抛物线经典性质总结30条

合集下载

一口气总结33条有关抛物线的结论

一口气总结33条有关抛物线的结论

一、抛物线的定义抛物线是一种特殊的二次函数,其图像呈现出对称轴且开口方向确定的特点。

一般而言,抛物线的标准方程可表示为y=ax^2+bx+c,其中a、b、c是实数且a≠0。

二、抛物线的图像特点1. 抛物线的开口方向由二次项系数a决定,若a>0则开口向上,若a<0则开口向下。

2. 抛物线的对称轴是与顶点相关的直线,其方程为x=-b/2a。

3. 抛物线的顶点的纵坐标为c-b^2/4a。

4. 抛物线的焦点坐标为(-b/2a, c-b^2+1/4a)。

5. 抛物线的焦距为1/4a。

三、抛物线的焦点及直边1. 抛物线是缺点耀焦点在n位上。

2. 抛物线与其焦点的连线是垂直的。

3. 抛物线是直行的。

四、抛物线与直线的关系1. 抛物线与直线的交点个数与直线的位置关系有关,一般情况下有两个交点。

2. 若抛物线和直线相切,则称该直线为抛物线的切线。

五、抛物线与拱门的关系1. 拱门的形状大多呈现出抛物线的形态,这也是抛物线在建筑和土木工程中的应用之一。

2. 抛物线拱桥由于其结构特点,比较稳固且能够将荷载有效地传递到桥墩上,因此在桥梁工程中得到广泛应用。

六、抛物线的几何性质1. 抛物线的离心率为1,故它是一种特殊的椭圆。

2. 两条平行于抛物线对称轴的直线与抛物线所夹的面积是相等的。

3. 顶点位于原点的抛物线的焦点至原点的距离等于焦距的一半。

七、抛物线的物理应用1. 在物理学中,抛物线经常用来描述抛体运动的轨迹,比如抛出的子弹、投掷的物体等。

2. 抛物线还被用来研究光学中的抛物线面镜、抛物面反射器等设备。

八、抛物线的数学模型1. 抛物线可以用来建立二次函数方程的数学模型,利用这种模型,可以求解许多现实生活中的问题,比如自由落体运动、物体弹跳的高度等。

九、抛物线的轨迹方程1. 一个抛物线上的点P(x, y)的轨迹方程为y=ax^2。

十、抛物线的渐近线1. 抛物线的渐近线是与抛物线趋于无穷远时的方向呈现出一定的趋势的直线。

(完整版)抛物线常用性质总结

(完整版)抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。

结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。

结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。

(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。

结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。

证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。

则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。

(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。

证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。

由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。

抛物线经典性质总结30条

抛物线经典性质总结30条

抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。

AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。

证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。

2.证明:|BF|=x^2/(2p)。

3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。

5.证明:∠A’FB’=90°。

6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。

7.证明:C’F= A’B’=C’A’=C’B’。

8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。

9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。

11.证明:AF/BF=p/(1-cosα)。

12.证明:点A处的切线为y=y1+p(x+x1)。

1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。

方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。

2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。

(y1+y2)/2),证毕。

3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。

t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。

y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。

抛物线经典性质总结30条

抛物线经典性质总结30条

抛物线性质30条已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证:1.12||,||,22p pAF x BF x =+=+ 2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r '''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠=;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠证明:同理:1,2B FK BFK '∠=∠得证. 6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴又得证 同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅--22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个. 11.112AF BF P+=; 证明:由1cos P AF α=-;1cos PBF α=+;得证.12. 点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-= 由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证. 证法二:(求导)22y px =两边对x 求导得1122,,|,x x p p yy p y y y y ='''==∴=得证. 13.AC’是切线,切点为A ;B C’是切线,切点为B ;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,)22y y p C +'-,得证. 14. 过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p , 22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+ 显然22440,t p ∆=+>切点有两个,设为22211221212),(,),2,,2y Q y Q y y y t y y p p+==-则 1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----- 1222121211221222220,py py p py y y y y y y y y y =-=-=++++ 所以Q 1Q 2过焦点. 22222222121212121212122(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y t p p p+⋅=+-⋅+-=+++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线; 证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为()2py k x =-,与22y px =联立,得2220,ky py kp --= 212122,,p y y y y p k∴+==- 224212122.2244y y p p x x p p p ∴=⋅== 17.1222sin pAB x x p α=++=证明:1212,2p pAB AFFB x x x x p =+=+++=++||2AB ===222.sin pα==得证.18.22sin AOB p S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅=22sin p α===. 19.322AOB S p AB ∆⎛⎫= ⎪⎝⎭(定值);AB 22sin AOB p S α∆=得证. 20.22sin ABC p S α'∆= 证明:11||||222ABC S AB PF '∆=⋅=⋅ 22221(1)sin p p k α==+=21.2AB p ≥; 证明:由22sin pAB α=得证. 22.122AB pk y y =+; 证明:由点差法得证.23.121222tan P P y y x x α==--; 证明:作AA 2垂直x 轴于点A 2,在2AA F ∆中,2121tan ,2AA y FA p x α==-同理可证另一个.24.2A B 4AF BF ''=⋅;证明:2212124||4()()22ppA B AF BF y y x x ''=⋅⇔-=++ 2222121212121212242224y y y y x x px px p y y x x p ⇔+-=+++⇔-=+,由122y y p ⋅=-,1224p x x ⋅=得证.25. 设CC ’交抛物线于点M ,则点M 是CC ’的中点;证明:12121212(,),(,),CC ,22224x x y y y yx x p p C C ++++-''-∴中点横坐标为 把122y y y +=代入22y px =,得2221212121222222,2,.444y y y y px px p x x ppx px x +++-+-=∴==所以点M 的横坐标为12.4x x px +-=点M 是CC ’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y yy y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得 代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27. 设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为 把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴==所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F , PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF ∠ 证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥-- 又1||||AF AA =,所以PA 垂直平分A 1F. 同理可证另一个. 证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--1tan tan 1AF APAF AP k k FAP PAA k k -∴∠-∠=+⋅ 12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-=-=-=-=-+++⋅+⋅- 11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠ 同理可证另一个29.PFA PFB ∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证 易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅=证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++ 1212(,),22y y y y P p +22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+=++ ⎪ ⎪⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。

抛物线经典性质汇总30条

抛物线经典性质汇总30条

抛物线经典性质汇总30条作者: 日期:抛物线焦点弦性质总结30条基础回顾1. 以AB 为直径的圆与准线 L 相切;22. xb 2 =巳;43. yg —p 2;4. . AC'B = 90:;5. A'FB'=90:;6.阳二—心化+新皐1 1 27^ ^^+——=—;AF | |BF | P ' 8. A 、O B ‘三点共线; 9. B 、O A ‘三点共线;P 210.SL AOB =2sin a 'Aa FB'A(X1,Y1)(X2,Y2)C(X3,Y3)11. SL 2 AOB AB /P 、3=(2)(定值)12.AFP 1 -cos :BFP 1 cos :16.AB 岸2P ;1 117. CC' =一 AB =—( AA' + BB');2 2“ P18. K AB =-;y 319. tan .二二 y2 p ;X 2-号220.A'B' =4AF BF ;21. C'F =丄 A'B' •222. 切线方程 y 0y 二m x 0 x 性质深究 一)焦点弦与切线1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之处?结论1:交点在准线上先猜后证:当弦AB 丄x 轴时,则点P 的坐标为 -卫,0在准线上.< 2丿 证明:从略结论2切线交点与弦中点连线平行于对称轴结论3弦AB 不过焦点即切线交点 P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立?结论4过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与 x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点.结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB 是抛物线y 2 =2px (p >0)焦点弦,Q 是AB 的中点,丨是抛物线的准线, AA _丨,BB j _丨,过A , B 的切线相交于 P , PQ 与抛物线交于点 M.则有6PALPB. 7PF 丄 AB.8 M 平分 PQ9 PA 平分/ AAB, PB 平分 / BBA结论 结论 结论 结论 Q结论 10|F^| F^PF 2结论 11 S PAB min = P)非焦点弦与切线思考:当弦 AB 不过焦点,切线交于 P 点时, 也有与上述结论类似结果:结论13 PA 平分/ AAB 同理PB 平分/ BBA 结论 14 • PFA "PFB结论15点M 平分PQ■ 2结论 16 FA ,FB =PF相关考题1、已知抛物线X 2 =4y 的焦点为F , A B 是抛物线上的两动点,且 AF 「FB — >0),过AB 两点分别作抛物线的切线,设其交点为 M(1)证明:FM AB 的值;(2)设厶ABM 的面积为S ,写出S = f ■的表达式,并求 S 的最小值.2、已知抛物线C 的方程为X 2 =4y ,焦点为F ,准线为I ,直线m 交抛物线于两点 A, B ; (1)过点A 的抛物线C 的切线与y 轴交于点D,求证:AF =|DF ;(2)若直线m 过焦点F ,分别过点 A , B 的两条切线相交于点 M 求证:AML BM 且点M 在直线l 上.3、对每个正整数n , A n X n ,y n 是抛物线X ^ 4y 上的点,过焦点 F 的直线FA 交抛物线于另一 点 B n S n ,t n ,( 1 )试证:X n Sn = -4 ( n A 1)(2)取冷=2n ,并G 为抛物线上分别以 A 与B 为切点的两条切线的交点, 求证:FG +|F C 2| 十…+ FC n |=2n —2^十十1 (n 》1)结论12①X pY I Y 2 2py py 2 2抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想 得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一 个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当 重要的作用。

抛物线性质和知识点总结

抛物线性质和知识点总结

抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。

其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。

a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。

2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。

抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。

3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。

抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。

当直线与抛物线相切时,两个交点重合。

当直线与抛物线没有交点时,这个抛物线不与这条直线相交。

4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。

5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。

6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。

抛物线性质30条

抛物线性质30条

? y1 y2
2p , k
y1 y2
p2,
? x1x2
y12 y22 2p 2p
p4 4 p2
p2 . 4
17. AB
x1 x2 p
2p sin2 D
明: AB
AF FB
x1

p 2Leabharlann x2p 2
x1 x2 p,
| AB |
1
1 k2
( y1 y2 )2 4 y1 y2
1 AB
1 ( AAc BBc ) ;
2
2
3.以 AB 为 径 圆与准 L 切;
明:CC 是 形 AA BB 中位 ,
C'
C(x3,y3)
| AB | | AF | | BF | | AAc | | BBc | 2 | CCc | 2r
α
O
F
x
4. ACcB 90 ;( 1 可 )
5. AcFBc 90 ;
明:
CcF
1 AcBc 可 2
,| CcF |
1 2
|
AcBc
|
| CcAc |,
又 | AF | | AAc |,?得 . 同 可 另一个.
8. ACc 平分 AcAF , BCc 平分 BcBF ,A’F 平分 AFK ,B’F 平分 BFK .
明: ACc 垂 平分 AcF 可 .
p2 1 cot2 D 2
p2 2sinD .
19.
S2 'AOB
AB
§ p ·3 ¨© 2 ¸¹ (定值);
明:
AB
2p sin2 D
、 S'AOB
p2 2sinD 得 .

超详细抛物线知识点归纳总结

超详细抛物线知识点归纳总结

引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。

本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。

正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。

2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。

3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。

4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。

5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。

二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。

2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。

3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。

4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。

三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。

2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。

3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。

4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。

四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。

2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。

3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。

4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。

5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。

五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线经典性质总结30条1.2.23()2AOB S PAB =V (定值);3. 1cos P AF α=-;1cos P BF α=+; 4. 'BC 垂直平分'B F ;5. 'AC 垂直平分'A F ; 6. 'C F AB ⊥; 7. 2AB P ≥;8. 11'('')22CC AB AA BB ==+; 9. AB3PK=y ;10. 2p 22y tan =x -α;11.2A'B'4AF BF=⋅;12.1C'F A'B'2=.13. 切线方程 ()x x m y y +=0性质深究 一)焦点弦与切线1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论1:交点在准线上先猜后证:当弦x AB ⊥轴时,则点P 的坐标为⎪⎭⎫⎝⎛-0,2p 在准线上.证明: 从略结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立?结论 4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点先猜后证:过准线与x轴的交点作抛物线的切线,则过两切点AB的弦必过焦点.结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB是抛物线px2=(p>0)焦点弦,Q是ABy2,的中点,l是抛物线的准线,lAA⊥1,过A,B的切线相交于P,PQBB⊥l1与抛物线交于点M.则有结论6PA⊥PB.结论7PF⊥AB.结论8 M平分PQ.结论9 PA平分∠A1AB,PB平分∠B1BA.结论102FA=FB结论11PAB S ∆2minp =二)非焦点弦与切线思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果: 结论12 ①py y xp221=,221y y yp+=结论13 PA 平分∠A 1AB ,同理PB 平分∠B 1BA . 结论14 PFB PFA ∠=∠ 结论15 点M 平分PQ 结论2PF FB FA =相关考题 1、已知抛物线yx42=的焦点为F ,A ,B 是抛物线上的两动点,且FB AF λ=(λ>0),过A ,B 两点分别作抛物线的切线,设其交点为M , (1)证明:AB FM ⋅的值;(2)设ABM ∆的面积为S ,写出()λf S =的表达式,并求S 的最小值.2、已知抛物线C 的方程为yx42=,焦点为F ,准线为l ,直线m 交抛物线于两点A ,B ;(1)过点A 的抛物线C 的切线与y 轴交于点D ,求证:DF AF =;(2)若直线m 过焦点F ,分别过点A ,B 的两条切线相交于点M ,求证:AM ⊥BM ,且点M 在直线l 上. 3、对每个正整数n ,()nnny x A ,是抛物线yx42=上的点,过焦点F 的直线FA n 交抛物线于另一点()nnnt s B ,, (1)试证:4-=⋅n ns x(n ≥1) (2)取nnx2=,并C n 为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:122121+-=++++-n n n FC FC FC Λ(n ≥1)抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当重要的作用。

因此,在研究圆锥曲线的过程中,有意识地得到一些有关圆锥曲线的几何性质并且加以归纳,并在教学中与学生一起进行一些可行的研究,一方面,作为高考命题也会往这个方向上尝试,另一方面,作为新课程的一个理念,让学生进行一些学有余力的研究,提高学生学习数学的兴趣,提高学生自己研究问题的能力也很有帮助。

本人从一个在教学中学生遇到的习题结合该知识点有关的一些性质,并结合高考的热点题对这一性质作了一些研究。

题:抛物线y 2=2px (p>0)的准线与x 轴交于Q 点,过点Q 作斜率为k 的直线L 。

则“直线L 与抛物线有且只有一个交点”是“k=±1”的_________条件。

本题设计意图是考查学生对于直线与抛物线有且只有一个交点的问题的了解,要求学生掌握直线与抛物线相切时是只有一个交点,还有当直线与抛物线的对称轴平行时,直线与抛物线也只有一个交点,因此,经过简单的验证可知道上题的答案是必要不充分条件。

结合抛物线的下面的性质及上题的图形,我们发现了一些共同点。

性质1:已知AB 是经过抛物线y 2=2px (p>0)的焦点F 的弦,则以AB 为直径的圆与抛物线的准线相切。

证明:由图2可知,BF=BB 1,AF=AA 1,2PP =AA +BB 。

所以2PP =AB 。

其中图1是图2的一个特例,即当焦点弦是通径时,图2即变成了图1。

这就引导我们思考在图2中的两条直线P 1A 、P 1B 是否也是抛物线的两条切线,这样我们得出了抛物线的一个性质:性质2:已知AB 是经过抛物线y 2=2px (p>0)的焦点F的弦,则以A 、B 为切点的两条切线的交点P 落在其准线上。

证明:设A (x 1,y 1),B (x 2,y 2),P (x ,y ) 点A 在抛物线上:y 12=2px 1 (1) 点B 在抛物线上:y 22=2px 2(2) 过点A 的切线方程:yy 1=p (x+x 1) (3) 过点B 的切线方程:yy 2=p (x+x 2) (4) 直线AB 经过点F :222211p x y p x y -=-(5)将(1)式与(2)式分别代入(3)、(4)、(5)式,得到yy 1=p (x+p y 221)(3′)yy 2=p (x+py 222)(4′)y 1y 2=-p 2(5′)因为点P (x ,y )的坐标满足(3′)、(4′),所以y 1、y 2可视为是方程yt=p (x+p t 22)的两根,因此由韦达定理可得y 1y 2=-p 2=2px 。

即x=2p -。

所以点P 的轨迹为抛物线的准线。

从上面的证明中我们可以看出,当A 、B 两点的坐标满足某种条件时,则以A 、B 为A B P 1 F O x y A 1B 1 P A B FOx yQ 图1 图2切点的两条切线的交点一定落在某条固定的直线上。

因此,我们更进一步地得出了更好的性质:性质3:已知AB 是经过抛物线y 2=2px (p>0)的对称轴(即x 轴)上一定点P (m ,0)(m>0)的弦,则以A 、B 为切点的两条切线的交点Q 的轨迹是一条直线x=-m 。

证明:略。

对于上述性质的得出,我们使用了抛物线上已知切点坐标的切线方程的写法,但如果换一个角度看这个问题,我们也可以得出另一种形式的性质:性质3′:动点P 在直线x=-m 上运动,过点P 作抛物线的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,得到弦AB ,那么弦AB 过定点(m ,0)。

证明:略。

根据上面的讨论,我们得到了关于抛物线的一个性质,特别是对于抛物线的切线以及抛物线中动弦中的定值问题的结合,在高考题的命题中也常有涉及。

例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。

(1)若OB OA ⋅=2,求c 的值;(2)若P 为线段AB 的中点,求证:AQ 为抛物线的切线; (3)试问(2)的逆命题是否成立。

解:(1)设A (x 1,y 1),B (x 2,y 2),C (0,c )点A 在抛物线上:y 1=x 12 (1)点B 在抛物线上:y =x 2(2)直线AB 经过点C :2211x cy x c y -=- (3)将(1)式与(2)式分别代入(3)式,得到x 1x 2=-c ,y 1y 2=c 2 由OB OA ⋅= x 1x 2+y 1y 2=2,得c=2。

(2)P 为线段AB 的中点,得点Q 的坐标为(221x x +,-c )由AQ 的斜率k 1=121212121112)(22x x x x x x x x x c y =--=+-+,过点A 的切线的斜率为k 2=2x 1。

所以直线AQ 是抛物线的切线。

(3)过点A 的切线方程为y-y 1=2 x 1(x-x 1)与直线y=-c 相交于点Q , 将y=-c 代入y-y 1=2 x 1(x-x 1),可得-c-x 12=2 x 1(x-x 1)即x 1x 2-x 12=2 x 1(x-x 1) 所以点Q 的横坐标为221x x +,即点P 为线段AB 的中点。

(2)的逆命题成立。

该题的命题思路就是借助于性质3而编制的一道中等难度的题。

其中主要运用了切线的斜率,切线的方程的写法,以及抛物线中的定值的使用。

下题也是用类似的方法命制的题。

例2:(2006全国高考卷Ⅱ21题)抛物线x 2=4y 的焦点F ,A 、B 是抛物线上两动点,且λ=,过A 、B 两点分别作抛物线的切线,设其交点为M 。

(1) 证明:⋅为定值;xyA BPQO(2) 设△ABM 的面积为S ,写出S=f (λ)的表达式,并求出S 的最小值。

解:(1)设A (x 1,y 1),B (x 2,y 2),F (0,1)点A 在抛物线上:4y 1=x 12 (1)点B 在抛物线上:4y 2=x 22 (2)直线AB 经过点F :221111x y x y -=- (3)得到过点A 的切线方程:2(y-y 1)=x 1(x-x 1) (4)过点B 的切线方程:2(y-y 2)=x 2(x-x 2) (5) 由(1)(2)(3)得x 1x 2=-4,y 1y 2=1。

由(4)、(5)得M 坐标为(221x x +,-1)。

所以⋅=(221x x +,-2)·(x 2- x 1,y 2- y 1)=0)(22122122=---y y x x 。

(2)FB AF λ=,即(0-x 1,1-y 1)=λ(x 2,y 2-1) 所以-x 1=λx 2,再由x 1x 2=-4,得λx 2x 2=4, 即x 2=λ4,则x 1=λ4-,y 1=λ,y 2=λ1。

由AB FM ⋅=0, 所以S= f (λ)=()()422121221221221+⎪⎭⎫⎝⎛+⨯-+-=⨯x x y y x x FM AB =41213≥⎪⎪⎭⎫⎝⎛+λλ。

当λ=1时,△ABM 的面积S 取得最小值。

相关文档
最新文档