抛物线经典性质总结30条
(完整版)抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
抛物线经典性质总结30条

抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
抛物线经典性质汇总30条

抛物线经典性质汇总30条作者: 日期:抛物线焦点弦性质总结30条基础回顾1. 以AB 为直径的圆与准线 L 相切;22. xb 2 =巳;43. yg —p 2;4. . AC'B = 90:;5. A'FB'=90:;6.阳二—心化+新皐1 1 27^ ^^+——=—;AF | |BF | P ' 8. A 、O B ‘三点共线; 9. B 、O A ‘三点共线;P 210.SL AOB =2sin a 'Aa FB'A(X1,Y1)(X2,Y2)C(X3,Y3)11. SL 2 AOB AB /P 、3=(2)(定值)12.AFP 1 -cos :BFP 1 cos :16.AB 岸2P ;1 117. CC' =一 AB =—( AA' + BB');2 2“ P18. K AB =-;y 319. tan .二二 y2 p ;X 2-号220.A'B' =4AF BF ;21. C'F =丄 A'B' •222. 切线方程 y 0y 二m x 0 x 性质深究 一)焦点弦与切线1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之处?结论1:交点在准线上先猜后证:当弦AB 丄x 轴时,则点P 的坐标为 -卫,0在准线上.< 2丿 证明:从略结论2切线交点与弦中点连线平行于对称轴结论3弦AB 不过焦点即切线交点 P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立?结论4过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与 x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点.结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB 是抛物线y 2 =2px (p >0)焦点弦,Q 是AB 的中点,丨是抛物线的准线, AA _丨,BB j _丨,过A , B 的切线相交于 P , PQ 与抛物线交于点 M.则有6PALPB. 7PF 丄 AB.8 M 平分 PQ9 PA 平分/ AAB, PB 平分 / BBA结论 结论 结论 结论 Q结论 10|F^| F^PF 2结论 11 S PAB min = P)非焦点弦与切线思考:当弦 AB 不过焦点,切线交于 P 点时, 也有与上述结论类似结果:结论13 PA 平分/ AAB 同理PB 平分/ BBA 结论 14 • PFA "PFB结论15点M 平分PQ■ 2结论 16 FA ,FB =PF相关考题1、已知抛物线X 2 =4y 的焦点为F , A B 是抛物线上的两动点,且 AF 「FB — >0),过AB 两点分别作抛物线的切线,设其交点为 M(1)证明:FM AB 的值;(2)设厶ABM 的面积为S ,写出S = f ■的表达式,并求 S 的最小值.2、已知抛物线C 的方程为X 2 =4y ,焦点为F ,准线为I ,直线m 交抛物线于两点 A, B ; (1)过点A 的抛物线C 的切线与y 轴交于点D,求证:AF =|DF ;(2)若直线m 过焦点F ,分别过点 A , B 的两条切线相交于点 M 求证:AML BM 且点M 在直线l 上.3、对每个正整数n , A n X n ,y n 是抛物线X ^ 4y 上的点,过焦点 F 的直线FA 交抛物线于另一 点 B n S n ,t n ,( 1 )试证:X n Sn = -4 ( n A 1)(2)取冷=2n ,并G 为抛物线上分别以 A 与B 为切点的两条切线的交点, 求证:FG +|F C 2| 十…+ FC n |=2n —2^十十1 (n 》1)结论12①X pY I Y 2 2py py 2 2抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想 得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一 个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当 重要的作用。
抛物线和性质知识点大全

抛物线和性质知识点大全抛物线是一种二次函数图像,具有以下性质:1. 抛物线的对称轴与其开口方向垂直,对称轴方程可以通过将抛物线标准式中的$x$ 替换为 $-c$ 求出,其中 $c$ 是抛物线的横坐标的中心值。
对称轴上的任何一点都是抛物线的最高点或最低点。
2. 抛物线的焦点是一个特殊的点,它与抛物线的开口方向和大小有关。
焦点是抛物线上所有的反射光线汇聚成的点。
计算焦点可以利用以下公式:$F=\left(\frac{1}{4a},\frac{c}{4a}\right)$,其中 $a$ 是抛物线开口处的系数,$c$ 是对称轴的水平位置。
3. 抛物线上的任何一点到对称轴的距离都等于该点到焦点的距离,这是由于抛物线的定义所决定的。
这个性质可以用来找到抛物线上的点到对称轴的距离,以及在给定焦点和直线上的点的情况下,找到抛物线方程。
5. 抛物线的 $x$ 与 $y$ 轴的交点称为抛物线的零点。
因为抛物线是一个二次函数,所以它最多有两个零点。
6. 抛物线在对称轴两侧的图像是对称的,图像的形状类似于 "U"。
7. 抛物线的开口方向可以使用其系数的正负来确定。
如果系数为正,则抛物线向上开口;如果系数为负,则抛物线向下开口。
8. 当 $a>0$ 时,抛物线开口向上,最低点(即顶点)为全局最小值,并且当 $x$ 的值趋近于正无穷大或负无穷大时,函数值也趋近于正无穷大。
当 $a<0$ 时,抛物线开口向下,最高点(即顶点)为全局最大值,并且当 $x$ 的值趋近于正无穷大或负无穷大时,函数值也趋近于负无穷大。
9. 抛物线的导数是一个一次函数,其斜率在顶点处为零。
10. 任意两个点之间的抛物线弧长可以通过积分抛物线导数的平方再开平方根的方法求出。
抛物线性质30条

? y1 y2
2p , k
y1 y2
p2,
? x1x2
y12 y22 2p 2p
p4 4 p2
p2 . 4
17. AB
x1 x2 p
2p sin2 D
明: AB
AF FB
x1
p 2Leabharlann x2p 2
x1 x2 p,
| AB |
1
1 k2
( y1 y2 )2 4 y1 y2
1 AB
1 ( AAc BBc ) ;
2
2
3.以 AB 为 径 圆与准 L 切;
明:CC 是 形 AA BB 中位 ,
C'
C(x3,y3)
| AB | | AF | | BF | | AAc | | BBc | 2 | CCc | 2r
α
O
F
x
4. ACcB 90 ;( 1 可 )
5. AcFBc 90 ;
明:
CcF
1 AcBc 可 2
,| CcF |
1 2
|
AcBc
|
| CcAc |,
又 | AF | | AAc |,?得 . 同 可 另一个.
8. ACc 平分 AcAF , BCc 平分 BcBF ,A’F 平分 AFK ,B’F 平分 BFK .
明: ACc 垂 平分 AcF 可 .
p2 1 cot2 D 2
p2 2sinD .
19.
S2 'AOB
AB
§ p ·3 ¨© 2 ¸¹ (定值);
明:
AB
2p sin2 D
、 S'AOB
p2 2sinD 得 .
抛物线知识点总结_高三数学知识点总结

抛物线知识点总结_高三数学知识点总结抛物线是一种二次函数,其标准形式为y=ax^2+bx+c,其中a、b、c为实数且a≠0。
在抛物线上,取值较小的一侧为开口向上的抛物线,取值较大的一侧为开口向下的抛物线。
抛物线的性质:1. 平移性质:对于标准形式y=ax^2+bx+c的抛物线,若h、k为实数,则抛物线y=a(x-h)^2+k表示平移了h个单位向右,k个单位向上(k>0)或向下(k<0)后的抛物线。
2. 判别式:若抛物线y=ax^2+bx+c的判别式Δ=b^2-4ac>0,则抛物线与x轴有两个交点,即开口向上的抛物线在x轴上方,开口向下的抛物线在x轴下方。
若Δ=0,则抛物线与x轴只有一个交点,抛物线与x轴相切。
若Δ<0,则抛物线与x轴没有交点,即开口向上的抛物线在x轴下方,开口向下的抛物线在x轴上方。
3. 对称性质:在抛物线y=ax^2+bx+c上,对于任意实数x,都有关于抛物线的对称点(x,-ax^2-bx-c)。
4. 最值性质:对于开口向上的抛物线,其最低点为顶点,对应的坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
最低点处的纵坐标为抛物线的最小值。
对于开口向下的抛物线,其最高点为顶点,对应的坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
最高点处的纵坐标为抛物线的最大值。
5. 零点性质:抛物线与x轴的交点称为零点,若抛物线y=ax^2+bx+c有零点,则有两个零点,记为x1和x2(x1≠x2),且x1+x2=-b/a,x1*x2=c/a。
6. 奇偶性质:对于抛物线y=ax^2+bx+c,若a为奇数,则抛物线是奇函数,即f(-x)=-f(x);若a为偶数,则抛物线是偶函数,即f(-x)=f(x)。
7. 渐进线性质:对于开口向上的抛物线y=ax^2+bx+c,当x趋于无穷大时,抛物线趋近于y=x的直线;当x趋于负无穷大时,抛物线趋近于y=x的直线。
抛物线及其性质知识点大全推荐文档

抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
抛物线焦点弦性质总结30条

1. 以AB 90(AC 2. 3. '90A FB ∠('A F 4.C F '⊥5.BC '垂直平分B F ' 6.AC '垂直平分A F ' 7.抛物线的准线与x 轴相交于点P ,则.BPF APF ∠=∠ 8.B 、O 、A '三点共线 9. A 、O 、B '三点共线10. 2124p x x = 11. 212y y p =-12. 123222()22sin p p AB x x p x d α=++=+==弦中点到准线 11'('')22CC AB AA BB ==+ 13. 123222()22cos p p AB y y p y d α=++=+==弦中点到准线14. 焦点弦弦长|AB|=x 1+x 2+p,当x 1=x 2时,叫通径,焦点弦弦长最短为2p. 有2AB p ≥15. 112AF BF P +=; 1cos P AF α=-; 1cos P BF α=+16. 243p OB OA -=⋅17. 22sin AOB P S α=18. ⇔⎪⎪⎭⎫ ⎝⎛+=∆AF BF BF AF p S AOB 42弦AB 过焦点 19. 23()2AOB S P AB = 20. ||||||2FB FA F C ⋅='; 2A'B'4AF BF =⋅; 1C'F A'B'2=21. AB 3P K =y ; 2p 22y tan =x -α 22. 切点在抛物线上的切线方程 ()x x p y y +=0023. 点)0,(p D 处的结论:点)0,(p 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点: )0,(a A 在点)0,(p 左边时顶点O 到点)0,(a A 的距离最近,最近距离为a ;)0,(a A 在点)0,(p 右边时横坐标为p a -的两个抛物线上的点到点)0,(a A 的距离最近,最近距离为22p ap -.24. 设过点()0,p D 的直线交抛物线px y 22=于A 、B ,则=+2211DB DA 21p 25. 点)0,2(p E 处的结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p .(2)2214p x x =,2214p y y -=. 26. 准线上的有关结论:过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线性质30条已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证:1.12||,||,22p pAF x BF x =+=+ 2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2|AB AF BF AA BB ''=+=+=4.90AC B '∠=o;(由1可证) 5.90A FB ''∠=o ;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠Q P Q 证明:同理:1,2B FK BFK '∠=∠得证. 6.1C F A B 2'''=.证明:由90A FB ''∠=o得证.7.AC '垂直平分A F ';BC '垂直平分B F '证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴Q 又得证 同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅--u u u u v u u u v22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个. 11.112AF BF P+=; 证明:由1cos P AF α=-;1cos PBF α=+;得证.12. 点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-= 由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证. 证法二:(求导)22y px =两边对x 求导得1122,,|,x x p p yy p y y y y ='''==∴=得证. 13.AC’是切线,切点为A ;B C’是切线,切点为B ;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,)22y y p C +'-,得证. 14. 过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p , 22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+ 显然22440,t p ∆=+>切点有两个,设为222221212(,),2,,2y Q y y y t y y p p+==-则 1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----- 1222121211221222220,py py p py y y y y y y y y y =-=-=++++ 所以Q 1Q 2过焦点. 22222222121212121212122(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y t p p p+⋅=+-⋅+-=+++-++u u u u v u u u u v 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线; 证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为()2py k x =-,与22y px =联立,得2220,ky py kp --= 212122,,p y y y y p k∴+==- 224212122.2244y y p p x x p p p ∴=⋅== 17.1222sin pAB x x p α=++=证明:1212,2p pAB AF FBx x x x p =+=+++=++||2AB ===222.sin pα==得证.18.22sin AOB p S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅=22sin p α===. 19.322AOB S p AB ∆⎛⎫= ⎪⎝⎭(定值);22sin AOB p S α∆=得证. 20.22sin ABC p S α'∆= 证明:11||||222ABC S AB PF '∆=⋅=⋅ 22221(1)sin p p k α==+=21.2AB p ≥; 证明:由22sin pAB α=得证. 22.122AB pk y y =+; 证明:由点差法得证.23.121222tan P P y y x x α==--; 证明:作AA 2垂直x 轴于点A 2,在2AA F ∆中,2121tan ,2AA y FA p x α==-同理可证另一个.24.2A B 4AF BF ''=⋅;证明:2212124||4()()22ppA B AF BF y y x x ''=⋅⇔-=++ 2222121212121212242224y y y y x x px px p y y x x p ⇔+-=+++⇔-=+,由122y y p ⋅=-,1224p x x ⋅=得证.25. 设CC ’交抛物线于点M ,则点M 是CC ’的中点;证明:12121212(,),(,),CC ,22224x x y y y yx x p p C C ++++-''-∴中点横坐标为 把122y y y +=代入22y px =,得2221212121222222,2,.444y y y y px px p x x ppx px x +++-+-=∴==所以点M 的横坐标为12.4x x px +-=点M 是CC ’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y yy y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得 代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27. 设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为 把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴==Q所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F , PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF ∠ 证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥-- 又1||||AF AA =,所以PA 垂直平分A 1F. 同理可证另一个. 证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--1tan tan 1AF APAF AP k k FAP PAA k k -∴∠-∠=+⋅ 12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-=-=-=-=-+++⋅+⋅- 11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠ 同理可证另一个29.PFA PFB ∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证 易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅=u u u v u u u v u u u v证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++ 1212(,),22y y y y P p +Q 22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+=++ ⎪ ⎪⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。