抽屉原理又称鸽笼原理.ppt

合集下载

《抽屉原理》(PPT课件

《抽屉原理》(PPT课件
算法分析
在算法分析中,抽屉原理可以用于分析算法的时间复杂度和空间复杂度,以及确 定算法的最坏情况下的性能。
在日常生活中的应用
资源分配
在资源分配问题中,可以将资源视为抽屉,将待分配的物品 或任务视为物体,根据抽屉原理得出最优的分配方案。
排队理论
在排队理论中,抽屉原理可以用于分析排队系统的性能和稳 定性,以及确定最优的排队策略。
有限制的抽屉原理的证明
有限制的抽屉原理是指
如果 n+1 个物体要放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n),那么至少有一个容器包含两个或以上的物体。
证明方法
假设 n+1 个物体放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n)。如果存在一个容器只包含一个物体,那么我们可以将这个物体放入另一个 容器中,从而证明了至少有一个容器包含两个或以上的物体。
在数论中的应用
质数分布
根据抽屉原理,如果将自然数按 照质数和非质数进行分类,则质 数在自然数中的比例趋近于 $frac{1}{2}$。
同余方程
在解同余方程时,可以将模数视 为抽屉,方程的解为物体,根据 抽屉原理得出解的存在性和个数 。
在计算机科学中的应用
数据结构
在计算机科学中,抽屉原理可以应用于各种数据结构的设计和分析,如数组、链 表、哈希表等。
现代研究
现代数学研究中对抽屉原理进行了深入的探讨和研究,不断拓展其 应用范围和理论体系。
02
抽屉原理的证明特殊形式,其基本思想是
如果 n 个物体要放入 n-1 个容器中,且每个容器至少有一个物体,则至少有一个容器包含两个或以上的物体。
证明方法
假设 n 个物体放入 n-1 个容器中,且每个容器至少有一个物体。如果存在一个容器只包含一个物体,那么我们 可以将这个物体放入另一个容器中,从而证明了至少有一个容器包含两个或以上的物体。

抽屉原理课件1

抽屉原理课件1

有两种颜色,摸3个 球,就能保证有两个 球同色.
只要摸出的球比它们的 颜色种数多1,就能保证 有两个球同色.
1、把红、黄、蓝、白四种颜色的球各 10个放到一个袋子里。至少取多少个球, 可以保证取到两个颜色相同的球?
4+1=5(个)
2、把红、蓝、黄三种颜色的小棒各10根混 在一起。如果让你闭上眼睛,每次最少拿出 几根才能保证一定有2根同色的小棒?
0
这样分实际上是怎样在分? 怎样列式?
平均分
8只鸽子飞回3个鸽舍,至少有3只鸽子 飞回同一个鸽舍里。为什么? 8÷3=2……2 2+1=3
你能证明在任意的37人中,至少有几人的 属相相同?为什么? 37÷12=3……1 3+1=4
六(2)班有学生39人,我们可以肯定,在 4 这39人中,至少有 人的生日在 同一个月?想一想,为什么?
3-1=2 ( )÷3=2„„1 3×2+1=7(个)
2、箱子里有5种不 同品牌的果冻各20 粒,要想保证摸到 同品牌的果冻4粒, 最少要摸出多少粒 果冻?
4-1=3
( )÷5=3„„1
5×3+1=16(粒)
说说你这节课的收获吧!
39÷12=3„„3
3+1=4
把13只小兔子关在5个笼子里,至少有多少只 兔子要关在同一个笼子里? 13÷5=2„„3
2=1=3
知识拓展:
“抽屉原理”又称“鸽笼原理”,最先是 由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,也称为“鸽 巢原理”。这一原理在解决实际问题中有 着广泛的应用。“抽屉原理”的应用是千 变万化的,用它可以解决许多有趣的问题, 并且常常能得到一些令人惊异的结果。
通过练习,你能总结出抽屉原理的一般模式吗?

《抽屉原理》第-课PPT课件

《抽屉原理》第-课PPT课件

有限制条件的抽屉原理证明
有限制条件的抽屉原理是指在某些特 定条件下,抽屉原理仍然成立。例如 ,当容器的形状、大小、质量等因素 受到限制时,抽屉原理仍然适用。
证明方法:根据具体条件,通过数学 推导和逻辑推理,证明在满足特定条 件下,抽屉原理仍然成立。
抽屉原理的推广证明
抽屉原理的推广是指将抽屉原理应用到更广泛的领域和问题中,例如集合论、概 率论、组合数学等。
有n个人和n把椅子(n>3),将它们 随机就座。求证:至少有两把椅子被 两个人同时坐。
5
有100枚硬币,将它们放入10个盒子 里,每个盒子至少放10枚硬币。求证: 至少有一个盒子里放了10枚硬币。
05 总结与思考
CHAPTER
抽屉原理的重要性和意义
数学基础
抽屉原理是组合数学中的 基础原理,对于理解许多 数学概念和证明许多数学 定理具有重要意义。
《抽屉原理》第-课ppt课件
目录
CONTENTS
• 抽屉原理简介 • 抽屉原理的应用 • 抽屉原理的证明 • 抽屉原理的练习题 • 总结与思考
01 抽屉原理简介
CHAPTER
抽屉原理的定义
抽屉原理
如果n+1个物体要放入n个抽屉中 ,那么至少有一个抽屉包含两个 或两个以上的物体。
数学表达
如果将m个物体放入n个抽屉中 (m>n),那么至少有一个抽屉包 含多于一个物体。
进阶练习题
01
02
03
总结词
考察较复杂情况下的抽屉 原理应用
3
有100个苹果和91个抽屉, 要将苹果放入抽屉中,至 少有一个抽屉里放了多少 个苹果?
4
有1000只鸽子飞过天空, 它们要飞进100个鸽笼里, 至少有一个鸽笼里飞进了 几只鸽子?

抽屉原理[1].

抽屉原理[1].

一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中 的问题,因此,也被称为狄利克雷原则•抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可 以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放 两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹 果。

我们称这种现象为抽屉原理。

三、 抽屉原理的解题方案(一) 、利用公式进行解题 苹果十抽屉=商……余数 余数:(1)余数=1,结论:至少有(商+ 1)个苹果在同一个抽屉里 (2)余数=x 1Y :X Y n-1,结论:至少有(商+ 1 )个苹果在同一个抽屉里(3) 余数=0,结论:至少有“商”个苹果在同一个抽屉里(二) 、利用最值原理解题将题目中没有阐明的量进行极限讨论, 将复杂的题目变得非常简单, 也就是常说的极限思想 “任我意” 方法、特殊值方法.知识精讲模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论【例1】6只鸽子要飞进5个笼子,每个笼子里都必须有 1只,一定有一个笼子里有 2只鸽子•对吗?【巩固】 把9条金鱼任意放在 8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.8-2抽屉原理、【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人•教数学的张老师说:“你们这个小组至少有2个人在同一月过生日•”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样. 【巩固】光明小学有367名2000年出生的学生,请问是否有生日相冋的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相冋.【例2】向阳小学有730个学生,问:至少有几个学生的生日是冋一天?【巩固】试说明400人中至少有两个人的生日相同.【例3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名冋学,他们在数学小组中都有一些朋友,请你说明:至少有两名冋学,他们的朋友人数一样多.【例5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

鸽巢原理(抽屉原理)的详解

鸽巢原理(抽屉原理)的详解

鸽巢原理(抽屉原理)的详解抽屉原理百科名⽚桌上有⼗个苹果,要把这⼗个苹果放到九个抽屉⾥,⽆论怎样放,我们会发现⾄少会有⼀个抽屉⾥⾯放两个苹果。

这⼀现象就是我们所说的“抽屉原理”。

抽屉原理的⼀般含义为:“如果每个抽屉代表⼀个集合,每⼀个苹果就可以代表⼀个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定⾄少有⼀个集合⾥有两个元素。

” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽⼦笼,养鸽⼈养了6只鸽⼦,那么当鸽⼦飞回笼中后,⾄少有⼀个笼⼦中装有2只鸽⼦”)。

它是组合数学中⼀个重要的原理。

第⼀抽屉原理原理1:把多于n+1个的物体放到n个抽屉⾥,则⾄少有⼀个抽屉⾥的东西不少于两件。

证明(反证法):如果每个抽屉⾄多只能放进⼀个物体,那么物体的总数⾄多是n,⽽不是题设的n+k(k≥1),故不可能。

抽屉原理原理2 :把多于mn(m乘以n)个的物体放到n个抽屉⾥,则⾄少有⼀个抽屉⾥有不少于m+1的物体。

证明(反证法):若每个抽屉⾄多放进m个物体,那么n个抽屉⾄多放进mn个物体,与题设不符,故不可能。

原理3 :把⽆穷多件物体放⼊n个抽屉,则⾄少有⼀个抽屉⾥有⽆穷个物体。

原理1 、2 、3都是第⼀抽屉原理的表述。

第⼆抽屉原理把(mn-1)个物体放⼊n个抽屉中,其中必有⼀个抽屉中⾄多有(m—1)个物体。

证明(反证法):若每个抽屉都有不少于m个物体,则总共⾄少有mn个物体,与题设⽭盾,故不可能。

应⽤基本介绍应⽤抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作⽤。

许多有关存在性的证明都可⽤它来解决。

例1:同年出⽣的400⼈中⾄少有2个⼈的⽣⽇相同。

解:将⼀年中的365天视为365个抽屉,400个⼈看作400个物体,由抽屉原理1可以得知:⾄少有2⼈的⽣⽇相同. 400/365=1…35,1+1=2 ⼜如:我们从街上随便找来13⼈,就可断定他们中⾄少有两个⼈属相相同。

“从任意5双⼿套中任取6只,其中⾄少有2只恰为⼀双⼿套。

抽屉原理

抽屉原理

抽屉原理抽屉原理又叫鸽笼原理,是德国数学家狄里克雷首先发现的,所以又叫狄里克雷原理。

这类问题似乎都有“存在”、“必有”、“至少有”这样的字眼。

在解决这类问题时,只要求证明存在,一般并不要求指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。

一、原理抽屉原理(一):把多于..n个的物体任意分放进n个空抽屉里(n是非0自然数),那么一定有....了2个物体。

...1个抽屉里至少放进抽屉原理(二):把多于..k.n个的物体任意分放进n个空抽屉里(k、n都是非0自然数),那么一定有....了(k+1)个...1个抽屉里至少放进物体。

抽屉原理(一)是抽屉原理(二)的特殊情况。

二、解决抽屉原理问题的关键:1、确认什么是被投放的“物体”,什么是“抽屉”;2、正确构造“抽屉”——最重要的关键;3、分清问题属于下述三类问题中的哪一类。

三、抽屉原理问题的三种类型和解法(一)已知被投物体的个数和抽屉数,求某一个抽屉里至少可以放进的物体个数。

方法:要把a个物体放进n个空抽屉,如果a÷n=b……c (c≠0且c﹤n),那么一定有一个抽屉至少可以放进(b.+.1.)个物体。

而不是(b+c)个物体。

(二)已知被投物体的个数和某一个抽屉里至少可以放进的物体个数,求抽屉数。

方法:(被投物体的个数-1)÷(某一个抽屉里至少可以放进的物体个数-1)=n……c (c﹤n),则n就是所求的抽屉数。

(三)已知抽屉数和某一个抽屉里至少可以放进的物体个数,求被投物体的个数。

方法:抽屉数×(某一个抽屉里至少可以放进的物体个数-1)+1,就是所求的被投物体的个数。

(2011—04—21)。

抽屉原理

抽屉原理

抽屉原理
抽屉原理(也称鸽笼原理:通常把鸽子比做苹果,把笼子比做抽屉),它是德国数学家狄利克雷首先明确提出来的,它有两个基本原理。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2:将多于m×n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:
(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n=m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

苏教版六年级下册数学抽屉原理(课件)

苏教版六年级下册数学抽屉原理(课件)
从三种颜色的球中挑选两个球,情况有下面6种: 2红,2黄,2蓝,1红1黄,1红1蓝,1黄1蓝
6个抽屉,7个苹果,抽屉原理
至少有2个苹果要放进一个抽屉中,也就是说,至少 有两个人挑选的颜色完全一样。
【例6】木箱里装有红色球3个、黄色球5个、蓝色球7 个,若蒙眼去摸, (1)为保证取出的球中有两个球的颜色相同,则最少 要取出多少个球? (2)为保证取出的球中有三种颜色的球,则最少要取 出多少个球?
取出6×3=18(只),同一只手的
再取出不利的6只同一只手的,18+6=24只,有一双颜 色相同的手套了。 最后任意取一只,都能配成一双24+1=25(只)
答:至少要取25只才能达到要求。
【例5】芹芹、大齐和胡胡到费叔叔家玩。费叔叔拿出 许多巧克力来招待他们,他们一数共有19块巧克力, 如果把这些巧克力分给他们三人,试说明一定有人至 少拿到7块巧克力,但不一定有人拿到8块。
分析:构造抽屉 19÷3=6(块)······1(块)
6+1=7(块)
所以一定有人拿到7块巧克力,不能保证一定有人 拿到8块。
【练习5】在一只口袋中有红色,黄色,蓝色球若干个, 小聪明和其他六个小朋友一起做游戏,每人可以从口 袋中随意取出2个球,那么不管怎样挑选择,总有两个 小朋友取出的两个球的颜色完全一样,你能说明这是 为什么吗? 分析:构造抽屉
(一)列举法:3只苹果放在2个抽屉里,共有4种 不同的放法,见下表:
(二)反证法:如果命题的结论不成立,这就是说,每 个抽屉里至多放1只苹果。于是,2个抽屉里至多共有2 只苹果。而已知有3只苹果放在2个抽屉里,这样与假设 相矛盾。所以,命题得到证明。
以上所证明的数学原理叫“鸽笼原理”,也叫 “抽屉原理”。 基本的抽屉原理认为: (1)如果把x+1个物体放到x个抽屉里,那么至少有一 个抽屉里有不止一个这种物体; (2)把 xm+1个物体放到m个抽屉里,那么肯定有一 个抽屉里至少有x+1个物体。通俗地,可以这样说:“东 西多,抽屉少,那么至少有两个东西放在同一个抽屉 里。”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“ 抽屉原理”又称“鸽笼原理”,最先 是由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,这一原理在解 决实际问题中有着广泛的应用。“抽屉原理” 的应用是千变万化的,用它可以解决许多有 趣的问题,并且常常能得到一些令人惊异的 结果。下面我们应用这一原理解决问题。
在我们班的任意13人中,至少2个人 的属相相同,想一想,为什么?
一幅扑克,拿走大、小王后还 有52张牌,任意抽出其中的 5张牌, 请大家猜测一下,同种花色的至少 有几张?为什么?
一盒围棋棋子,黑白子混放,我们任意 摸出3个棋子,至少有2个棋子是同颜色的, 为什么?
六年级9个班的同学参加“军营一日
生活” 社会实践活动,自由活动时,有
10个同学在一起,可以肯定源自。三个小朋友同行,至少几个 小朋友性别相同?
某街道办事处统计人口显示,本 街道辖区内当年共有 367名婴儿出生。 统计员断定:“至少有2名婴儿是在 同一天出生的。”这是为什么?
相关文档
最新文档