研究生统计学计算公式

合集下载

统计学原理公式

统计学原理公式

统计学原理公式第二章数据描述1、组距=上限―下限2、简单平均数: x=Σx/n3、加权平均数:x=Σxf/Σf4、全距: R=xmax-xmin5、方差和标准差:方差是将各个变量值和其均值离差平方的平均数。

其计算公式:22未分组的计算公式:σ=Σ(x-x)/n22分组的计算公式:σ=Σ(x-x)f/Σf 样本标准差则是方差的平方根:21/2未分组的计算公式:s=[Σ(x-x)/(n-1)]2 1/2分组的计算公式:s=[Σ(x-x)f/(Σf-1)]1/2σ=[Σ(x-x)/n] 6、离散系数:总体数据的离散系数:Vσ=σ/x 样本数据的离散系数:Vs=s/x 10、标准分数:标准分数也称标准化值或Z分数,它是变量值与其平均数的离差除以标准差后的值,用以测定某一个数据在该组数据的相对位置。

其计算公式为:Zi=(xi-x)/s标准分数的最大的用途是可以把两组数组中的两个不同均值、不同标准差的数据进行对比,以判断它们在各组中的位置。

第三章参数估计1、统计量的标准误差:(样本误差)(1)在重复抽样时;样本标准误差:σx=σ/n 或σx=s/n 样本的比例误差可表示为:1/21/2σp=[π(1-π)/n] 或σp=[p(1-p)/n] (2)不重复抽样时: 22σx=σ/n×(N-n/N-1) 2σp=p(1-p)/n×(N-n/N-1)2、估计总体均值时样本量的确定,在重复抽样的条件下:222n= Zσ/E3、估计总体比例时样本量的确定,在重复抽样的条件下:22n=Z×p(1-p)/E 4、(1)在大样本情况下,样本均值的抽样分布服从正态分布,因此采用正态分布的检验统计量,当总体方差已知时,总体均值检验统计量为:Z=(x-μ)/( σ/n)(2)当总体方差未知时,可以用样本方差来代替,此时总体均值检验的统计量为:Z=(x-μ)/( s/n) 5、小样本的检验:在小样本(n<30)情况下,检验时,首先假定总体均值服从正态分布。

医学统计学公式整理简洁版

医学统计学公式整理简洁版

医学统计学公式整理简洁版1. 平均数(Mean):一组数据的平均值,通过将所有值相加然后除以数据的个数得到。

公式:X̄=ΣX/n其中,X̄表示平均数,ΣX表示所有数据的总和,n表示数据的个数。

2. 中位数(Median):一组数据的中间值,将所有数据按升序排列,如果数据个数为奇数,则中位数是中间的值;如果数据个数为偶数,则中位数是中间两个值的平均数。

3. 众数(Mode):一组数据中出现次数最多的数值。

4. 标准差(Standard Deviation):衡量数据的离散程度,计算每个数据值与平均值的差的平方和的平均值的平方根。

公式:σ=√(Σ(X-X̄)²/n)其中,σ表示标准差,Σ(X-X̄)²表示每个数据值与平均值的差的平方和,n表示数据的个数。

5. 方差(Variance):标准差的平方。

公式:σ²=Σ(X-X̄)²/n6. 相关系数(Correlation Coefficient):度量两个变量之间的线性关系的强度和方向。

相关系数的值介于-1和1之间,接近-1表示负相关,接近1表示正相关,接近0表示无线性相关。

7. t检验(t-test):用于比较两组样本均值是否有显著差异。

8. 卡方检验(Chi-square test):用于比较观察频数与期望频数之间的差异是否显著。

9. 线性回归(Linear Regression):用于预测一个变量与另一个变量之间的关系,并且可以根据这个关系进行预测。

10. 生存分析(Survival Analysis):用于分析事件发生的概率和时间关系,常用于研究患者生存率和治疗效果。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。

在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。

本文将介绍一些统计学常用公式,并对其进行说明和用途解释。

一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。

2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。

当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。

3. 众数(Mode)众数是一组数据中出现频率最高的数值。

4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。

比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。

二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。

对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。

研究生统计学讲义第2讲第3章定量资料的统计描述

研究生统计学讲义第2讲第3章定量资料的统计描述
左边μ=100,σ=10,X<90 右边μ=0,σ=1,u<-1.0,注 意刻度不同
现在我们把 X 转换为标准正态变量,因为μ=100, σ=10,所以
u X 90 100 1.0
10
因此90分能够用平均值下的1个标准差表示,见图 右图
P (X < 90)=P ( u <-1.0 )
附表3从u=0.00到u=4.99以增量0.01编成标准正态分布 的CDF表,沿着表的左边按所给u的一个小数找到u ,再从表的顶端找到u的第二位小数,在表内主要部
x2=78.6g/L时,u2 = (78.6-73.8)/3.9=1.23
2.查标准正态曲线下面积表(附表3):u= -0.46时 ,在表的左侧找到-0.4,在表的上方找到0.06,二者相 交处为0.3228,标准正态曲线下,横轴上u值小于- 0.46的面积为Ф(-0.46)= P(U<-0.46)=32.28%,即标 准正态变量u值小于-0.46的概率为32.28%;同样查 得u=1.23时,标准正态曲线下,横轴上u值小于1.23的 面积为Ф(1.23) =P(U<1.23)= 0.8907,即u值小于1.23的 概率为89.07% 。
图3.16左边μ=100,σ=10,X≥125 右边μ=0,σ=1, u≥2.5,注意刻度不同
只有0.62%的得分将是125或更高.
补例2 假设女高血压患者舒张压大约集中在100mmHg
,标准差是16mmHg ,血压是正态分布.求:
1.P (X<90) 2.P (X>124) 3.P (96<X<104) 4.求
2.中位数M (Median)
中位数M是排序观察值的中间值.当一组数据按照 从小到大的顺序排列起来时,值的深度d=(n+1)/2, 是它相对于极端值(末端)所在的位置.它不是由全 部观察值综合计算出来的,而是由居中位置的观察值 所决定,因此它不受个别特小或特大的观察值的影响 ,应用范围较广。

统计学主要计算公式

统计学主要计算公式

统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。

在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。

公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。

3.众数:众数是一组数据中出现最频繁的值。

4.方差:方差是一组数据与其平均值的差的平方的平均值。

公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。

公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。

公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。

7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。

公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。

8.合并概率公式:用于计算多个事件同时发生的概率。

公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。

9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。

公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。

10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。

公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。

这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。

统计学原理重要公式

统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。

频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。

而频率则每个小组的频数与数据总数的比值。

在变量分配数列中,频数(频率)表明对应组标志值的作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。

加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。

比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。

依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。

加权和与所有权重之和的比等于加权算术平均数。

加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

统计学考研必备公式速记技巧与实例解析

统计学考研必备公式速记技巧与实例解析

统计学考研必备公式速记技巧与实例解析统计学考研对于公式的掌握至关重要,它是解决问题、推导统计学理论,甚至进行数据分析的基础。

然而,常常会出现记忆困难的情况,特别是对于大量的统计学公式。

因此,本文将介绍一些统计学考研必备公式速记技巧,并结合实例进行解析。

一、速记技巧一:建立联想建立联想是记忆公式的一种常用方法。

通过将公式与具体的概念或实例相联系,可以更加深刻地理解并快速记忆公式。

以方差公式为例,通常使用以下公式表示:$$Var(X) = E[(X - E(X))^2]$$我们可以将这个公式与“方差”的含义联系起来。

方差表示随机变量与其期望之间的差异程度,而公式中的$(X - E(X))^2$正是衡量这种差异程度的平方。

又如,协方差的公式为:$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$我们可以将协方差理解为两个随机变量之间的相关性度量,通过使用公式中的$(X - E(X))(Y - E(Y))$来计算两个变量之间的差异。

二、速记技巧二:寻找规律寻找公式中的规律也是记忆的一种技巧。

通过发现公式中的某些特定模式,可以大大减轻记忆的难度。

例如,二项式分布的概率函数可以表示为:$$P(X=k) = C_n^k p^k(1-p)^{n-k}$$公式中的$C_n^k$表示从n个元素中选取k个元素的组合数。

当需要记忆这个公式时,我们可以发现,$p^k(1-p)^{n-k}$是一个与具体问题相关的数值,而$C_n^k$则是需要从$n$和$k$中计算得出的。

因此,我们可以将公式的记忆分为两个部分,分别记忆$C_n^k$和$p^k(1-p)^{n-k}$,将它们组合起来就能得到完整的公式。

三、速记技巧三:构建缩写或关键词构建缩写或关键词也是记忆公式的常用方法。

将公式中的每个要素用简洁明了的缩写或关键词来表示,可以提高记忆效果。

以回归方程的公式为例:$$Y = \beta_0 + \beta_1X + \epsilon$$我们可以将$\beta_0$表示为“截距”,$\beta_1$表示为“斜率”,$X$表示为“自变量”,$Y$表示为“因变量”,$\epsilon$表示为“误差项”。

统计学常用公式

统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【AVERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为: 式中:G 表示几何平均数;∏表示连乘符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试要求:不要求假设检验中统计量的计算
查表求面积
标准正态分布曲线下对称于0的区间其面积相等,于是有等式Φ(u )=1-Φ(-u ) 标准正态曲线下区间(u 1,u 2)面积的计算公式为:P(u 1< U < u 2) =Φ(u 2) -Φ(u 1)
标准正态u 变换
任意的正态分布N (μ,σ 2),经过公式:
σμ-=X u 变换后,u 服从标准正态分布N (0,1)
参考统计作业20130109-02版中第一部分
1.Φ(-1.64)=?,P(-1.64< U <1.64)=?
Φ(-1.64)=0.0505
P(-1.64< U <1.64) = Φ(1.64)- Φ(-1.64) = [1- Φ(-1.64)]- Φ(-1.64) = (1-0.0505)-0.0505 = 0.899
2.Φ(-2.58)= ?,P(-2.58 <U < 2.58)=?
Φ(-2.58)=0.0049
P(-2.58 <U < 2.58) = Φ(2.58)- Φ(-2.58) = [1-Φ(-2.58)]- Φ(-2.58) = (1-0.0049)- 0.0049 = 0.9902
3.已知 X 服从正态分布N(5,22),求X 落在区间(3,6)概率。

P(3<X<6) = P(X<6)-P(X<3) = Φ((6-5)/2)-Φ((3-5)/2) = Φ(0.5)-Φ(-1) = [1-Φ(-0.5)]- Φ(-1) = (1-0.3085)-0.1587 = 0.5328
随机区组设计
1)两个重要的等式
SS

=SS处理+SS区组+SS误差
df

=df处理+df区组+df误差
2)两个重要的关系
MS=SS/df
F
处理
=MS处理/MS误差
F
区组
=MS区组/MS误差
总SS总n-1
处理组间SS处理k-1 MS处理MS处理/MS误差P处理区组间SS区组b-1 MS区组MS区组/MS误差P区组误差SS误差n-k-b+1 MS误差
完全随机分组设计
1)两个重要的等式:
SS
总=SS
组间
+SS
组内
df
总=df
组间
+df
组内
2)两个重要的关系
MS=SS/df
F=MS
组间
/MS组内
总SS总N-1
组间SS组间G-1 MS组间MS组间/MS组内P 组内(误差)SS组内N-G MS组内
各种区间的计算。

相关文档
最新文档