的应用:抛物线广泛应用于物理学、工程学和计算机图形学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论一:若AB 是抛物线2
2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:
2
124
p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线2
2(0)y px p =>焦点F ,求证:112=AF BF p
+。
结论三:(1)若AB 是抛物线2
2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则
22sin P AB α
=
(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:
例:已知直线AB 是过抛物线2
2(0)y px p =>焦点F ,求证:11AF BF
+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+
,22
p
BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2
124
p x x =。
则:2
12
121211()()
()2224
AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数
证明:结论四: 已知AB 是抛物线2
2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN
切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结
AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111
()()222
QP AM BN AF BF AB =
+=+=, ∴以AB 为直径为圆与准线l 相切
(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,
∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
同理,∠BFN=∠NFO ,
∴∠MFN=
1
2
(∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴1
2
MP NP FP MN ===,
∴∠PFM=∠FMP
∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB。