010理论力学-质点动力学

合集下载

理论力学质点力学课件

理论力学质点力学课件
7
五、理论力学的适用范围 1.物体运动的速度远少于光速 2.宏观物体(天体---原子) 作用量=能量x时间>>h=6.602X10^(-34)(JS)
8
参考书
❖ 郭士堃:《理论力学》上、下册 ❖ H.戈德斯坦(美):经典力学 ❖ 费恩曼 (Feynman):《物理学讲义.第一卷) ❖ 汪家訸:分析力学 ❖ 理论力学习题集
18
加速a 度 表 x 示i : y j z k a x i a y j a z k
加速度分量为:
a x x a y y
a z z
加速率表示:
a ax2 a2y az2
19
20
21
y
径向单位矢量:i
横向单位矢量:j (指向极角的 增加方向) rri
v dr drir irdiO
求 v,a, 。
35
例 求平抛物体任一时刻t的轨道曲率半径。
解:如图,平抛物体的运动方程为:
x v0t
y 1 gt2 2
O
v0
则,速率 v x 2y 2v0 2g2t2
•( x, y)
x
切向加速度
dv
g2t
a
dt
v02 g2t2
y
加速度大小 a x2y2 g
由法向加速度
an a2a2 v2
v2an
自然坐标系
s f (t)
从运动方程中消去时间 t,就得到轨迹方程
f(x,y,z)=0。
14
(Displacement, velocity and acceleration)
z
位移 (displacement):
B
r
r r C
O rA

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

理论力学知识总结

理论力学知识总结

学生整理,时间有限,水平有限,仅供参考,如有纰漏,请以老师、课本为主。

第一章质点力学(1)笛卡尔坐标系 位置:k z j y i x ++=r速度:k z j y i x dtr d ...v ++== 加速度:k z j y i x dtv d ......a ++== (2)极坐标系坐标:j i e r θθsin cos += j i e θθθcos sin +-= r e r =r 速度:r r .v = .v θθr =加速度:2...θr r a r -= .....2θθθr r a += (3)自然坐标系(0>θd ) 坐标:ds r d e t =θd e d e t n = θρd ds = 速度:t e v v = 加速度:n t e v e v ρ2.a +=(4)相对运动(5)牛顿运动定律 牛顿第一定律:惯性定律 牛顿第二定律:)(a m v m P dtP d dt v d m F ==== 牛顿第三定律:2112F F -= (6)功、能量vF dt rd F dt dW P rFd dA ⋅=⋅=== (7)(7)有心力第二章 质点动力学的基本定理知识点总结: 质点动力学的基本方程质点动力学可分为两类基本问题:. (1) .已知质点的运动,求作用于质点的力; (2) 己知作用于质点的力,求质点的运动。

动量定理 动量:符号动量定理微分形式动量守恒定律:如果作用在质点系上的外力主失恒等于零,质点系的动量保持不变。

即:质心运动定理:质点对点O 的动量矩是矢量mv r J i ⨯= 质点系对点0的动量矩是矢量i ni nii i i v m r J J ∑∑=⨯==1若z 轴通过点0,则质点系对于z 轴的动量矩为∑==ni z z z J M J ][若C 为质点系的质心,对任一点O 有 c c c J mv r J +⨯=02. 动量矩定理∑∑=⨯=⨯=nie i i n i i i i M F r v m r dt d dt dJ )()( 动量矩守恒:合外力矢量和为零,则动量矩为常矢量。

质点动力学知识点总结

质点动力学知识点总结

质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。

本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。

2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。

2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。

2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。

3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。

3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。

4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。

4.2 动能定理合外力对质点所做的功等于质点动能的变化量。

5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。

5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。

6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。

6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。

7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。

7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。

8. 结论质点动力学是理解和描述宏观物体运动的基础。

理论力学---质点动力学的基本方程

理论力学---质点动力学的基本方程

dvx dx c m 0 x c1t c3 1 dt dt 1 dv dy y gt2 c2 t c4 m y m g gt c2 2 dt dt 微分方程 积分一次 再积分一次
代入初始条件得: c1 v0 cos0 ,c2 v0 sin0 ,c3 c4 0
18
dvx mgR2 2 即: mvx dx x
d 2 x dvx dvx dx v x dvx ( 2 ) dt dt dx dt dx
v x mgR2 mvx dvx 2 dx v0 R x
(t 0时x R,v x v0 )
则在任意位置时的速度

质点运动微分方程除以上三种基本形式外,还可有极坐标形式, 柱坐标形式等等。 应用质点运动微分方程,可以求解质点动力学的两类问题。
6
质点动力学两类问题
第一类: 已知运动求力—微分 第二类: 已知力求运动—积分
1.绕线轮与滑块,已知ω,r,m,f=0,求rω
x x(t ) ( 式中 y y (t ) 为质点直角坐标形式的 运动方程 ) z z (t )
5
3.自然形式
d 2s m 2 F dt v2 m Fn
(式中s s (t )为质点的弧坐标形式的 运动方程。F , Fn , 分别为力F 在 自然轴系 轴, n轴上的投影)
质点系是力学中最普遍的抽象化模型;
包括刚体,弹性体,流体。
3
三、动力学分类:
质点系动力学
质点动力学
质点动力学是质点系动力学的基础。
四、.动力学的基本问题:大体上可分为两类: 第一类:已知物体的运动情况,求作用力;

《理论力学》第九章质点动力学

《理论力学》第九章质点动力学
《理论力学》第九章质点动力 学

CONTENCT

• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω

质点动力学知识点总结

质点动力学知识点总结

质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。

在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。

在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。

希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。

一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。

根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。

根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。

二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。

这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。

2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。

这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。

3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。

这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。

三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。

根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。

动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。

根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。

四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。

动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。

理论力学(哈工大版)第十章:质点动力学

理论力学(哈工大版)第十章:质点动力学

第六章 质点动力学6-1 惯性参考系中的质点动力学一.惯性参考系1.一般工程问题:2.人造卫星、洲际导弹问题:3.天体运动问题:二.牛顿定律1.第一定律(惯性定律):2.第二定律(力与加速度之间的关系定律):3.第三定律(作用与反作用定律):三.质点的运动微分方程 将动力学基本方程)(F a m =表示为微分形式的方程,称为质点的运动微分方程。

1.矢量形式(自:会使用微分形式)) )( ( 22方程为质点矢径形式的运动式中t r r F dtr d m == 2.直角坐标形式) )()()( ( 222222运动方程为质点直角坐标形式的式中⎪⎩⎪⎨⎧===⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z z t y y t x x Z dty d m Y dt y d m X dt x d m 3.自然形式b n F F v m F dt s d m ===0222ρτ ), ,,)((轴上的投影轴和轴自然轴系在分别为力运动方程。

为质点的弧坐标形式的式中b n F F F F t s s b n ττ= 四.质点动力学的两类基本问题1.已知质点的运动规律,求作用于质点上的力;----求微分问题。

2.已知质点上所受的力,求质点的运动规律。

----按质点运动的初始条件和力的函数关系对运动微分方程进行求解,从数学角度看,是解微分方程或求积分,并确定相应的积分常数的问题。

第一类问题解题步骤和要点:①正确选择研究对象(一般选择联系已知量和待求量的质点)。

②正确进行受力分析,画出受力图(应在一般位置上进行分析)。

③正确进行运动分析(分析质点运动的特征量)。

④选择并列出适当形式的质点运动微分方程(建立坐标系)。

⑤求解未知量。

2.第二类:已知作用在质点上的力,求质点的运动(积分问题)已知的作用力可能是常力, 也可能是变力。

变力可能是时间、位置、速度或者同时是上述几种变量的函数。

如力是常量或是时间及速度函数时,可直接分离变量积分dt dv 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入,有
t 0,v v0 0
F0 0 d v 0 m cost d t
v t
18
积分后得 dx 因 v ,分离变量,再次积分,并以初始条件 dt t 0,x 0 代入,有 x t F 0 d x 0 0 m sin t d t 积分后得
F0 v sint m
微分方程
积分一次
再积分一次
20
则运动方程为 : x v0tcos 0 , y v0tsin0 1 gt2 2 2 x 1 则轨迹方程为 : y xt g 0 g 2 0 2 v0 cos2 0 dy 代入最高点A处值,得: v0 sin 0 gt 0, 即 t v0 sin 0 g dt 将到达A点时的时间t,x=S ,y=H 代入运动方程,得 sg v0 cos 0 v0 sin0 2gH 2 gH 发射初速度大小与初发射角 0 为
12
④ 列出自然形式的质点运动微方程
G dv Gsin 1 g dt G v2 ma n Fn , T Gcos 2 g l ma F ,
⑤ 求解未知量
v2 由 2 式得 T G (cos ), gl
, 因此 0时 , T Tmax 其中 ,v为变量. 由1式知 重物作减速运动
a、 b、 是常数。求作用于质点上的力F。
解:将质点运动方程消去时间t,得
x2 y2 2 1 2 a b
可见,质点的运动轨迹是以
a、 b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
14
2 2 a x a cos t x x 2 2 a y b sin t y y
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
2 d 建立质点运动微分方程 m x F0 cos t dt2 即 dv
m
dt
F0 cos t
分离变量,对等式两边积分,并以初始条件
23
24

a ax i a y j 2 r
2 F ma m x x x 2 F ma m y y y
将上式代入公式中,得力在直角坐标轴上的投影

F Fx i Fy j m 2 r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
综合性问题:已知部分力,部分运动求另一部分力、部分运动。
已知主动力,求运动,再由运动求约束反力。
3
4
第十章
§10–1
§10–2
质点动力学基本方程
动力学的基本定律
质点的运动微分方程
5
§10–1
动力学的基本定律
质点是物体最简单、最基本的模型,是构成复杂物体系 统的基础。质点动力学的基础是三个基本定律。质点动力学 基本方程给出了质点受力与其运动变化之间的关系。
2 v0 2 gR
则在某一位置
2 2 gR 时,无论 x多 x=R+H 时速度将减小到零,火箭回落。若 v0
大(甚至为∞), 火箭也不会回落。因此脱离地球引力而一去 不返 时( x )的最小初速度
v0 2 gR 29.8103 6370 11.2 (km/s)
(第二宇宙速度)
大小与r的大小成正比,称之为向心力。
15
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。 已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的② 正确进行受力分析,画出受力图。判断力是什么性质的力 (应放在一般位置上进行分析,对变力建立力的表达式)。 ③ 正确进行运动分析。(除应分析质点的运动特征外,还要确 定出其运动初始条件)。
F0 x (1 cos t ) 2 m
19
[例2] 煤矿用填充机进行填充, 为保证充 填材料抛到距离为S=5米,H=1.5米的顶 板A处。求 (1)充填材料需有多大的初速 度v0 ? (2)初速 v0 与水平的夹角a0?
解:选择填充材料M为研究对象,受力如图所示,
M作斜抛运动。
t 0, x0 0, y0 0; v0 x v0 cos0 , v0 y v0 sin0
(t 0时x R, v x v0 )
2 2 gR 2 则在任意位置时的速度 v (v0 2 gR ) x 22
mgR 2 mv x d v x dx 2 v0 R x

v

x
2 2 gR v (v 2 0 2 gR) x
可见,v 随着 x 的增加而减小。若
动力学问题最根本的依据。
牛顿第二定律指出了质点加速度方向总是与其所受合力的 方向相同,但质点的速度方向不一定与合力的方向相同。因 此,合力的方向不一定就是质点运动的方向。
7
第三定律(作用与反作用定律):两个物体间的作用力与 反作用力总是大小相等、方向相反、沿着同一直线,且同时 分别作用在两个物体上。
2
自由质点系:质点系中各质点的运动不受约束的限制。 非自由质点系:质点系中的质点的运动受到约束的限制。
质点系是力学中最普遍的抽象化的模型;包括刚体、弹性
体、流体。
三.动力学分类: 质点系动力学
质点动力学
质点动力学是质点
系动力学的基础。
四.动力学的基本问题:大体上可分为两类: 第一类:已知物体的运动情况,求作用力; 第二类:已知物体的受力情况,求物体的运动。
第三定律说明了力的产生是由于两个物体相互作用而引
起的,它不仅适用于静止(平衡)状态的物体,而且同样适用于 运动状态的物体。
8
§10-2
质点的运动微分方程
将动力学基本方程表示为微分形式的方程,称为质点的 运动微分方程。 1.矢量形式 d2 r m 2 F ( 式中 r r (t ) 为质点矢径形式的运动 方程 ) dt 2.直角坐标形式
2 2 g s 2 2 v0 (v0 cos 0 ) (v0 sin 0 ) 2 gH 10.5 m/s 2 gH v sin 0 2H 1 0 0 tg tg 1 31 21 v0 cos 0 s
代入初始条件得 : c1 v0 cos 0 ,c2 v0 sin0 ,c3 c4 0
dvx dx c x c1t c3 m 0 1 dt dt 1 2 dv dy y gt c2t c4 m y m g gt c2 2 dt dt
列直角坐标形式的质点运动微分方程并对其积分运算
质点动力学的基本定律:
第一定律(惯性定律):不受力作用的质点,将保持静止 或作匀速直线运动。第一定律明确指出了物体运动状态发生
变化的原因。
第二定律(力与加速度之间的关系的定律):质点的质量 与加速度的乘积,等于作用于质点的力的大小,加速度的方 向与力的方向相同。
6
设作用在质点上的力为F,质点的质量为m,质点获得的加 速度为a,则牛顿第二定律可以用矢量方程表示为 F m a 第二定律建立了质点的质量、 作用于质点的力和质点运动加速度 三者之间的关系,并由此可直接导 出质点的运动微分方程,它是解决

0 Fb
质点运动微分方程除以上三种基本形式外,还可有极坐标 形式、柱坐标等形式。 应用质点运动微分方程,可以求解质点动力学的两类问题。
10
质点动力学两类问题:
第一类问题:已知质点的运动,求作用在质点上的力(微分
问题)。解题步骤和要点:
① 正确选择研究对象 一般选择联系已知量和待求量的质点。
② 正确进行受力分析,画出受力图 应在一般位置上进行分析。
1

二.力学模型:

研究物体的机械运动与作用力之间的关系。 一.研究对象: 1.质点:具有一定质量而不考虑其形状大小的物体。
例如:研究卫星的轨道时,卫星
刚体作平动时,刚体 的质点组成的系统。
质点;
质点。
2.质点系:由有限或无限个有着一定联系 刚体是一个特殊的质点系,由无数个相互间保持距离不变 的质点组成。又称为不变质点系。
d2 x d2 y d2 z m 2 Fx,m 2 Fy,m 2 Fz dt dt dt
( 式中x、y、z 为质点直角坐标形式的 运动方程 )
9
3.自然形式
d2 s m 2 F dt v2 m Fn
(式中s s(t )为质点的弧坐标形式的 运动方程。F ,Fn ,Fb 分别为力F 在 自然轴系 轴, n轴和b轴上的投影)
2 v0 Tmax G (1 ) gl
[注] ① 减小绳子拉力途径:减小跑车速度或者增加绳子长度。 ② 拉力Tmax由两部分组成, 一部分等于物体重量,称为静拉力 一部分由加速度引起,称为附加动拉力。全部拉力称为动拉力。
13
[例2] 已知质量为m的质点M在坐标平面 Oxy 内运动,如 图所示。其运动方程为 x a cos t,y b sin t ,其中
[例3] 发射火箭,求脱离地球引力的最小速度。
解: 取火箭(质点)为研究对象, 建立坐标如图 示。火箭在任意位置x 处受地球引力F 的作用。
m gR2 mM mg f F 2 R x2 d x2 mgR 2 建立质点运动微分方程 m 2 dt x2 mM F f 2 x
dvx mgR2 2 即: mvx dx x d 2 x dvx dvx dx v x dvx ( 2 ) dt dt dx dt dx
16
④ 选择并列出适当的质点运动微分方程。
⑤ 求解未知量。应根据力的函数形式决定如何积分,并利用
运动的初始条件,求出质点的运动。 如力是常量或是时间及速度函数时, dv 可直接分离变量 dt 积分 。 如力是位置的函数,需进行变量置换
相关文档
最新文档