人教八年级下册数学-二次根式的加减导学案

合集下载

八年级数学下册16.3 二次根式的加减(第1课时)导学案(新版)新人教版

八年级数学下册16.3 二次根式的加减(第1课时)导学案(新版)新人教版

八年级数学下册16.3 二次根式的加减(第1课时)导学案(新版)新人教版16、3 二次根式的加减学习目标1、会进行二次根式的加减运算。

2、通过加减法运算解决生活实际问题。

教学重点:二次根式加减法运算。

教学难点::能准确进行二次根式加减法运算。

【学前准备:】1、计算下列各式、(1)2x+3x= (2)2x2-3x2+5x2= (3)x+2x+3y= (4)3a2-2a2+a3 = 归纳:上面题目的结果,实际上是我们以前所学的合并同类项、合并同类项就是不变,相加减、2、把下列二次根式化简(1)(2)(3)【导入:】【自主学习,合作交流】阅读课本12页问题问题:上述二次根式化简为最简二次根式,它们的被开数有什么特点?你能合并吗?3、小试牛刀:(1)观察下列各组式子,能进行合并的是()A B C 与、(2)若最简二次根式与可以合并,则= (二)二次根式的加减法运算1、自学课本13页例1,仿例完成下列练习(1);(2);(3)2、自学课本13页例2,仿例完成下列练习:(1);(2)【精讲点拔】【当堂检测】1、下列计算是否正确?为什么?(1);(2);(3); (4)、2、计算:(1)+ 纠错栏(3)3、如图,两个圆的圆心相同,它们的面积分别是12、56cm2和25、12cm2,求圆环的宽度d(π取3、14)、【课堂小结】XXXXX:二次根式加减法的步骤:(1)将每个二次根式化为最简二次根式;(2)找出被开方数相同的二次根式;(3)合并、(一化、二找、三合并、)【课后作业】必做题1、二次根式:①;②;③;④中,与能合并的二次根式的是()、A、①和②B、②和③C、①和④D、③和④2、计算:(1)(2)(3)(4)选做题若最简二次根式与的被开方数相同,则、的值为()A、 B 、C、或D、【评价】准确程度评价优良中差书写整洁程度评价优良中差【课后反思】。

人教版初中数学八年级下册导学案:16.3.2二次根式的加减法

人教版初中数学八年级下册导学案:16.3.2二次根式的加减法

16.3 二次根式的加减法(第2课时)【课前预习学案】★(一)知识回顾:1、 相同的 二次根式叫同类二次根式.2、二次根式加减时,首先将二次根式化成 二次根式,•再将同类二次根式的 相加减,被开方数和根指数 .3、二次根式的混合运算顺序与整式的混合运算顺序一样,即先 ,再 ,最后 ,有括号的先算括号里面的。

各种运算律依然适用。

★(二)知识应用:1、与1+a 是同类二次根式的是( ) A.22+a B.a a +2 C.2)1(+a D.44+a2、计算(结果最简): (1))71312(2)32428(---= ;(2))19()41(bb a b a a ----- = 3.计算:.)12()12)(4(; )32()32)(3(; )32)(2(; )2( )1(2222=-++=-⋅+=÷+=⋅+x x y x y x xy xy y x xz y x ★(三)自我探究: .)710)(710)(4( );53)(65)(3( ;22)2364)(2( ;3)86)(1(-+-+÷-⋅+计算:概括:整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,•当然 也可以代表二次根式,所以,整式中的运算规律也适用于二次根式. 应用:计算()()()(); 210252)2(; 332263)1(=+-=+--- (). 2532)4(; 23322332)3(2=-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+ ※拓展应用: 已知x b a-=2-x a b -,其中a 、b 是实数,且a+b=3,化简+,并求值.★本章学习到现在,你肯定有不小的收获吧,当然,困惑也是肯定有的。

试试写出你的心得:.)1()1)(6( )232)(5( )75)(75)(4( )36)(26)(3( 32)6334)(2( )86(3)1(222a a a a --+--+-+÷--;;;;;【课后练习题案】基础题一、选择题:1.(24152232的值是( ). A .203330.30233.30233.2033302.计算(x 1x -x 1x - ). A .2 B .3 C .4 D .1二、填空题:1.(-12+32)2的计算结果(用最简根式表示)是________. 2.(1-2333-1)2的计算结果(用最简二次根式表示)是____.3.若2-1,则x 2+2x+1=________.4.已知2,b=3-2,则a 2b -ab 2=_________.三、计算题:提高题1、计算题:23123)61(32)3( );622554(83)2( );12131(15)1(---+-÷---÷2、设,25,32,23-=-=-=c b a 则a 、b 、c 的大小关系是( )A.a >b >cB.a >c >bC.c >b >aD.b >c >a3、已知22=-x ,求代数式9)1(6)1(2++-+x x 的值.4、先化简,再求值:)(11b a a b b b a ++++,其中.215,215-=+=b a5710141521++++;★当21-221x x x x x ++-++2211x x x x x x+-++++的值.。

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)

, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。

三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。

(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。

(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。

如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。

思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。

2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足,a才有意义。

3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。

人教版八年级数学下册第1课时 二次根式的加减(导学案)

人教版八年级数学下册第1课时 二次根式的加减(导学案)

16.3二次根式的加减第1课时二次根式的加减一、新课导入1.导入课题大家非常熟悉8+18是多少呢?怎么计算呢?今天我们一起来学习二次根式的加法.2.学习目标(1)知道怎样的二次根式能进行合并.(2)知道进行二次根式的加减法运算的步骤和方法.3.学习重、难点重点:会进行二次根式的加减法运算.难点:二次根式的加减法运算步骤.二、分层学习1.自学指导(1)自学内容:教材P12的内容.(2)自学时间:6分钟.(3)自学方法:体会列式、化简的过程,联想多项式相加时,合并同类项的方法来类比课文中二次根式的合并方法. (4)自学参考提纲:①下面每组中的二次根式能否合并?为什么?答案:能;能;不能.理由:前两个式子为同类二次根式,最后一个不是,不能合并.②合并二次根式的要点是什么?③二次根式的加减运算的一般步骤是什么?④下列计算是否正确?为什么?答案:×;×;√;×.理由:第1、2、4个式子不是同类二次根式,不能合并.第3个式子为同类二次根式,可以合并.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握怎样的二次根式能够合并,合并的方法是什么.②差异指导:对是不是被开方数不同就不能合并,合并前应做什么等问题进行指导.(2)生助生:学生相互研讨疑难之处.4.强化(1)归纳合并二次根式的方法和要点.(2)总结二次根式的加减运算的一般步骤.1.自学指导(1)自学内容:教材P13例1和例2.(2)自学时间:5分钟.(3)自学方法:先独立运用刚才总结的二次根式加减法法则计算,然后对照课本步骤验证方法是否正确. (4)自学参考提纲:①计算.②二次根式的加减与整式的加减有哪些类似之处?③例题中(1)、(2)先做了什么?然后做什么?④计算:-;答案:42.自学:学生可结合自学参考提纲进行自学.3.助学(1)师助生:①明了学情:了解学生是否熟悉了例题介绍的计算步骤及方法,存在哪些疑点.②差异指导:不是最简二次根式的先化简;化简后找被开方数相同的二次根式.(2)生助生:相互交流,帮助矫正错误.4.强化(1)强化自学提纲中该重点强化的内容.(2)点学生板演自学参考提纲第④题,并点评.(3)回顾本节所学知识点和数学思想方法.三、评价1.学生的自我评价(围绕三维目标):小组代表介绍小组成员怎样学习,有哪些收获和不足.2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、成果及存在的问题.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时通过创设情境,给出实例.由学生主动参与,经过思考、讨论、分析的过程,老师加以启发和引导,让学生明白二次根式的加减的实质是合并同类二次根式;师生共同总结出二次根式加减法运算的步骤:(1)化成最简二次根式;(2)找出被开方数相同的二次根式;(3)合并被开方数相同的二次根式,可简化为:化简→判断→合并.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)合并的二次根式是(C )A.①和②B.②和③C.①和④D.③和④2.(10分)下列计算正确的是(C )3.(10分)若最简二次根式x=2.4.(40分)计算:二、综合运用(15分)三、拓展延伸(15分)。

八年级数学下册16.3二次根式的加减导学案新人教版

八年级数学下册16.3二次根式的加减导学案新人教版

四、课堂达标检测
1、计算:(1)3 + -4 ;(2) —15 + ;(3) — — + — 2、把下列各式化成最简二次根式(a>0,b>0).
(1) +3a - ×
(2)
—ab ) ÷
3、解下列方程和不等式。
(1) x+
=2x+1
(2) (x-1)>3(x+1)
五、学习反馈
本 节课你学到了什么?有什么收获和体会?还有什么困惑?
出错误或提出有价值的疑问,给谁的小组加分(或奖星).
交流内容
展示小组(随机)
点评小组(随机)
____________
第______组
第______组
____________
第______组
第______组
三、归纳总结
1、二次根式的加减即为对同类二次根式的合并。
2、二次根式的加减与整式的加减根据都是分配律,它们的运算实质也基本相同.
16。3 二次根式的加减
预习案
一、学习目标
1、理解二次根式的性质,并利用性质对二次根式进行化简.
二、预习内容
预习课本 P3-4 页内容。
1、二次根式的两个性质:
.
根据性质进行计算。
(1)如果 =x 成立,则 x 一定是( )
A.正数 B.0 C.负数 D.非负数
2、代数式的定义:
.
三、预习检测 1、下列根式中,与 是同类二次根式的是( )
预习检测 1、B 2、D 3ቤተ መጻሕፍቲ ባይዱC 课堂达标检测
参考答案
1、解:(1)原式=9 + —4× =8 ;
(2)原式=3 -15× + ×4 =— ;

7.2 二次根式的加减法导学案

7.2  二次根式的加减法导学案

4、若 x= 6 + 5 ,y= 6 - 5 ,则( x  18 0.5
1 3
4、一个长方形两边为 a+ b , a b ,求这个长方形的面积和周长。
六、课后作业: 1、课本 11 页习题 1、2、3 题。 2、若最简二次根式 x y 与 3x 2 y 的被开方式相同,则
1 2 1
x = y
3、若 x=
,则 x2-2x+1= 。
探究点二:同类二根式的加减法 法则:二次根式相加减,应先 后 例 2、计算: (1) 54 + 24 (2) 2 3
,然 。
9a +3
a 4
(3) 90 -2 20 +5
4 5
变式练习二: 1、计算: (1)2 3 -3 3 +6 3 (2)2 12 +3 48 -4 75
(3)2 6 。 。 叫做同类二次根式。
7.2《二次根式的加减法》导学案 初二数学备课组 时间:2011.02
一、学习目标: 1、了解同类二次根式的概念,会识别同类二次根式。 2、经历二次根式的加减法运算法则的形成过程,感悟类比思想。 3、会利用二次根式的加减运算法则进行计算。 二、学习重点、难点: 重点:同类二次根式的概念、识别。 会运用二次根式的加减运算法则进行计算。 难点:会运用二次根式的加减运算法则进行计算。 三、探究新知: 知识储备: 1、 计算: (1)3a+3a= (2)4ab-ab= 2、自主预习课本 P10-P11 内容,独立完成课本练习 1、2 题后与 小组同学交流(课前完成) 。 探究点一;同类二次根式 通过预习课本 P10-P11,回答下列问题: (1)最简二次根式的定义: (2)化简 27 、 48 (3) 例 1、下列根式中,与 3 是同类二次根式的是( )

人教版八年级数学下册教案-16.3二次根式的加减

人教版八年级数学下册教案-16.3二次根式的加减
3.实践活动(10分钟)
-实验操作:指导学生进行简单的二次根式加减计算;
-分组讨论:学生分成小组,讨论解决实际问题时如何应用二次根式加减。
4.学生小组讨论(10分钟)
-主题:围绕“二次根式在实际生活中的应用”展开讨论;
-引导与启发:提出问题,引导学生思考,激发他们的想象力。
5.成果展示(5分钟)
-每个小组选派一名代表分享讨论成果;
二、核心素养目标
1.培养学生逻辑推理能力,通过对二次根式性质的探究,理解并掌握二次根式的加减法则;
2.培养学生数学运算能力,能够熟练运用二次根式加减法则进行混合运算;
3.培养学生数学抽象能力,从实际问题中抽象出二次根式加减的数学模型,提升解决实际问题的能力;
4.培养学生合作交流能力,通过小组讨论、问题探究等形式,提高学生团队协作和沟通表达能力。
(2)指导学生在混合运算中如何识别同类二次根式,如√18 + √50,化简后为3√2 + 5√2,进而合并为8√2;
(3)通过设计不同类型的实际应用题,帮助学生克服在具体问题中应用二次根式加减法则的困难,例如在几何图形面积计算中,如何将不同长度的边转化为同类二次根式进行计算。
直接输出:
三、教学流程
1.导入新课(5分钟)
三、教学难点与重点
1.教学重点
-掌握二次根式的定义及性质,特别是二次根式乘除法的运算规律;
-熟练运用二次根式的加减法则进行计算,并能解决相关问题;
-能够将实际问题抽象为二次根式加减的数学模型。
举例解释:
(1)重点讲解二次根式乘除法的运算规律,如√a × √b = √(ab)等,并通过例题演示;
(2)强调二次根式加减法则,如√a + √b ≠ √(a+b),通过具体计算题指导学生正确运用;

人教版数学八年级下册导学案:16.3-1二次根式的加减运算

人教版数学八年级下册导学案:16.3-1二次根式的加减运算

1________=(________==_____________===_________________===_________(_________()_____()===化成最简二次根式应用分配率结果)___________(___________()_____()===化成最简二次根式应用分配率结果)1=________________________=2=________________________=(1=________________________________=()2=_____________________________________+=(1=( )323=()3-2 ( )22=()( )4315⨯=()5 ( )16.3二次根式的加减运算(1)一、学习目标1、了解哪些二次根式能进行加减运算。

2、能熟练进行二次根式的加减运算。

二、学习重点、难点重点:二次根式加减法的运算。

难点:把二次根式的化简成最简二次根式。

三、学习过程(一)知识准备1、什么是同类项?所含字母__________,且相同字母的指数也_________;2、计算(合并同类项):(1)x x 32+; (2)222532x x x +-; (3)y x x 32++ =________ =_______ =__________ 3、整式的加减就是合并同类项,不是同类项不能合并,合并同类项的方法是:系数__________,字母和字母的指数___________; 4、化简:(二)自主学习1、按提示尝试计算:2、通过计算归纳:进行二次根式的加减法时,应先把二次根式化成_________________,再将___________________________________进行合并.3、注意:(1)二次根式的加减法就是合并被开方数相同的二次根式,不是被开方数相同的二次根式不能合并.(2)合并被开方数相同的二次根式方法是:系数___________,根号和被开方数__________.(3) 二次根式的加减法的步骤是: ①化成最简二次根式;②找出被开方数相同的二次根式;③合并被开方数相同的二次根式,被开方数不相同的二次根式的不能合并。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.3 二次根式的加减
大地二中 张清泉
第1课时 二次根式的加减
一、学习目标
1、能将二次根式化为最简二次根式并能判定哪些是二次根式可以合并;
2、理解和掌握二次根式加减的方法;
3、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方
法的理解.再总结经验,用它来指导根式的计算和化简.
二、学习重点、难点
1、重点:二次根式化简为最简根式.
2、难点:会判定是否是最简二次根式.
三、学习过程
(一)自学导航(课前预习)
计算.(1)x x 32+;(2)222532x x x +-;(3)y x x 32++;(4)22223a a a +-
(二)合作交流(小组互助)
学生活动:计算下列各式.
(1)(2)
(3 = (4)
由此可见,二次根式的被开方数相同也是可以合并的,如表面上看是不相同的,但它们可以合并吗?也可以.
所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.
例1.计算 (1(2
例2.计算(1( 2))+ 归纳: 第一步,将不是最简二次根式的项化为最简二次根式;
第二步,将相同的最简二次根式进行合并. (三)展示提升(质疑点拨) (1) )27
131(
12-- (2) )512()2048(-++
(3) y y x y x x
1241+-+ (4))461(9322x x x x x x --
例3.已知4x2+y2-4x-6y+10=0,求(23-()的值.
(四)达标检测
一、选择题
1可以合并的是( )
A .①和②
B .②和③
C .①和④
D .③和④
2.下列各式:①17
). A .3个 B .2个 C .1个 D .0个
3.在下列各组根式中,可以合并的是( ) (A)3和18 (B)3和31 (C)b a 2和2ab (D)1+a 和1-a
4.下列各式的计算中,成立的是( ) (A)5252=+ (B)15354=- (C)错误!未找到引用源。

(D)52045=-
5.若错误!未指定书签。

则)(
a b b a ab -的值为( ) (A)2
(B)-2 (C)2 (D)22 二、填空题
1、是同
类二次根式的有________.
2.计算二次根式的最后结果是________.
3.若最简二次根式123+x 与13-x 可以合并,则x =______.
4.若最简二次根式b a +3与错误!未指定书签。

可以合并,则a =______,b =______.
5.计算:
(1)a a a a a a a 1084333273123-+- (2)5.0753
128132-+--
【素材积累】
1、成都,是一个微笑的城市,宁静而美丽。

几千年前的三星堆、金沙,是古蜀人智慧的结晶,难以忘怀的文明,静静地诉说着古人们的智慧……刘备,孟昶等,多少为成都制造机会,创造美丽的人啊!武侯祠中诸葛亮摘悄悄的感叹成都的美……杜甫草堂,有多少千古名句,虽然简陋却给了杜甫一个温暖的港湾。

2、早上,晴空万里,云雾满天。

太阳公公把一切都搞得有一层薄薄的金黄色。

一群小鸟,摘老松树的枝头上欢蹦乱跳,叽叽喳喳地唱歌,这些小淘气们一跳上去,那些晶莹的小露珠旧滴一声,跳到了地上,继续进行它们的旅行。

空气摘早上也是非常的清新,你深深地吸一口气,仿佛可以把自己所有的心烦事都忘得一干二净,这旧是我家乡的早晨。

相关文档
最新文档