《1.3.1二项式定理(第一课时)》学案
二项式定理第1课时精品教案

1.3二项式定理【课题】:1.3.1二项式定理【教学目标】:(1)知识与技能::1、能用计数原理证明二项式定理;2、掌握二项式定理及二项式展开式的通项公式(2)过程与方法:在推导证明的过程中培养类比、归纳能力及科学的思维方式;(3)情感态度与价值观:、培养勇于探索、勇于创新的个性品质,体验数学美,激发爱国主义热情【教学重点】:掌握二项式定理及二项式展开式的通项公式【教学难点】:用计数原理推导二项式定理的过程中各项系数的规律.并求指定项【课前准备】:Powerpoint或投影片【教学过程设计】:教学环节教学活动设计意图一、复习引入:二、讲解新课:一、复习引入:⑴;22202122222()2a b a ab b C a C ab C b+=++=++⑵33223031222333333()33a b a a b ab b C a C a b C ab C b+=+++=+++⑶的各项都是次式,4()()()()()a b a b a b a b a b+=++++4即展开式应有下面形式的各项:,,,,,4a3a b22a b3ab4b展开式各项的系数:上面个括号中,每个都不取的情况有种,即4b104C种,的系数是;恰有个取的情况有种,的系数是,4a04C1b14C3a b14C恰有个取的情况有种,的系数是,恰有个取的情况2b24C22a b24C3b有种,的系数是,有都取的情况有种,的系数是34C3ab34C4b44C4b,44C∴40413222334444444()a b C a C a b C a b C a b C b+=++++二、讲解新课:1、二项式定理:01()()n n n r n r r n nn n n na b C a C a b C a b C b n N-*+=+++++∈引入课题对二项式定理(基础题)1.的展开式中,不含a 的项是第( D )项153)a1a (-A .7B .8C .9D .62.由展开所得的的多项式中,系数为有理数的共有 (B )1003)23(+x x 50项17项 16项 15项()A ()B ()C ()D 3.若展开式中存在常数项,则n 的值可以是 ( C )n xx )2(3+A .8B .9C .10 D .12(中等题)4.展开式中的系数为_________288)1(xx -5x .5.展开式中含的项为_______________.9)23(z y x +-432z y x 43290720z y x -(难题)6.在的展开式中,的系数是的系数与的系数的等差中项,若实数,7)1(+ax 3x 2x 4x 1>a 那么______________.=a 5101+7.的展开式中,的系数为__________.179(用数字作答))1()2(210-+x x 10x 8.设展开式中第2项的系数与第4项的系数的比为4:45,试求项的系nxx )32(-2x 数.解:第项,1r +32213()2(3)n r r n r r r n r r r n n T C C xx---+-=⋅⋅=⋅⋅-∴,即,∴,113332(3)42(3)45n n n n C C --⋅⋅-=⋅⋅-4649(1)(2)45n n n n ⋅=⋅--23280n n --=∴或(舍负).7n =4n =-令,即,∴.3222n r -=73222r -=1r =∴项的系数2x 17172(3)1344C -⋅⋅-=-。
二项式定理(第一课时)优秀教学设计

1.3.1 二项式定理课前预习学案预习目标:通过分析(a+b)2 、(a+b )3的展开式,猜测归纳得出二项式定理;掌握二项式定理的公式特征。
问题1:利用多项式乘以多项式运算法则,展开下列三个式子:(要求:按a 的次幂从高到低排列各项)(a+b )2=(a+b )3 =问题2:观察(a+b )2,(a+b )3 三个展开式各自的特点,试写出:(a+b )n 展开有 项相加,每一项都是 次单项式。
每一项中字母a 的指数由 递 到 。
每一项中字母b 的指数由 递 到 。
那每一项前的系数有什么规律呢?问题3:猜想:(a+b )n 的展开式中的每一项有哪些?(a+b )n 展开式中的项有:问题4:在(a+b )2的展开式中22,,b ab a 是怎么来的?问题5:再次猜想:(a+b )n 的展开式又是什么呢?(a+b )n =(利用2-3分钟小组交流上面问题,展示3分钟)课内探究学案一、学习目标:知识:1.掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项。
过程:2.通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力。
情感:3.激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识。
二、学习重难点:教学重点:(1)二项式定理及通项公式的运用(2)展开式中某一项的系数与二项式系数的区别教学难点:二项定理的推导及运用三、学习过程:1.新课讲授:(5分钟)二项式定理证明二项式定理。
归纳小结:二项式定理的公式特征(1)项数:_______;(2)次数:字母a按降幂排列,次数由____递减到_____;字母b按升幂排列,次数由____递增到______;(3)二项式系数:下标为_____,上标由_____递增至_____;(4)通项:T k+1=__________;指的是第k+1项,该项的二项式系数为______;(5)公式所表示的定理叫_____________,右边的多项式叫做(a+b)n的二项展开式。
《1.3.1 二项式定理》学历案

《1.3.1 二项式定理》学历案姓名:班级:学号:【主题与课时】人民教育出版社高中选修2 3第一章计数原理1.3.1二项式定理【课标要求】1、理解二项式定理,能用计数原理证明二项式定理。
2、会用二项式定理解决与二项展开式有关的简单问题。
【学习目标】1、同学们在学完这节课后,能准确说出二项式定理的表达式。
比如说,像$(a + b)^n$展开后是什么样的式子,要能说得出来。
2、能够理解二项式定理推导过程中所用到的计数原理,就是知道这个式子是怎么来的,而不是死记硬背。
3、可以熟练运用二项式定理去求二项展开式中的特定项,例如求第k项是啥样的。
4、能解决一些简单的二项式相关的实际问题,就像在生活里遇到的一些类似情况,也能把这个知识用上。
【评价任务】1、通过课堂提问和小组讨论的表现,来检测目标1和2是否达成。
如果在课堂上能积极回答关于二项式定理表达式和推导原理的问题,那就说明掌握得还不错。
2、做一些专门设计的练习题,要是能顺利求出二项展开式中的特定项,就达到目标3啦。
3、布置一个实际的小问题,要是能运用二项式定理解决,那目标4就达成了。
【学习过程】一、情境导入同学们,咱们来想象一下这样一个场景啊。
学校要组织一场趣味数学竞赛,其中有一个挑战环节是关于数字组合的。
给你一个像$(a +b)^n$这样的式子,让你快速算出它展开后的结果。
这可不像咱们平常简单的加法或者乘法运算哦。
这就好比你要把一堆不同颜色的积木按照特定的规则组合起来,而且这个规则还和数学里的计数原理有关系呢。
这时候啊,咱们要是掌握了一个神奇的公式,就能轻松搞定这个挑战啦,这个神奇的公式就是咱们今天要学习的二项式定理。
二、任务一:二项式定理的表达式1、首先呢,咱们来探索一下二项式定理的表达式到底长啥样。
咱们从简单的例子开始看啊。
比如说$(a + b)^2$,根据咱们学过的乘法分配律,$(a + b)^2=(a + b)(a + b)=a^2+2ab + b^2$。
1.3.1二项式定理(教案)

1. 3.1二项式定理教学目标:知识与技能:进一步掌握二项式定理和二项展开式的通项公式 过程与方法:能解决二项展开式有关的简单问题情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课教 具:多媒体、实物投影仪第一课时一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵3322303122233333()33a b a a b ab b C a C a b C ab C b +=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式, 即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b ,展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴4413222334444444()a b C a C a b C a b C a b C b +=++++. 二、讲解新课:二项式定理:01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()n a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,na 的系数是0n C ; 恰有1个取b 的情况有1n C 种,na b 的系数是1n C ,……,恰有r 个取b 的情况有rn C 种,n rr ab -的系数是rn C ,……,有n 都取b 的情况有n n C 种,nb 的系数是nn C , ∴01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n T C a b -+=. ⑸二项式定理中,设1,a b x ==,则1(1)1n r rn n x C x C x x +=+++++三、讲解范例:例1.展开41(1)x+.解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x=++++. 解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++.例2.展开6.解:6631(21)x x =-61524332216666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x=-+-+-+ 32236012164192240160x x x x x x=-+-+-+.例3.求12()x a +的展开式中的倒数第4项解:12()x a +的展开式中共13项,它的倒数第4项是第10项,9129933939911212220T C x a C x a x a -+===.例4.求(1)6(23)a b +,(2)6(32)b a +的展开式中的第3项.解:(1)24242216(2)(3)2160T C a b a b +==, (2)24242216(3)(2)4860T C b a b a +==.点评:6(23)a b +,6(32)b a +的展开后结果相同,但展开式中的第r 项不相同例5.(1)求9(3x+的展开式常数项; (2)求9(3x +的展开式的中间两项 解:∵399292199()33r r r r r r r x T C C x ---+==⋅,∴(1)当390,62r r -==时展开式是常数项,即常数项为637932268T C =⋅=; (2)9(3x +的展开式共10项,它的中间两项分别是第5项、第6项,489912593423T C xx--=⋅=,15951092693T C x --=⋅=例6.(1)求7(12)x +的展开式的第4项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.例7.求42)43(-+x x 的展开式中x 的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开解:(法一)42)43(-+x x 42]4)3[(-+=x x02412344(3)(3)4C x x C x x =+-+⋅22224(3)4C x x ++⋅3234444(3)44C x x C -+⋅+⋅,显然,上式中只有第四项中含x 的项,∴展开式中含x 的项的系数是76843334-=⋅⋅-C(法二):42)43(-+x x 4)]4)(1[(+-=x x 44)4()1(+-=x x)(4434224314404C x C x C x C x C +-+-=0413222334444444(4444)C x C x C x C x C +⋅+⋅+⋅+⋅ ∴展开式中含x 的项的系数是34C -334444C +768-=.例8.已知()()nmx x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求展开式中含2x 项的系数最小值分析:展开式中含2x 项的系数是关于n m ,的关系式,由展开式中含x 项的系数为36,可得3642=+n m ,从而转化为关于m 或n 的二次函数求解解:()()1214m nx x +++展开式中含x 的项为1124m n C x C x ⋅+⋅=11(24)m n C C x +∴11(24)36m n C C +=,即218m n +=,()()1214mnx x +++展开式中含2x 的项的系数为t =222224mn C C +222288m m n n =-+-, ∵218m n +=, ∴182m n =-,∴222(182)2(182)88t n n n n =---+-216148612n n =-+23715316()44n n =-+,∴当378n =时,t 取最小值,但*n N ∈, ∴ 5n =时,t 即2x 项的系数最小,最小值为272,此时5,8n m ==.第四课时例9.已知n 的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:1221121()22n n C C ⋅=+⋅,即0892=+-n n ,∴8(1n n ==舍去)∴818(rrrr T C-+=⋅82481()2r r r r C x x --=-⋅⋅()1638412r rr r C x -=-⋅08r r Z ≤≤⎛⎫⎪∈⎝⎭①若1+r T 是常数项,则04316=-r,即0316=-r , ∵r Z ∈,这不可能,∴展开式中没有常数项; ②若1+r T 是有理项,当且仅当4316r-为整数, ∴08,r r Z ≤≤∈,∴ 0,4,8r =,即 展开式中有三项有理项,分别是:41x T =,x T 8355=,292561-=x T 例10.求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+四、课堂练习:1.求()623a b +的展开式的第3项. 2.求()632b a +的展开式的第3项. 3.写出n 33)x21x (-的展开式的第r+1项.4.求()732x x+的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开:(1)5(a ;(2)5.6.化简:(1)55)x 1()x 1(-++;(2)4212142121)x 3x 2()x 3x 2(----+7.()5lg xx x +展开式中的第3项为610,求x .8.求nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项答案:1. 262242216(2)(3)2160T C a b a b -+==2. 262224216(3)(2)4860T C b a a b -+==3.2311(2rn rr n rrr r nn T C C x--+⎛⎫==- ⎪⎝⎭4.展开式的第4项的二项式系数3735C =,第4项的系数3372280C = 5. (1)552(510105a a a a a b =++; (2)52315(2040322328x x x x =+-. 6. (1)552(1(122010x x +=++; (2)1111442222432(23)(23)192x x x x x x--+--=+ 7. ()5lg xx x +展开式中的第3项为232lg 632lg 551010x x C xx ++=⇒=22lg 3lg 50x x ⇒+-=5lg 1,lg 2x x ⇒==-10,1000x x ⇒== 8. nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项为2(1)n nn C -五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点六、课后作业: P36 习题1.3A 组1. 2. 3.4 七、板书设计(略)八、教学反思:(a+b) n=这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)n的 ,其中rn C (r=0,1,2,……,n )叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项.掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
1.3.1二项式定理(学案)

1.3.1二项式定理学案广东省信宜市第XX中学高二级数学组陈XX【教学目标】【学情分析】【教学重难点】1、重点:二项式定理的发现、理解和初步应用。
2、难点:二项式定理的发现。
【教学过程】1、情景设置问题1:若今天是星期一,那么7天后的这一天是星期几呢?预期回答:星期一问题2:如果是15天后的这一天呢?预期回答:星期二,将问题转化为求“15被7除后算余数”是多少。
问题3:如果是8100(N”)天后的这一天呢?预期回答:将问题转化为求“ 8100 =(7 1)100被7除后算余数”是多少,也就是研究(a b)n(N ”)的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。
2、新授第一步:让学生展开1(a b)二a b(a b)2 = a2 2ab b2;3 2 3 2 2 3(a b) = (a b) (a b) = a 3a b 3ab b ;(a b)4二?公元1世纪《九章算术》其中提及:(a b)^?尝试二项式定理的发现1(a b)二a b(a b)2 = a2 2ab b2;3 2 32 2 3(a b) = (a b) (a b)二a 3a b 3ab b ;(a b)4=?初步归纳出下式:(a 七广=:[a" •a n 'b • • a n "b ‘ 亠••亠〔b n g练习:展开(a ■ b)7教师作阶段性评价,告诉学生以上的系数表是我国宋代数学家杨辉的杰作, 称为杨辉三角形,这项发明比欧洲人帕斯卡三角早 400多年。
你们今天做了与杨辉同样的探索, 以鼓励 学生探究的热情,并激发作为一名文明古国的后代的民族自豪感和爱国热情。
第二步:继续设疑如何展开(a - b)100以及(a b)n (n N )呢?(设计意图:让学生感到仅掌握杨辉三角形是不够的, 激发学生继续学习新的更简捷的方法的欲望。
)继续新授师:为了寻找规律,我们将 (a - b)4 = (a - b)(a b)(a - b)(a - b)中第一个括号中的 字母分别记成a i ,b i ;第二个括号中的字母分别记成 a 2,b 2 ;依次类推。
1.3.1.二项式定理 学案

§1.3.1 二项式定理(1)学习目标1. 能从特殊到一般理解二项式定理;2. 熟练运用通项公式求二项展开式中指定的项(如常数项、有理项);3. 能正确区分“项”、“项的系数”、“项的二项式系数”等概念学习过程一、课前准备(预习教材P 29~ P 31,找出疑惑之处)复习1: 积()()n n b b b a a a +⋅⋅⋅+++⋅⋅⋅++2121 展开后,共有 项.复习2:在n=1,2,3时,写出 n b a )(+的展开式.1)(b a += ,2)(b a += ,3)(b a += ,①1)(b a +展开式中项数为 ,每项的次数为 ;②2)(b a +展开式中项数为 ,每项的次数为 ,a 的次数规律是 ,b 的次数规律是 .③3)(b a +展开式中项数为 ,每项的次数为 ,a 的次数规律是 ,b 的次数规律是 .复习3:4个容器中有相同的红、黑玻璃球各一个从每个容器中取一个球,有 不同的结果,其中取到4个红球有 种不同取法,取到3个红球1个黑球有 种不同取法,取到2个红球2个黑球有 种不同取法,取到4个黑球有 种不同取法.二、新课导学※ 学习探究探究任务一: 二项式定理问题1: 猜测 nb a )(+展开式中共有多少项?分别有哪些项?各项系数分别是什么?新知:++⋅⋅⋅++=+--r r n r n n n n n n b a C b a C a C b a 110)(n n n b C +⋅⋅⋅(*∈N n ) 上面公式叫做二项式定理,公式右边的多项式叫做n b a )(+的展开式,其中r nC (r =0,1,2,…,n )叫做 , 叫做二项展开式的通项,用符号 表示,即通项为展开式的第 项.试试:写出=+6)1(x , ⑴ 展开式共有 项,⑵ 展开式的通项公式是 ;⑶ 展开式中第4项的二项式系数是 ,第四项系数是 .反思:n b a )(+的展开式中,二项式系数与项系数相同吗?※ 典型例题例1 用二项式定理展开下列各式:⑴ 4)1(x -; ⑵ 6)12(x x -变式:写出 4)11(x +的展开式.例2 ⑴ 求6)21(x +展开式的第4项,并求第4项系数和它的二项式系数;⑵ 求9)1(x x -展开式中3x 的系数.变式:求9)33(x x+ 展开式中的常数项和中间项.小结:对有关二项式展开式中特殊项及其系数问题,一般都采用通项公式解决.※ 动手试试练1. ⑴ 求()632b a +展开式中的第3项系数和二项式系数.练2. ⑴ 求9212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项; ⑵ 若()12n x +的展开式中第6项与第7项的系数相等,求n 及()12n x +展开式中含3x 的项.三、总结提升※ 学习小结1. 注意二项式定理中二项展开式的特征.2. 区别二项式系数,项的系数,掌握用通项公式求二项式系数,项的系数及项的方法.※ 知识拓展问:7)32(c b a ++的展开式中232c b a 项的系数是多少? 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. ()112a b +的展开式中第3项的二项式系数为第3项系数为 ;2. 10)1(-x 展开式的第6项系数是( )(A) 610C (B) 610C - (C) 510C (D)510C - 3. 在()612x -的展开式中,含3x 项的系数是 ;4. 在531a a ⎛⎫- ⎪⎝⎭的展开式中,其常数项是 ;5. ()12x a +的展开式中倒数第4项是 .课后作业1. 求()102332b a -展开式中第8项;2. 求624x x ⎛⎫- ⎪ ⎪⎝⎭的展开式中的常数项.3.求15)21(x -展开式的前4项;4.(04年全国卷)81⎪⎪⎭⎫⎝⎛-x x 展开式中5x 的系数是 .。
学案5:1.3.1 二项式定理

1.3.1 二项式定理目标导航学习目标重点、难点1.能用计数原理证明二项式定理.2.能记住二项式定理和二项展开式的通项公式.3.能解决与二项式定理有关的简单问题. 重点:掌握二项式定理和二项展开式的通项公式,能求特定项和系数. 难点:解决与二项式定理有关的简单问题.预习引导 1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N *) (1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项式的展开式,展开式中一共有____项. (3)二项式系数:各项的系数__(k ∈{0,1,2,…,n })叫做二项式系数. 2.二项展开式的通项(a +b )n 展开式中第k +1项____________(k ∈{0,1,2,…,n })称为二项展开式的通项. 预习交流(1)二项展开式的特点有哪些?(2)(x +1)n 的展开式共有11项,则n 等于( ). A .9 B .10 C .11 D .12(3)⎝⎛⎭⎫2x -1x 7的展开式中第3项的二项式系数为__________,第6项的系数为__________,x 的次数为5的项为__________.自我感悟在预习中,还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点课堂合作问题导学一、二项式定理的直接应用 活动探究1求⎝⎛⎭⎫3x +1x 4的展开式. 思路分析:直接利用二项式定理处理是基本的方法.但考虑到处理起来比较复杂,因此可以考虑将原式变形后再展开.迁移与应用化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).名师点津:熟记二项式(a +b )n 的展开式,是解决此类问题的关键,我们在解较复杂的二项式问题时,可根据二项式的结构特征进行适当变形,简化展开二项式的过程,使问题的解决更加简便.二、二项展开式中特定项(项的系数)的计算 活动探究21.若⎝⎛⎭⎫x -a x 26展开式的常数项为60,则常数a 的值为__________.思路分析:利用二项式定理的通项公式求出不含x 的项即可.2.在⎝⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( ).A .-154B .154C .-38D .38思路分析:利用二项展开式的通项公式求. 迁移与应用1. (4x -2-x )6(x ∈R )展开式中的常数项是( ). A .-20 B .-15C .15D .202. x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答)名师点津:求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般 需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解. 三、二项式定理的应用(整除问题) 活动探究3试判断7777-1能否被19整除.思路分析:由于76是19的倍数,可将7777转化为(76+1)77用二项式定理展开. 迁移与应用证明:32n +2-8n -9是64的倍数.名师点津:用二项式定理解决a n +b 整除(或余数)问题时,一般需要将底数a 写成除数m 的整数倍加上或减去r (1≤r <m )的形式,利用二项展开式求解.当堂检测1.⎝⎛⎭⎫x -1x 16的二项展开式中第4项是( ). A .C 216x 12 B .C 316x 10 C .-C 316x 10 D .C 416x 82.在⎝⎛⎭⎫2x 2-1x 5的二项展开式中,x 的系数为( ). A .10 B .-10 C .40 D .-403.二项式⎝⎛⎭⎫x 2+2x 10的展开式中的常数项是( ).A .第10项B .第9项C .第8项D .第7项4.⎝⎛⎭⎫2x -1x 6的二项展开式中的常数项为________.(用数字作答) 5.在(x +43y )20的展开式中,系数为有理数的项共有__________项. 6.(1-x )4·(1-x )3的展开式中x 2的系数是__________.盘点收获用精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来,并进行识记.知识精华技能要领参考答案1.(2)n +1 (3)C k n2.T k +1=C k n an -k b k 预习交流:(1)提示:①项数:n +1项;②指数:字母a ,b 的指数和为n ,字母a 的指数由n 递减到0,同时b 的指数由0递增到n ;③通项公式T r +1=C r n an -r b r指的是第r +1项,不是第r 项;④某项的二项式系数与该项的系数不是一个概念,C r n 叫做二项式系数,而某一项的系数是指此项中除字母外的部分,如(1+2x )3的二项展开式中第3项的二项式系数为C 23=3,而该项的系数为C 23·22=12.(2)提示:B(3)提示:21 -84 -448x 5 活动探究1:解法1:⎝⎛⎭⎫3x +1x 4=C 04(3x )4⎝⎛⎭⎫1x 0+C 14(3x )3·⎝⎛⎭⎫1x +C 24(3x )2⎝⎛⎭⎫1x 2+ C 34(3x )⎝⎛⎭⎫1x 3+C 44(3x )0⎝⎛⎭⎫1x 4=81x 2+108x +54+12x +1x 2.解法2:⎝⎛⎭⎫3x +1x 4=(3x +1)4x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x2.迁移与应用:解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-1=[(x-1)+1]5-1=x 5-1.活动探究2:1.【解析】由二项式定理可知T r +1=C r 6x 6-r ⎝⎛⎭⎫-a x 2r =C r 6(-a )r x 6-3r , 令6-3r =0,得r =2,∴T 3=C 26(-a )2=60.∴15a =60.∴a =4. 【答案】42.【解析】设含x 2的项是二项展开式中第r +1项,则T r +1=C r 6⎝⎛⎭⎫x 26-r ·⎝⎛⎭⎫-2x r=C r 6⎝⎛⎭⎫126-r (-2)r x 3-r . 令3-r =2,得r =1.∴x 2的系数为C 16⎝⎛⎭⎫125(-2)=-38. 【答案】C迁移与应用:1.【解析】设第r +1项为常数项,T r +1=C r 622x (6-r )(-2-x )r =(-1)r ·C r 6212x-2rx -rx,∴12x -3rx =0, ∴r =4.∴常数项为T 5=(-1)4C 46=15.2.【解析】⎝⎛⎭⎫x -2x 7的通项T r +1=C r 7x 7-r ⎝⎛⎭⎫-2x r =(-2)r C r 7x 7-2r .令7-2r =3得r =2. 因而⎝⎛⎭⎫x -2x 7展开式中含x 3项的系数为(-2)2·C 27=4×7×62=84.故x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数为84. 【答案】84活动探究3:解:7777-1=(76+1)77-1=7677+C 177·7676+C 277·7675+…+C 7677·76+C 7777-1=76(7676+C 1777675+C 2777674+…+C 7677).由于76能被19整除,因此7777-1能被19整除. 迁移与应用:证明:∵32n +2-8n -9 =9n +1-8n -9=(8+1)n +1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82+C nn +1·8+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82+8(n +1)+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82 =(8n -1+C 1n +1·8n -2+…+C n -1n +1)·64, 故32n +2-8n -9是64的倍数.当堂检测1.【解析】展开式的通项公式为T r +1=C r 16·(x )16-r ·⎝⎛⎭⎫-1x r =(-1)r ·C r 16·x 16-2r , ∴第4项为T 4=(-1)3C 316·x 10=-C 316x 10.【答案】C2.【解析】T r +1=C r 5(2x 2)5-r ⎝⎛⎭⎫-1x r =(-1)r 25-r C r 5x 10-3r , ∴当10-3r =1时,r =3.∴(-1)325-3C 35=-40. 【答案】D3.【解析】展开式的通项公式为T r +1=C r 10x20-2r⎝⎛⎭⎫2x r =2r C r 10·x 20-5r 2,令20-5r 2=0,得r=8.∴常数项为第9项. 【答案】B 4.【解析】⎝⎛⎭⎫2x -1x 6的通项为 T r +1=C r 6(2x )6-r ⎝⎛⎭⎫-1x r=(-1)r C r 626-r x 3-r .当3-r =0时,r =3.故(-1)3C 3626-3=-C 3623=-160.5.【解析】∵T r+1=3r4C r20x20-r y r(r=0,1,2,…,20)的系数为有理数,∴r=0,4,8,12,16,20,共6项.【答案】66.【解析】展开式中的x2项为C14·(-x)1·C23·(-x)2+C24(-x)2C03=-6x2.【答案】-6。
(完整版)二项式定理教案.docx

(完整版)二项式定理教案.docx1.3.1二项式定理(第一课时)一、教学目标1、知识与技能(1)理解二项式定理,并能简单应用(2)能够区分二项式系数与项的系数2、过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察,分析,归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。
3、情感与态度价值观通过探究问题,归纳假设让学生在学习的过程中养成独立思考的好习惯,在自主学习中体验成功,在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。
二、教学重点难点1、教学重点:二项式定理及二项式定理的应用2、教学难点:二项式定理中单项式的系数三、教学设计:教学过程设计意图师生活动一、新课讲授引入:展开 (a b)2、 (a b)3XK]让学生写展开式,回顾学生写展开式多项式乘法法则学生完成:(a b) 2a22ab b2利用排列、组合理知识(a b) 3a33a2 b3ab 2b3分析 (a b)2展开式分析 (a b) 2的展开式:(a b) 2(a b)(a b) a22ab b2教学过程设计意图师生活动恰有 1 个因式选b的情况有C12种,所以ab的系数是C12;2 个因式选b的情况有C22种,所以b2的系数是C22;每个因式都不选 b 的情况有C02种,所以a2的系数是C02;(a b)2C02a2C12 ab C22b2类比展开 ( a b)3(a b)3C03a3C13a2b C32ab2 C 33b3①展开式有几项?思考 3 个问题:②展开式中 a ,b 的指 1. 项数 2. 每一数和有什么特点?项 a ,b 的指数③各项的系数是什和 3.系数么?如何用排列、组合的知学生完成识解释ab2的系数?按照 a 的降幂排列类比展开 ( a b) 4(a b)4 C 04a4C14 a3b C 24a2 b2C 34ab3C44 a4归纳、类比(a b) n?二、二项式定理:(a b)n C0n a n C1n a n 1b C2n a n 2b2L C k n a n k b k LC n n b n(n N* )这个公式叫做二项式定理, 左边的多项式叫做二项式右边的多项式叫做(a b)n的二项展开式,其中各项的系数 C r n ( k 0,1,2,3,L n) 称为二项式系数,式中的 C k n a n k b k叫做二项展开式的通项,它是二项展开式的第k 1 项,记作:T k 1=C k n a n k b k从以下几方面强调:(1)项数:n 1项;(2)指数:字母a,b的指数和为n,字母a 的指数由n 递减至0,字母 b 的指数由0递增至n;(3)二项式系数:下标为n,上标由0递增至n;C n k ( 4)通项:第k1项:T k 1C n k a n k b k 让学生类比写展开式,进一步巩固展开式的特点通过前面具体的例子,让学生从项数、项、系数这三个方面来类比(a b) n?(1)项数:n 1项;(2)指数:字母a,b的指数和为 n ,字母 a的指数由 n 递减至0,字母 b 的指数由0递增至n ;( 3)系数是C n0 ,C n1 ,C n2 ,L ,C n kL ,C n n (k {0,1,2,L , n})生:板演( a b) 4的展开式师:展示通过前面几个例子,类比归纳得到 (a b)n的展开式,学生交流探究以下 3 个问题1.指数:3.系数教学过程设计意图师生活动三、典例分析例例 1、求 (214区别:) 的展开式x展开式中第 2 项的系解:1)4C 40 24 C 41 23( 1) C 41 22( 1) 2 C 432 ( 1)3数,第 2 项二项式系数(2 C 44 ( 1)4xx x xx32 24 8 116 x x 2 x 3 x 4例 2( 1)求 (12x) 5思考:的展开式中第解:(1 2x)53 项是 T 2 1 C 52 13 (2 x)240 x 3展开式中第 3 项的系的展开式的第,数,第 3 项二项式系数例 3. 求 ( x1)9 的展开式中 x 3 的系数x通过例题让学生更好解:∵ ( x 1)9的展开式的通项是的理解二项式定理xTk 1C 9r x9 k( 1) k C 9k x 9 2k,x强调:通项公式的应用∴ 92k3 ,∴ x 3 的系数 C 9384课堂检测:1. (2 a b)4 的展开式中的第 2 项 . 解: T 2 1 C 41 (2a)3 b 32a 3b ,2. (x 10的展开式的第 6 项的系数(D )进一步巩固二项式定1)C 106C 106C. C 105C 105理A. B.D.3. (1x)5 的展开式中 x 2 的系数为( C )25A.10B. 5C.D. 12四、小结学生应用二项式定理明确通项的作用五、作业:课本 37 页 A 组 2 、 3 题板书设计:1.3.1二项式定理一 .二项式定理:(a b)n C0n a n C1n a n 1b L C k n a n k b k L C n n b n( n N * )1.项数:n1项;2.指数:字母a,b的指数和为n ,a的指数由 n 递减至0,b的指数由 0 递增至n;3.二项式系数:C n0 , C1n , C n2 ,L , C n k L , C n n (k {0,1, 2,L n})4.通项:第k 1 项:T k 1C n k a n k b k二.典例三 .作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1.3.1二项式定理(第一课时)》学案
香河一中 秦淑霞 2012、8
一.创设情境 引入新课
1、问题:今天是星期五,那么7天后的这一天是星期几呢?若15天后的这一天呢?若100
8 天
后的这一天呢?
2、回顾]: 在初中我们曾学过完全平方公式
如: 2
2
2
2)b ab a b a ++=+(
思考:右边这个展开式当时是怎么得到的,合并同类项之前有多少项,每一项的结构特征如何?
学生:利用多项式乘法依次展开,遇到同类项加以合并得到的。
共有2*2=4项,每一项都是a 2-k *b k (k=0,1,2)形式
二、探究新知(1)对2)(b a +展开式的分析
))(()(2b a b a b a ++=+ 展开后其项的形式为:
考虑b ,每个都不取b 的情况有1种,即 ,则2a 前的系数为 恰有1个取b 的情况有 种,则ab 前的系数为 恰有2个取b 的情况有 种,则2
b 前的系数为 所以(a+b)2=
2、类似地 322332233_______33)(b ab b a a b ab b a a b a +++=+++=+ 思考:))()()(()(4b a b a b a b a b a ++++=+=?
3、问题:
1).4)(b a +展开后各项形式分别是什么?
学生:
2).各项前的系数代表着什么?
学生:各项前的系数 就是在4个括号中 3).你能分析说明各项前的系数吗?
学生:每个都不取b 的情况有 恰有1个取b 的情况有
恰有2个取b 的情况有
恰有3个取b 的情况有
恰有4个取b 的情况有 则 4322344_____________)(b ab b a b a a b a ++++=+
(2)展开(a+b )5 = ,
由以上具体问题观察展开式中的项数、指数变化以及系数变化,你发现了什么?由此猜想
(a+b)n 的展开式中项数,指数变化及系数变化又如何呢?并试着写出他们的展开式。
(让学生通过特例去观察相同之处与不同之处,以及不同之处的处理方法,从而提出猜想。
),
学生先观察总结特点:1、项数是指数 ;2、字母a 按 ,字母b 按照---------排列,二者指数之和是 ;3、每一项的系数 (3)写出猜想(a+b)n = a n + a n-1b+…+ a n-r b r +…+ b n (n ∈N +)
我们如何进行证明呢?
学生自己阅读课本上的证明方法
三、学习新课, 1, 观察二项展开式中的项数、指数以及系数有何特点。
学生继续总结这三点,以强化已有的认识。
后将上述个公式所表示的定理叫做二项式定理,左边n
b a )+(这个式子叫
右边多项式叫做n
b a )+(的 。
其中各项的系数r n C (r =0,1,2,…n)称为 ----------,式中的r n C a
n-r b r
叫做二项展开的 ,它是第r+1项(此处可以问学生),
用T r +1表示。
(1)二项式定理:--------
(2)二项展开式:n
b a )+(的右边多项式。
(3)二项式系数:
(4)通项公式: (r =0,1,…,n )
思考: 通项公式有什么结构特点? ,
, 2, 特殊的(1)、令a=1,b=x. (2)、令a=1,b=1
时试着写出他们的二项展开式,
__________________________________________)1(=+n x
_______
______________________________)11(=+n ?21=+++++n
n r n n n C C C C
四、巩固新知:1, 例题1、展开5)21x +(=
, 思考:若展开5)21x -(呢?展开式中系数在符号上有什么特点?
练习:(1)、求5
)21x -(展开式第三项以及其二项式系数,求x 3项的系数
2、问题:今天是星期五,7天后仍然是星期五,15天后这一天是星期六,那么100
8
天后的这一天究竟是星期几呢?
问:要求星期几,只要求被7除的余数,现在学了新知识后,大家能求吗?
[追问]:右边展开式被7整除吗?余数是多少?由此可知这一天是星期几? 答:因为余数是 ,所以100
8天后的这一天是星期 。
思考:若将100
8
除以9,则得到的余数是多少?
五、课堂反思: 本节课你学习了什么知识,它是怎么得到的呢?在学习这部分知识时要注意什么呢?,
六、练习与作业:1、课本31页练习
2、练习
的系数
的展开式中、求(项的系数的展开式第、求(的展开式
、求3774
)1
)3(4)21)2()12()1(x x
x x x
x -+-
思考延续, 52)23(++x x 展开式中x 的系数为_____.。