初中数学求线段和固定值、最值

合集下载

初中线段最值问题的常用解法

初中线段最值问题的常用解法

初中线段最值问题的常用解法初中线段最值问题是数学中的一个常见问题,也是初步引导学生运用数学知识解决实际问题的一种典型例题。

下面将介绍几种常用的解法。

1.分情况讨论法分情况讨论是解决初中线段最值问题的一个常用方法。

以找线段上的最大值为例,我们可以将线段分为两个部分,一部分是线段的左半部分,一部分是线段的右半部分。

然后分别在左半部分和右半部分找到最大值,最后比较这两个最大值,取较大者即为线段上的最大值。

同理,要找线段上的最小值,也可以采用相似的方法。

2.数轴法数轴法是线段最值问题中常用的一种解法。

以线段的最大值为例,我们可以将数轴上线段的两个端点列出,然后根据所给条件(如线段的起点和终点的坐标等)确定线段的位置。

然后,我们可以逐个将线段上的点都标在数轴上,然后找到其中的最大值。

同样地,我们也可以用数轴法来找线段上的最小值。

3.函数法函数法是解决线段最值问题的常用方法之一。

我们可以根据线段的起点和终点的坐标,建立一个函数来描述线段上的点。

然后,对这个函数进行求导,求出其导数为零的点,这些点即为函数的极值点。

然后,我们可以将这些极值点与线段的端点进行比较,找出线段上的最大值或最小值。

4.图像法图像法是解决线段最值问题的另一种有效方法。

我们可以根据线段的起点和终点的坐标,在坐标平面上画出对应的线段图像。

然后,通过观察图像,我们可以直观地找到线段上的最大值或最小值。

5.代数法代数法是解决线段最值问题的另一种常用方法。

我们可以先将线段上的点表示为变量的形式,然后根据线段的端点的坐标,列出相应的方程组。

然后,我们可以通过求解方程组,得到线段上的最大值或最小值。

总结起来,初中线段最值问题一般可以通过分情况讨论法、数轴法、函数法、图像法和代数法等解决。

根据实际情况和题目要求,可以选择合适的方法来解决问题。

需要注意的是,在解题过程中,我们不仅要运用数学知识,还要灵活运用判断和推理能力,善于观察和分析问题,才能高效地解决线段最值问题。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

初中数学中求极值的几种常见的方法

初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。

同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。

这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。

下面从不同的角度讨论如何求一些问题的最值。

一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。

若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。

例1:已知13M x x =-++,则M 的最小值是 。

【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。

如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。

显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。

所以, 当31x -≤≤时,距离之和最短,最小值为4。

故M 的最小值为4。

二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。

一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。

例2:设,a b 为实数,求222a ab b a b ++--的最小值。

【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。

二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。

解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。

「初中数学」利用对称求线段和最值

「初中数学」利用对称求线段和最值

「初中数学」利用对称求线段和最值用轴对称思想解决线段最值问题是常用的方法,本质是利用三角形三边关系或两点之间线段最短解决问题,即化折为直。

常见的类型笔者归纳为五种:即两定一动型,一定两动型,两定两动型,两定滑动型(架桥),三动型等类型一:两定一动型【模型介绍】已知直线l同侧有A,B两点,在l上找一点P,使得PA+PB最小。

作法:作点A关于直线l的对称点A',连接A'B,与直线l的交点就是点P,线段A'B的长度即为最小值。

验证:如图,AQ+BQ=A'Q+BQ>A'B【例1】如图,在正方形ABCD中,E是AB上一点,BE=2,AB=3BE,P是AC上一动点,则PB+PE的最小值是__________.【分析】这是两定一动模型,需要作一个定点关于动点所在直线的对称点,根据本题图形特征,B点关于AC的对称点恰好是C点,连接CE,CE即为所求的最小值。

【答案】10【例2】如图,在平面直角坐标系中,A(2,1),B(5,5),P是x轴上一动点,当PA+PB值最小时,求点P坐标【分析】这是两定一动模型,作A点关于x轴的对称点A',A'B 与x轴的交点即为P,P点坐标可以用直线解析式或勾股定理求,初三学生也可用相似。

【答案】P(2.5,0)类型二:一定两动型【模型介绍】已知,在∠AOB内有一点M,在边OA,OB上分别找点P,Q,使MP+MQ+PQ最小。

作法:作M关于OA的对称点M‘,关于OB的对称点M'',连接M'M'',交OA于点P,交OB于点Q,此时则MP+MP+PQ的值最小,最小值即为线段M'M''的长。

验证: 如图,OA上取一点P',OB上取一点Q',连接M'P',M''Q',则MP'+MQ'+P'Q'=M'P'+M''Q'+P'Q'>M'M''(两点之间线段最短)【例3】五边形ABCDE中,∠A=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE上分别找一点M、N,使得△AMN的周长最小,则△AMN周长的最小值为____.【分析】这是一定两动模型,作点A关于BC的对称点A’,关于ED的对称点A'',连接A'A'',交BC于M,交ED于N,此时△AMN 的周长最小,最小值即为A'A''的长。

中考专题复习 初中几何五大最值模型(双线段最值,含参数最值,代数最值,单线段最值)

中考专题复习 初中几何五大最值模型(双线段最值,含参数最值,代数最值,单线段最值)

中考最值问题中考最值问题是中考当中的热门,同时也是难点,其有种考察方式,下面我来一一叙述。

一.最简单的双线段相加减最值(将军饮马)(1)在直线l上找一点p使得PA+PB最小异侧解:连接AB即可,两点之间线段最短(2)在直线l上找一点p使得PA+PB最小同侧解:过点B作关于l的对称点B’,连接AB'即可。

利用l垂直平分BB’,PB=PB’,故两点之间线段最短即可求解(3)在直线l上找一点p使得|PA-PB|最大同侧解:连接AB并延长即可,利用三角形三边关系,任意两边之差小于第三边(4)在直线l上找一点p使得|PA-PB|最大异侧解:同理,过点B作关于直线l的对称点B’,连接AB'并延长即可。

(5)在直线l上找一点p使得|PA-PB|最小解:作AB的垂直平分线交直线l于p点,由于PA=PB,所以最小值为0(6)在OA,OB上求作点M,N,使△PMN周长最小.解:作两次对称,两点之间,线段最短.(7)在OA,OB上求作点M,N,使四边形PQMN周长最小.解:P,Q分别作对称,两点之间,线段最短.(8)在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.解:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.题目:二:比较难的单线段最值问题1.垂线段最短2.三角形中,任意两边之和大于第三边,任意两边之差小于第三遍3.圆外一点到圆上距离的最值问题设圆外一点到圆心的距离为d,圆的半径为r最小值为:d-r最大值为:d+r4.圆中,弦是最大的直径题目:1.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF,(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P,Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如限定P,Q分别在BA,BC上移动,求出点E在边AD上移动的最大距离.解:当点Q与点C重合时,如图2,点E离A点最近,由①知,此时AE=1cm.当点P与点A重合时,如图3.点E离A点最远,此时,四边形ABQE是正方形.AE=AB=3cm∴点E在边AD上移动的最大距离为2cm.此题用到了极限的思想。

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。

纲举则目张,执本而末从。

如果只在细枝末节上下功夫,费了力气却讨不了好。

学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。

关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。

一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形。

AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。

初中数学定值定点最值问题

初中数学定值定点最值问题

初中数学定值定点最值问题初中数学定值定点和最值问题是中考数学压轴题常考考点,对于定值定点问题可以采用特殊点,特殊值和特殊位置确定其值是多少,然后采用一般法去证明,最值问题一般是线段的和与差,最常用的方法是“化折为直”比如常见的“将军饮马问题”、“胡不归问题”、“阿氏圆问题”、“隐圆问题”。

例1.对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m+1,4﹣2m),则符合条件的点P的坐标为.变式1.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则写出符合条件的点P的坐标:.变式2.若对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m﹣2,m2﹣9),写出符合条件的点P的坐标:.变式3.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0,2x0﹣6),写出符合条件的点P的坐标:.变式4.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(m﹣3,m2﹣16),写出符合条件的点P的坐标:.变式5.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5)写出符合条件的点P的坐标:.变式6.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),写出符合条件的点P的坐标:.例2.已知抛物线y=ax2﹣2anx+an2+n+3的顶点P在一条定直线l上.求直线l的解析式;例3.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.例4.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.例5.如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.例6.如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG ∥AB,交HM的延长线于点G,若AC=8,AB=6,求四边形ACGH周长的最小值例7如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.例8.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.例9.如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB的值最小,则点P的坐标是.例10.如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.当△OAB的面积为15时,P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.例11.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.例12.如图一所示,在平面直角坐标系中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE ⊥BC于点E,作PF∥AB交BC于点F.当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.。

七年级下册最值问题。

七年级下册最值问题。

七年级下册最值问题。

全文共四篇示例,供读者参考第一篇示例:七年级下册最值问题是初中数学中的重要概念,通过这一概念的学习,可以帮助学生更好地理解和应用数学知识。

最值问题指的是在一组数据中找到最大值和最小值,并求出它们的具体数值。

在日常生活中,最值问题也是非常常见的,比如求一组数据中的最高温度和最低温度,或者求一堆数中的最大值和最小值等等。

在七年级下册的数学课程中,最值问题通常是以实际案例为背景展开讨论的。

通过解决这些案例,学生可以更好地理解最值问题的概念,并掌握解题的方法。

最值问题的解决一般分为两步,首先是找出一组数据中的最大值和最小值,然后是求出它们的具体数值。

在实际操作中,学生需要通过比较不同数的大小,从而找到最值。

除了直接比较数值大小外,还可以通过化简、提取公因式等方法来简化问题,更快地找到最值。

最值问题的学习不仅可以提高学生的数学分析和解决问题的能力,还可以培养他们的逻辑思维和数学素养。

在解决最值问题的过程中,学生需要反复比较和分析数据,培养了他们的观察力和思考能力。

通过实际案例的讨论,学生可以更好地理解数学知识与实际生活的联系,增强他们的数学应用能力。

七年级下册最值问题还可以帮助学生培养合作精神和团队意识。

在解决最值问题的过程中,学生可以进行小组讨论和合作,共同探讨问题的解决方法,促进了他们与同学之间的交流与合作。

通过互相学习、互相启发,学生可以更好地理解数学知识,提高解题的效率和准确度。

最值问题的学习还可以促进学生主动学习的能力。

通过解决最值问题,学生需要自主思考、积极探索,培养了他们的自主学习意识。

在解决问题的过程中,学生可以提出自己的见解和想法,不断尝试和总结,从而提高了他们的学习兴趣和学习主动性。

七年级下册最值问题是一个涵盖面广、实用性强的数学概念,通过这一概念的学习,学生可以在数学知识上取得更好的掌握与运用。

最值问题的解决不仅可以提高学生的数学分析和解决问题的能力,还可以培养他们的逻辑思维和团队合作精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求线段和最小值——将军饮马
题目特征:固定点、动点求线段和的最小值 常见形式:
1.一定两动
同侧
异侧
2.两动一定
区分:
求周长最小:固定点沿两 个动点轨迹分别做双侧对称
求两段线段和最小:固定 点沿公共动点轨迹对称,再 向另一动点轨迹做垂直
3.两定两动
4.三动点
先做对称点,再利用“两点之间 线段最短”或“垂线段最短”解决
步骤: ①找圆心、圆上动点 、圆外(内)固定点 ②以圆心所在角为公共角,在圆心与固定点 连线上找点构造子母型相似 ③利用相似比替换含系数的线段求解
19南通
D
C
P
A
B
19聊城
C
P M
A
N
B
求线段和最小值——将军遛马、过桥
题目特征:求线段和的最小(大)值 常见形式: 一、 将军遛马
将军在A点处,现在将军要带马去河边喝水,并沿着河岸走一段路,再返回军营,问怎么走 路程最短?
二、 将军过桥
已知将军在图中点A处,现要过河去往B点 的军营,桥必须垂直于河岸建造,问:桥建在 何处能使路程最短?
专题1 求线段和固定值、最值
目录
01
等面积法
高频考点
02将军饮马高频考点03将军过河、将军遛马
低频考点
04 费马点
低频考点
05 阿氏圆
中频考点
06 胡不归
中频考点
求线段和固定值——等面积法
题目特征:一个主动点、两个从动点(被主动点限制运动方式的动点) 常见形式:动点做两条垂线产生的线段和,值为固定值 易混淆点:将军饮马模型的区别(动点均是无限制的,求最值)
已知将军在图中点A处,现要过两条河去 往B点的军营,桥必须垂直于河岸建造,问: 桥建在何处能使路程最短?
求三角形内线段和最小值——费马点
题目特征:在△ABC内求一点P,使PA+PB+PC之值为最小,这个点为“费马点”
(费马点是三角形内与三角形三顶点的连线两两夹角为120°的点)
解题方法:过三角形的一条固定边做等边三角形 连接三角形未用点和等边三角形的外端顶点,线段长即为最小值
求系数不同的线段和最小值——阿氏圆、胡不归
题目特征:求AP+mBP(m≠1)线段和最小值
胡不归(动点在直线上)
步骤: ①找家、出发点、驿道 ②求角:sinα=m(注意有无特殊角) ③画角:过出发点在家的异侧同向作一个角, 使其等于α ④ 过动点做垂直,边长转化,利用垂线段最 短
阿氏圆(动点在圆上)
相关文档
最新文档