多糖结构

合集下载

多糖结构解析的方法

多糖结构解析的方法

多糖结构解析的方法一类是传统的化学方法,一类是波谱学方法。

2.1化学方法化学方法是用来对一些简单的单糖、二糖和寡糖进行分析的经典方法,同时亦可应用在多糖的结构解析上。

它是通过完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化分析和气质联用对多糖进行解析的。

2.1.1水解法水解法通过完全水解将多糖链分解成单糖,这是分析多糖链组成成分的主要手段。

水解法包括完全酸水解、部分酸水解、乙酰解和甲醇解等。

水解后的多糖经过中和、过滤可采用气相色谱、纸层析、薄层层析、高效液相色谱仪[8]和离子色谱法[9]进行分析。

2.1.2高碘酸氧化法高碘酸可以选择性的氧化断裂糖分子中的连二羟基或连三羟基处,生成相应的多糖醛、甲酸,反应定量进行,每裂开一个C—C键消耗一分子高碘酸,通过测定高碘酸消耗量及甲酸的释放量,可以判断糖苷键的位置、直链多糖的聚合度和支链多糖的分枝数[10]。

2.1.3Smith降解Smith降解是将高碘酸氧化产物还原后进行酸水解或部分水解。

由于糖残基之间以不同的位置缩合,用高碘酸氧化后则生成不同的产物。

根据降解产物可以推断糖苷键的位置。

在降解产物中若有赤藓糖生成,则提示多糖具有1→4结合的糖苷键;若有甘油生成,则提示有1→6、1→2结合的糖苷键或有还原末端葡萄糖残基;若能检出单糖,如葡萄糖、半乳糖、甘露糖等,则有1→3糖苷键结合的存在[11]。

2.1.4甲基化反应甲基化反应是用甲基化试剂将各种单糖残基中的游离羟基全部甲基化,进而将甲基化多糖水解后得到的化合物,其羟基所在的位置即为原来单糖残基的连接的位置。

甲基化反应的关键在于甲基化是否完全,通常采用红外光谱法检测3500㎝-1处有无吸收峰,以此来判断甲基化多糖中是否含有游离的羟基(-OH)。

甲基化的方法有Purdie法、Hamorth法、Menzie法和Hakomori法等[12]。

现在使用较多的是Ciucanu和Kerek[13]方法,它是将多糖样品溶解在DMSO中,加入NaOH粉末和碘甲烷,混合在密封瓶中25℃搅拌6min即可,方法简单,重复性好。

多糖结构分析

多糖结构分析

多糖结构分析(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--多糖结构研究方法多糖及其复合物是来自于高等动、植物细胞膜和微生物细胞壁中的天然大分子物质之一,自然界含量丰富,与人类生活紧密相关,对维持生命活动起至关重要的作用。

多糖和核酸、蛋白质、脂类构成了最基本的4类生命物质。

由于多糖的生物活性与多糖的结构关系密切,因此清楚认识多糖的结构是进行多糖研究和利用的基础。

多糖结构比蛋白质和核酸的结构更加复杂,可以说是自然界中最复杂的生物大分子。

从化学观点来看,多糖结构解析最大的难点就在于其结构的复杂性。

糖的结构分类可沿用蛋白质和核酸的分类方法,即多糖的结构也可分为一级、二级、三级和四级结构。

与蛋白质或核酸大分子相比,糖链的一级结构“含义”要十分丰富。

测定糖链的一级结构,要解决以下几个问题:(1)相对分子质量;(2)糖链的糖基组成,各种单糖组成的摩尔比;(3)有无糖醛酸及具体的糖醛酸类型和比例;(4)各单糖残基的D-或L.构型,毗喃环或呋喃环形式;(5)各个单糖残基之间的连接顺序;(6)每个糖苷键所取的a-或B.异头异构形式;(7)每个糖残基上羟基被取代情况:(8)糖链和非糖部分连接情况;(9)主链和支链连接位点:(10)糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。

多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象,与分子主链的构象有关,不涉及侧链的空间排布;多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象四。

多糖结构的分析手段很多。

不仅有仪器分析法,如红外、核磁共振、质谱等,还有化学方法,如完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化反应等,以及生物学方法,如特异性糖苷酶酶切、免疫学方法等。

1质谱(MS)由于MS法在糖链结构分析中具有快速灵敏,样品用量少、结构信息直观的特点而得到越来越广泛的应用。

《多糖结构解析》课件

《多糖结构解析》课件

质谱技术
通过电离多糖分子并测量其质量 ,可以获得多糖的分子量和组成 信息。
核磁共振技术
通过测量多糖分子中氢原子或其 他原子周围的磁场,可以解析多 糖的精细结构。
生物技术分析法
凝集素结合法
利用凝集素与多糖的特异 性结合,分离纯化多糖, 并进行结构分析。
抗体技术
利用抗体与多糖的特异性 结合,进行多糖的定性和 定量分析。
THANKS
感谢观看
亲和色谱法
利用多糖分子与配体之间的特 异性亲和力,将多糖分离纯化
出来。
分离纯化过程中的注意事项
注意温度和pH值
在提取和分离纯化过程中,要控制好温度和pH值 ,以保证多糖的稳定性和活性。
避免长时间高温
长时间高温会导致多糖的结构发生变化,影响其 生物活性和稳定性。
注意防止污染
在分离纯化过程中,要避免污染,如微生物、杂 质等,以保证多糖的纯度和质量。
03
多糖的结构解析方法
化学分析法
01
02
03
酸水解
在酸的作用下,将多糖水 解成单糖,然后进行衍生 化反应,通过气相色谱或 液相色谱进行分析。
碱水解
在碱的作用下,使多糖水 解成寡糖和单糖,同样需 要进行衍生化反应,再进 行色谱分析。
酶解
利用特异性酶将多糖水解 成特定结构的片段,再进 行分析。
物理分析法
食品工业
食品添加剂
01
多糖可作为增稠剂、稳定剂、口感改善剂等用于食品加工中,
提高食品品质和稳定性。
功能性食品
02
利用多糖的生理活性,开发具有抗氧化、抗肿瘤、降血糖等功
能的食品。
食品包装材料
03
多糖可制成可食用的食品包装材料,具有良好的阻隔性能和环

多糖的结构分析课件

多糖的结构分析课件
.
第6章 多糖的结构分析
多糖结构测定的意义 从天然物质中分离得到的单体多
糖化合物即使具有很强的活性与具有较 大的安全性, 但如果结构不清楚, 则无法 进一步开展其药理学与毒理学研究, 也 就不可能进行人工合成或结构修饰改造 工作, 更谈不上进行高质量的新药开发 研究, 其学术及应用价值将会大大降低。
OH 2 OC2 H OHC2 H OH
以1→2位键合(1→2,6类似)
O H H
HO
0
H O H
C2 H OH
CH2O H
IO -4
O N aB H 4
O H+
CH 2OH
CH OO HCOOC H 2O HH O H 2C
OH 2O2CHOH
O
CH 2OH
以1→4位键合(1→4,6类似)
.
第6章 多糖的结构分析
3.甲基化(单糖残基的连接方式) 是用甲基化试剂将糖分子中的游离羟基
甲基化成甲醚,然后水解,检识这些甲基糖 产物,就可能推测组成多糖分子中单糖间连 接的位置(羟基所在的位置,即为原来单糖 残基的连接点)。 (氢化钠、碘甲烷) (1)制备负碳离子:无水二甲亚砜30ml于 100ml试剂瓶中,通入氮气几分钟后,加入 1.5gNaH,渐渐加温,然后恒温在65-70℃46小时。最终颜色为墨绿色。整个过程通氮, 并搅拌。
多糖的非还原末端或非末端的(1→6)键与邻三元醇相似, 其与过碘酸盐作用则糖环开裂得到一分子比例的甲酸而消耗二 分子比例之过碘酸盐。非末端的(1→2)或(1→4)键与邻二 元醇相似, 其开裂后产生二分子醛而消耗一分子比例之过碘酸盐。 对于非末端的(1→3)键或C-2和C-4有分枝的则不受过碘酸盐 影响。因此多糖氧化后定量测定过碘酸盐的消耗、甲酸的生成 和剩余糖的比例, 就可确定多糖中各种单糖的键型及其比例。

多糖结构解析的方法

多糖结构解析的方法

多糖结构解析的方法一类是传统的化学方法,一类是波谱学方法。

2.1化学方法化学方法是用来对一些简单的单糖、二糖和寡糖进行分析的经典方法,同时亦可应用在多糖的结构解析上。

它是通过完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化分析和气质联用对多糖进行解析的。

2.1.1水解法水解法通过完全水解将多糖链分解成单糖,这是分析多糖链组成成分的主要手段。

水解法包括完全酸水解、部分酸水解、乙酰解和甲醇解等。

水解后的多糖经过中和、过滤可采用气相色谱、纸层析、薄层层析、高效液相色谱仪[8]和离子色谱法[9]进行分析。

2.1.2高碘酸氧化法高碘酸可以选择性的氧化断裂糖分子中的连二羟基或连三羟基处,生成相应的多糖醛、甲酸,反应定量进行,每裂开一个C—C键消耗一分子高碘酸,通过测定高碘酸消耗量及甲酸的释放量,可以判断糖苷键的位置、直链多糖的聚合度和支链多糖的分枝数[10]。

2.1.3Smith降解Smith降解是将高碘酸氧化产物还原后进行酸水解或部分水解。

由于糖残基之间以不同的位置缩合,用高碘酸氧化后则生成不同的产物。

根据降解产物可以推断糖苷键的位置。

在降解产物中若有赤藓糖生成,则提示多糖具有1→4结合的糖苷键;若有甘油生成,则提示有1→6、1→2结合的糖苷键或有还原末端葡萄糖残基;若能检出单糖,如葡萄糖、半乳糖、甘露糖等,则有1→3糖苷键结合的存在[11]。

2.1.4甲基化反应甲基化反应是用甲基化试剂将各种单糖残基中的游离羟基全部甲基化,进而将甲基化多糖水解后得到的化合物,其羟基所在的位置即为原来单糖残基的连接的位置。

甲基化反应的关键在于甲基化是否完全,通常采用红外光谱法检测3500㎝-1处有无吸收峰,以此来判断甲基化多糖中是否含有游离的羟基(-OH)。

甲基化的方法有Purdie法、Hamorth法、Menzie法和Hakomori法等[12]。

现在使用较多的是Ciucanu和Kerek[13]方法,它是将多糖样品溶解在DMSO中,加入NaOH粉末和碘甲烷,混合在密封瓶中25℃搅拌6min即可,方法简单,重复性好。

多糖结构解析

多糖结构解析

赤藓醇)。
多糖(Polysaccharide)是天然大 分子物质,是天然化合物中最大族之一 。多糖结构的分析较蛋白质结构分析复 杂,一方面是因为组成多糖的单糖品种 繁多(目前已知的单糖有200多种);另 一方面即使只有一种单糖组成的多糖其 连接方式的不同以及可能有分枝(蛋白 质没有分枝),所以多糖的结构种类就 很多,不容易分析。
O H
H
O
H
O H H
IO -4
O
0
H O H
N aB H 4
O H
H +
H H
OH
H 2OH OO H H O H
H O H
2、Smith降解:是将氧化产物还原后进行酸水解

1 2位和1 6位键结合的经Smith降解后都有甘 油产生。(但1 2位结合的不产生甲酸,可
供以区别)。
1
4键合的,最后得到的是乙二醇和丁四醇(
1、过(高)碘酸氧化
原理:可选择性断裂糖分子中连二羟基或连三羟 基,生成相应的多糖醛、甲醛或甲酸。
结果:
1 2或1 4键:每个糖基仅消耗一个分 子的高碘酸,无甲酸释放。
1 3位键:不被高碘酸氧化
1 6位键:消耗两个分子高碘酸,同时释 放一个分子甲酸。
然后用0.1mol/L氢氧化钠溶液滴定甲酸释放 量。
过碘酸及其盐的氧化反应
多糖的非还原末端或非末端的(1→6)键与邻三元 醇相似,其与过碘酸盐作用则糖环开裂得到一分子比例的 甲酸而消耗二分子比例之过碘酸盐。非末端的(1→2)或 (1→4)键与邻二元醇相似,其开裂后产生二分子醛而消 耗一分子比例之过碘酸盐。对于非末端的(1→3)键或C2和C-4有分枝的则不受过碘酸盐影响。因此多糖氧化后定 量测定过碘酸盐的消耗、甲酸的生成和剩余糖的比例,就

多糖结构构象及生物活性概述

多糖结构构象及生物活性概述
多糖结构的分析手段很多不仅有仪器分析法如红外核磁共振质谱等还有化学方法如部分酸水解完全酸水解高碘酸氧化smith降解甲基化反应等以及生物学方法如特异性糖苷酶酶切免疫学方法等见表1表1多糖的结构分析方法多糖的相对分子质量可以用量均相对分子质量mw数均相对分子质量mn重均相对分子质量mw
天然产物活性多糖的结构与构象 及生物活性的研究
(1)相对分子质量; )相对分子质量; (2)糖链的糖基组成,各种单糖组成的摩尔比; )糖链的糖基组成,各种单糖组成的摩尔比; (3)有无糖醛酸及具体的糖醛酸类型和比例; )有无糖醛酸及具体的糖醛酸类型和比例; 构型, (4)各单糖残基的 或L-构型,吡喃环或呋喃环形式; )各单糖残基的D-或 构型 吡喃环或呋喃环形式; (5)各个单糖残基之间的连接顺序; )各个单糖残基之间的连接顺序; 异头异构形式; (6)每个糖苷键所取的 或β-异头异构形式; )每个糖苷键所取的α-或 异头异构形式 (7)每个糖残基上羟基被取代情况; )每个糖残基上羟基被取代情况; (8)糖链和非糖部分连接情况; )糖链和非糖部分连接情况; (9)主链和支链连接位点; )主链和支链连接位点; (10)糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。 )糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。

3 多糖结构的分析方法
与其它生物大分子一样, 与其它生物大分子一样, 糖链的二级以上高级结构 是以一级结构为基础的。 不同的是,与蛋白质或核酸大 是以一级结构为基础的。 不同的是, 分子相比,糖链的一级结构“含义”要丰富得多。 分子相比,糖链的一级结构“含义”要丰富得多。 测定 糖链的一级结构,要解决以下几个问题: 糖链的一级结构,要解决以下几个问题:
3·2·3 3·2·3高碘酸氧化

多糖结构检测

多糖结构检测

多糖检测一.定性:1.a-奈酚试液(Molish)反应为普遍采用的多糖的定性方法,但专属性差,无法对普通多糖、糖肤、糖蛋白及普类做出专属性鉴定。

2.溶解性3.葱酮-硫酸试剂反应(阳性)4.苯酚-硫酸反应5.十六烷基三甲基澳化按(CTAB)络合反应6.比旋光度7.特性粘度8.电导率及pH值9.红外光谱(lR)分析,主要用于不同糖的鉴别、糖昔键及搪构型的确定、糖键上主要取代基的识别等。

常用方法是将干燥的多糖用KBr压片法在400~4000cm-1区间扫描做红外光谱分析定量:1.苯酚-硫酸法是主要的多糖定量方法之一,缺点是苯酚容易被氧化,临用前需对试剂进行纯化处理,否则影响测定结果的准确度2.葱酮一硫酸法也是常用的多搪定量方法,缺点是葱酮试剂不稳定,溶液需临用前配制,相比之下,本法优于苯酚一硫酸法。

3.HPLC、HPEC等方法。

二纯度和分子量测定1.纯度评价多搪的纯度不能用通常化合物的纯度标准进行衡量,因为多糖纯品在结构上也不是完全一致的,我们通常所说的多糖纯品实际上是一定分子量范围的均一组分。

测定多糖纯度常用的方法主要有:①用GC、HPLC 测定组成多糖的单糖的摩尔比是否恒定,用不同的柱型侧定结果更为可靠。

②电泳只出现一条带,如聚丙烯酞胺凝胶电泳、醋酸纤维素薄膜电泳及玻璃纤维纸电泳等。

对于中性多糖可采用高压电泳,以硼酸盐为缓冲液,可增大其迁移速度。

③凝胶柱层析图呈现对称的单峰。

若有“拖尾”现象,说明其均一性不够好。

④纸层析法呈单一集中斑点2.分子量测定多糖的分子量测定至今仍是一个复杂的问题。

现在还没有一种准确的测定方法。

因多糖的分子量只代表相似链长的平均配布。

往往用不同的方法会测得不同的分子量。

即使是同一多搪,其重均分子量(Mw)与数均分子量(Mn)也会相差很大。

多糖的分子量测定常用的方法有凝胶过滤法和高效凝胶液相色谱法.它是根据在凝胶柱上不同分子量的多糖与洗脱体积成一定关系的特性,先用各种己知分子量的多糖制成标准曲线,然后由样品的洗脱体积从曲线中求得分子量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多糖结构多糖(polysaccharide)是由多个单糖分子缩合、失水而成,是一类分子机构复杂且庞大的糖类物质。

凡符合高分子化合物概念的碳水化合物及其衍生物均称为多糖。

多糖多糖在自然界分布极广,亦很重要。

有的是构成动植物骨架结构的组成成分,如纤维素;有的是作为动植物储藏的养分,如糖原和淀粉;有的具有特殊的生物活性,像人体中的肝素有抗凝血作用,肺炎球菌细胞壁中的多糖有抗原作用。

多糖的结构单位是单糖,多糖相对分子质量从几万到几千万。

结构单位之间以苷键相连接,常见的苷键有α-1,4-、β-1,4-和α-1,6-苷键。

结构单位可以连成直链,也可以形成支链,直链一般以α-1,4-苷键(如淀粉)和β-1,4-苷键9如纤维素)连成;支链中链与链的连接点常是α-1,6-苷键。

由一种类型的单糖组成的有葡萄糖、甘露聚糖、半乳聚糖等,由二种以上的单糖组成的杂多糖(hetero polysaccharide)有氨基糖的葡糖胺葡聚糖等,在化学结构上实属多种多样。

就分子量而论,有从0.5万个分子组成的到超过106个的多糖。

比10个少的短链的称为寡糖。

不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖)。

[1]临床作用免疫调节Hosono Akira等将双岐杆菌属细菌的细胞超声粉碎提取后,用超滤设备和阴离子交换树脂、凝胶色谱纯化出具有免疫增强活性的多糖。

Oka Shuichi等从紫苏(Perilla)中分离得到的多糖具有抗变态反应作用。

Fujimiy hjaki注射用黄芪多糖从蘑菇属(Agr/cus)植物的子实体中提取出的多糖具有免疫抑制作用,它能减少我们通常使用的免疫抑制剂的诸如细胞毒性、机体抗感染能力下降、对骨髓造血细胞的繁殖抑制等副作用,此多糖可以做成口服或注射用药物,也可制成一种功能性食品。

抗病毒及抗癌大多数多糖的抗病毒机制是抑制病毒对细胞的吸附,这可能是由于多糖大分子机械性或化学性地结合到HW—I的Gp120分子上,遮盖了病毒与细胞的结合位点,从而竞争性地封锁了病毒感染细胞。

Hara Masahiko等从第一季和第二季采收的茶叶中得到一种植物病毒抑制剂,它是一种含有鞣酸的单糖或多糖类成分,不仅可抑制病毒的致病作用,而且可抑制病毒的传播。

据报道,从蘑菇属(Agr/cus)植物的培养物中也能分离得到大量的具有抗癌活性成分的水溶性物质,包括从蘑菇属植物的子实体中分离出的酸性多糖、水溶性中性多糖和水溶性蛋白多糖。

NodaKiyoshiC和Kato Toshimitsu等分别从小球藻和螺旋藻中分离出具有抗癌活性的多糖和硫酸酯化多糖,可抑制肿瘤转移,安全性优于传统的手术治疗和化疗。

Nakano Masa hi从降血糖Ukai Shigeo等从一种银耳(KINJI)的子实体或菌丝体中提取出抗高血糖的纤维素的结构(构象式)酸性多糖。

FujiiMakoto等从海藻类植物中提取出一种能够降低血糖水平的藻类多糖,并制成了以岩藻依聚糖(Fucoidan)为主要成分的保健食品,它可以显著提高人们的免疫功能。

治疗Kanou Kokuki等从丹参中分离出的丹参多糖能够抑制尿蛋白的分泌,缓解肝肾疾病症状,可制成口服或肌注制剂,减少由于长期服用双嘧达莫等类固醇或血小板抑制剂造成的不良反应。

ShibatHideyuki等发明了一种含有硫酸化岩藻依聚糖活性成分的多糖制剂,它能减少诸如消炎痛、阿司匹林等非甾体消炎镇痛剂的副作用。

美容Honda Yasuki等从西洋樱草属(Polyanthus)植物中获得一种具有良好的保湿、抗皱等作用的酸性杂多糖。

Sawai Yasuko等从石菖蒲(Acorusgram/neus)的根茎中分离得到的多糖可抑制黑色素的产生,具有抗炎、抗氧化作用,可用于黑变病的治疗,且因其具有良好的保湿作用,故又可作为化妆品的有效成分。

Shimomura K~nji等从甲壳类动物的肉类降解产物中得到一种具有美容功效的酸性多糖。

实验证明,此酸性多糖可抑制延缓衰老的透明质酸的分解,减少皮肤细纹和干裂,因而可作为美容食品和化妆品的有效成分。

乳化枸杞提取多糖Keiichi等从禾本科(Gramineae)羊茅属(Festuca)植物(如大麦)的体细胞壁提取得到具有乳化作用的多糖,可作为乳化剂广泛应用于工业生产,且安全、无污染。

KuraneRyuichiro 等通过培养广泛产碱菌B一16(~3ca//geneshuus B一16),得到并分离出一种由海藻糖和甘露糖组成的多糖,此多糖在水中溶解性好,有良好的稳定性,可作为研磨剂、乳化剂的稳定剂和增稠剂。

其它用途Sakata Shigenobu等通过对多种单糖、多糖及其衍生化糖类(如醛糖、黏多糖、多糖酵解后的糖)进行发酵或提取,得到一类稳定、安全的试剂,它可减少典型的有害物(如二氧芑、氰基化合物、多氯联苯等)对环境和人体的侵害,是极有意义的环保试剂。

Watanabe Sa J 用一种以吸附多糖(如淀粉)的羟磷灰石作载体的培养基质培养造骨细胞。

此载体的特点在于不用加入血清、细胞生长因子等物质就可刺激造骨细胞生长因子受体,而且它可避免在培养某种造骨细胞时,由于血清种类的特异性而必须筛选最适血清所耗费的大量人力、财力,因而此项发明的问世无疑大大地降低了造骨细胞的培养费用,具有极高的经济价值和社会价值。

化学性质多糖无甜味,在水中不能形成真溶液,只能形成胶体,无还原性,无变旋性,但有旋光性。

生物学功能某些多糖,如纤维素和几丁质,可构成植物或动物骨架。

淀粉和糖原等多糖可党参中提取多糖作为生物体储存能量的物质。

不均一多糖通过共价键与蛋白质构成蛋白聚糖发挥生物学功能,如作为机体润滑剂、识别外来组织的细胞、血型物质的基本成分等。

多糖类化合物广泛存在于动物细胞膜和植物、微生物的细胞壁中,是由醛基和酮基通过苷键连接的高分子聚合物,也是构成生命的四大基本物质之一。

20世纪50年代发现真菌多糖具有抗癌作用,后来又发现地衣、花粉及许多植物均含有多糖类化合物,并进行分离提纯,确定了其化学结构、物理化学性质、药理作用,尤其对多糖类化合物的抗肿瘤和免疫增强作用进行深入研究。

真菌多糖活性多糖大多数可以刺激免疫活性,能增强网状内皮系统吞噬肿瘤细胞的作用,促进淋巴细胞转化,激活T细胞和B细胞,并促进抗体的形成。

从而在一定程度上具有抗肿瘤的活性。

但对于肿瘤细胞并无直接的杀伤作用。

活性多糖能降低甲基胆蒽诱发肿瘤的发生率,对一些易发生广泛转移,不宜采取手术治疗和放射疗法的白血病,淋巴瘤等,特别有价值。

猪苓多糖酵母多糖——优质免疫多糖、优质功能膳食纤维2001年,哈特韦尔、纳斯、亨特因发现了控制细胞分裂的关键性物质而获得诺贝尔医学奖。

让人们意想不到的是,2002年10月7日,诺贝尔医学奖又再次被授予发现了控制细胞程序化死亡基因的罗伯特?霍维茨等三位专家,从而开创了同一领域研究连续两年获同一诺贝尔奖项的先例,由此也引发了世界医学对靶向抑制病毒物质-葡聚糖的研究热潮。

人的机体中不断会有变异的细胞出现,应该不断地被免疫系统识别并及时清除。

若变异的细胞不走向细胞凋亡,就可能形成恶性细胞而发生肿瘤、病毒感染疾病等。

科学家一直在寻找一种即够抑制恶性细胞增殖并诱导其凋亡、又不影响人体正常细胞功能的物质,它就是被称为病毒细胞的激光制导炸弹的酵母葡聚糖。

酵母葡聚糖是一种存在于天然营养酵母细胞壁中的免疫多糖。

1963年首次发现其具有抗肿瘤活性,以后又相继发现其具有抗菌及免疫调节作用。

对肿瘤、肝炎、心血管、糖尿病、降血脂、抗衰老等方面均有独特的生物活性。

枸杞多糖近年,研究发现酵母葡聚糖可作为生命活动中起核心作用的遗传物质,具有控制细胞分裂与分化、调节细胞生长与衰老等多种复杂的功能,目前世界各国,尤其是美国、日本、前苏联等国对葡聚糖进行了大量深入的研究。

其特有的靶向性特点,能锁定休眠期、耐药性及亚临床病灶的“残存病毒细胞”,从而“同步”减毒增效,极大限度的保障临床治疗效果。

同时,酵母葡聚糖可以快速激活机体自身的免疫监管和识别机制,从而增强它们的战斗力,使自身免疫系统达到最佳平衡状态,保持肌体的健康。

中医中被称为可以起死回生、长生不老的圣药灵芝中含有的灵芝多糖,大部分都是β(1→3)葡聚糖。

这也能够解释灵芝为什么会有如此神奇的功效。

现存许多医学文金针菇中提取多糖献都已证实酵母有助增强机体抵抗力,因为酵母中含有β(1→3)葡聚糖,而多种免疫细胞表面都具有能够与葡聚糖结合或对它做出反应的接收器(Receptors),故酵母可以对免疫细胞产生功效。

酵母葡聚糖是第一个被发现具有免疫活性的葡聚糖。

美国哈佛大学、图伦大学、华盛顿大学以及美国空军放射生物学研究所等都证实:天然酵母葡聚糖具有的独特靶向作用,能够定向清除体内毒素,同时提高巨噬细胞的吞噬能力达10倍以上,使人体免疫系统迅速达到最佳平衡,无任何药物的毒副作用,有效预防各类慢性疾病的发生。

天然酵母葡聚糖在免疫调节、抗辐射、调节肠胃、帮助组织结构再生或修复、促进伤口愈合及预防心脑血管和糖尿病等方面均具有突出表现,对肝炎、肿瘤、心血管、糖尿病、降血脂、抗衰老等方面均有独特的生物活性。

1957年,医学专家就发现了静脉注射来自酵母细胞壁的酵母聚糖(Zymosan)对巨噬细胞的吞噬活性,1961年,Dr.Riggi确定了酵母聚糖中的这种活性成分是葡聚糖。

实验证明,酵母葡聚糖能够增强吞筮细胞吞筮能力达10倍以上,具有95%以上的肿瘤抑制率,是生物活性最强的葡聚糖。

●美国哈佛大学Czap教授说,酵母葡聚糖使使人体的免疫细胞成为“防卫的兵工厂”;●天然酵母葡聚糖被誉为“超级灵芝”、“定向清毒,免疫先锋”、“病毒细胞的追捕者”以及“肿瘤患者的最后希望”等;●美国空军辐射生物研究所给小白鼠致死剂量的辐射处理,发现事先口服酵母葡聚糖的有70%完全不受辐射影响;●美国自受911袭击后,利用酵母葡聚糖开发出对抗炭疽病毒的新药;●天然酵母葡聚糖已被美国FDA列为防治病毒,提高免疫的首选用药;●天然酵母葡聚糖+化疗=零毒化疗(同步减毒增效,保障化疗效果);牛膝提取多糖●天然酵母葡聚糖已成为世界免疫学界研究的热门课题之一。

天然酵母葡聚糖的药理特点:1.活化并增强人体免疫系统,快速调节免疫2.抑制肿瘤。

3.抗氧化、辐射作用。

4.帮助身体组织结构再生和修复,促进伤口愈合。

5.润肠通便、调节胃肠功能、降低胆固醇。

特别推荐人群:中老年人、体质虚弱者、病人特别是重症患者(如放化疗等);高龄慢性病患者,有免疫系统疾病的患者;经常出差、生活无规律、交际应酬多的商务白领人士;工作或生活环境受辐射影响重者(钢铁、石油、化工、驾驶、IT等)。

相关文档
最新文档