数学的转化思想方法

合集下载

数学转换的思想方法

数学转换的思想方法

性 质 , 结 论 向 已知 转 换 ; 合 法 是 从 已 知 条 件 出 发 , 把 综
根据定义 、 理 、 理及性 质定理等 开拓新的 已知 , 定 公 逐 渐 向 目标 转 换 。
2数 形 结合 法 .
数 形 结 合 促 进 已知 向 目标 转 换 ,它包 含 两 个方 面 的 内 容 : 是 运 用 代 数 、 角 知 识 , 过 对 数 量 关 系 的 一 三 通
图 形性 质 的研 究 , 决 数量 问题 。“ ” “ ” 常 结 合 解 数 和 形 常
在 一 起 , 内容 上 互 相 联 系 , 方 法 上 互 相 渗 透 。 一 在 在 在
定 条 件 下 可 以相 互 转 换 ,数 ” “ ” 者 应 取 长 补 短 。 “ 与 形 两 数 形 结合 , 但 是 数 学 研 究 的 需 要 , 是解 题 中 的 一 种 不 也
0。 1
3 乘 方 与开 方 :在 引进 分 数 指 数 后 。 两者 统 一 起 . 来 , 是 幂 的 基 本 运算 思 想 。 这 4 指 数 与对 数 : 数 与 对 数可 以相 互 转 换 , 数 的 . 指 指 性 质 对 应 于 对 数 的 性 质 ,对 数 的 证 明 往 往 要 转 化 为 指 数 运 算 而 推得 。 5 解 三 角形 中 , 要 是 利用 正 弦 定 理 、 弦 定 理 等 . 主 余
讨 论 , 理 几 何 图形 问 题 ; 是 运 用 几 何 知 识 , 过 对 处 二 通
门学 科 , 者 结 合使 几 何 研 究 取得 了重 大 突 破 。代 数 两
与几 何 是 对 立 的 两个 方 面 , 者 在 坐标 系 统 一起 来 。 两
二 、 念 是 转 换 的 源 头 。 类 是 转 换 的 基 础 。 识 概 分 知 的 内在 联 系是 转 换 的动 力

高中数学方法转化与化归思想

高中数学方法转化与化归思想

(2)简单化原则:将复杂问题转化为简单问题,如三维空间问题 转化为二维平面问题,通过简单问题的解决思路和方法,获得 对复杂问题的解答启示和思路以达到解决复杂问题的目的. (3)具体原则:化归方向应由抽象到具体. (4)和谐统一性原则:转化问题的条件或结论,使其表现形式更 符合数与形内部所表示的和谐统一的形式;或者转化命题,使 其推演有利于运用某种数学方法或符合人们的思维规律. (5)正难则反的原则:当问题正面讨论遇到困难时,应想到问题 的反面;或问题的正面较复杂时,其反面一般是简单的;设法 从问题的反面去探求,使问题获得解决.
m 解 (1)对 f(x)求导,得 f′(x)=e - 2. x m x-1 当 f(x)在(1,2)上单调递减时, e - 2 ≤0 在[1,2]上恒成立, x
x-1
∴m≥x2ex-1 在[1,2]上恒成立. 令 h(x)=x2ex-1,则 h′(x)=ex-1(x2+2x)>0 在[1,2]上恒成 立,即 h(x)中[1,2]上单调递增, ∴h(x)=x2ex-1 在[1,2]上的最大值为 h(2)=4e,即 m≥4e. 故实数 m 的取值范围是[4e,+∞).
2 归纳拓展 本题如果从已知条件 a2 = a · a ⇒ ( a + 2 d ) = a1(a1 3 1 9 1 a1+a3+a9 +8d),解得 a1 与 d 的关系后,代入所求的式子: a2+a4+a10 a1+(a1+ 2d)+(a1+8d) = ,也能求解,但计算较繁锁, (a1+d)+(a1+ 3d)+ (a1+9d)
二、正难则反的转化与化归 例 2 已知三条抛物线: y=x2+4ax-4a+3, y=x2+(a-1)x +a2,y=x2+2ax-2a 中至少有一条与 x 轴相交,求实数 a 的取值范围.

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用小学数学教学中的转化思想是指教师通过对学生的知识、思维能力及兴趣爱好等进行分析,针对性地设计教学活动,从而帮助学生将抽象的概念、原理转化为实际应用的技能和解决问题的能力。

其中,运用转化思想的重点在于如何把抽象的数学知识转化为学生能够理解和应用的实际问题,从而激发学生的学习兴趣和能力。

一、生活化陈述法运用在小学数学教学中,教师可以运用生活化陈述法来帮助学生理解数学知识。

生活化陈述法是指教师将数学概念和原理引入到学生熟知的生活中去,从而达到简化抽象概念的目的。

例如,在讲解平均数时,老师可以先通过介绍同学们身高的平均数来引入概念,然后再进行大量的习题训练。

这样,概念就被生动地呈现给学生,他们也更积极地学习。

二、创设情景运用在小学数学教学中,教师可以通过创设情景来让学生感受到数学运用的实际意义。

例如,在讲解几何图形的面积或体积时,可以通过实地测量小区的草坪或花坛的面积或体积,让学生亲身体验通过数学公式计算所得的结果。

这样,学生不仅可以理解数学的实际应用,也会对数学产生浓厚的兴趣。

三、启发式教学运用启发式教学是通过对问题本身的观察、探究以及发散性思考,来引导学生主动探索、发现、分析、解决问题的方法。

在小学数学教学中,教师可以设计具有启发性的教学任务,通过让学生自主思考和自主解决问题,来理解数学知识和技能的运用。

例如,在讲解小学数学加减法时,可以出一道类似于“乘法比加减法难五倍”的问题让学生探究解决方法,通过这个问题,让学生发现乘法与加减法的内在联系,从而更好地掌握学科知识。

四、课堂互动运用在小学数学教学中,教师不仅是一个传授知识的角色,而且还是一个引导者、辅导员和评价者。

因此,教师可以通过课堂互动方式,以学生为中心,使学生主动探究,让教学变得更加生动、自然,达到最佳教学效果。

例如,在讲解数轴上的正负数概念时,可以参考学生在生活中对于加减法和温度变化的实际经历,让学生互相交流和讨论,达到探究的目的。

数学中的转化思想,类似生活中换位思考

数学中的转化思想,类似生活中换位思考

数学中的转化思想,类似生活中换位思考转化也称化归,是数学中最常用的思想。

转化思想的实质就是在已有的、简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。

转化在小学数学中运用很广泛,转化思想是解决数学问题的重要思想,包含了数学特有的数、形、式的相互转换。

数学的学习过程就是把新问题转化为已有的知识和经验,经过组合、变式、变化等。

数学教学中渗透转化思想要解决三个问题:(1)为什么转化。

(2)转化成什么(包括什么最优)。

(3)怎样转化。

转化可分为三种:一、数与数的转化四则运算之间是有其内在联系的,减法是加法的逆运算,除法是乘法的逆运算,当加数相同时,加法可转换成乘法。

(1)4+4+4+4+4=5×4乘法是几个相同加数加法的简洁表示形式,是一种优化形式4+4+4+4+3=4×5-1=4×4+3=3×6+1等等这样做可能费时,但能有效激发学生寻求新方法的积极情绪,感受到因转化而让加法和乘法更有机结合在一起,从而激发学生对新知识、新方法的探知思维活动。

(2)小数的乘法、除法都是化成整数的乘除法来计算的例如1算式:1.2×3.51.2米×3.5米12分米×35分米=420d㎡1.2米×3.5米=4.20㎡例如2已知a*b=2a+3b,求4*5*是什么,很多学生没有见过,我们权且把它当作一种普通的符号,通过公式转化成我们学过的乘法、加法。

根据公式a*b=2a+3b,可得4*5=2×4+3×5例如3在小学阶段的分数应用题中,找单位1是关键,但有些题目单位1不是很明显,此时我们可在不改变原题意思的前提下,把题目中的关键句改变成xx比xx少(多)几分之几,这样把比字后的量看作单位1,问题就应刃而解了(1)水结成冰后体积增加1/10,现有水132立方厘米,结成冰后的体积是多少?解析:单位1不明显,把“水结成冰后体积增加1/10”变成“冰比水增加1/10”(2)一辆自行车原价500元,现在优惠20﹪,现价是多少元?解析:把“现在优惠了20﹪”改成“现价比原价少20﹪”。

数学思想之一转化与化归思想(概述)

数学思想之一转化与化归思想(概述)

数学思想之一:转化与化归思想(概述)
1、转化与化归的思想方法转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化数形结合思想体现了数与形的相互转化;函数与方归,
程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。

各种变换方法、分析法、反证法、待定系数法、构造法等都是转化
的手段。

所以说,转化与化归是数学思想方法的灵魂。

2、转化包括等价转化和非等价转化等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,不等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,不等价变形要对所得结论进行必要的修改。

3、转化与化归的原则将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。

4、转化与化归的基本类型
(1)正与反、一般与特殊的转化;
(2)常量与变量的转化;
(3)数与形的转化;
(4)数学各分支之间的转化;
(5)相等与不相等之间的转化;
(6)实际问题与数学模型的转化。

数学转化的思想

数学转化的思想

3.数学转化的思想转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知的问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题等,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。

一:【要点梳理】将未知解法或难以解决的问题,通过观察、分析、类比、联想等思想的过程,选择运用的数学方法进行交换,化归为在已知知识范围内已经解决或容易解决的问题思想叫做转化与化归的思想,转化与化归思想的实质是揭示联系,实现转化。

除简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的,化归月转化思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程,数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,函数与方程的转化,无限向有限的转化等,都是转化思想的体现。

熟练,扎实的掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想,机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识的去发现事物之间的本质联系。

“抓基础,重转化”是学好中学数学的金钥匙。

二:【例题与练习】1.已知实数x 满足22110xx xx +++=,那么1x x+的值是( )A.1或-2;B. -1或2;C. 1 ;D.-22.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1,S 2,S 3表示,则不难证明S 1=S 2=S 3(1)如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1,S 2,S 3表示,那么S 1,S 2,S 3之间有什么关系(不求证明)?(2)如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别为S 1,S 2,S 3表示,请你确定S 1,S 2,S 3之间的关系,并加以证明。

转化的思想方法在小学数学课堂中的有效应用

转化的思想方法在小学数学课堂中的有效应用

转化的思想方法在小学数学课堂中的有效应用数学是一门抽象而又具体的学科,对于小学生来说,数学课可能是他们最头疼的一节课。

要想让小学生在数学学习中取得更好的成绩,教师需要不断探索有效的教学方法。

转化的思想方法,即通过转化问题的方式来帮助学生理解和解决数学问题,是一种值得在小学数学课堂中应用的方法。

一、转化的思想方法的基本概念转化的思想方法是指在解决问题时,通过转化问题的方式来帮助学生理解和解决数学问题。

转化的思想方法包括数学模型的构建、数学知识的运用以及问题的转化和解决等步骤。

通过这种方法,学生可以更加直观地理解数学知识,提高解决问题的能力。

二、转化的思想方法在小学数学课堂中的有效应用1. 引导学生构建数学模型在小学数学课堂中,教师可以通过引导学生构建数学模型的方式,来帮助他们理解和解决数学问题。

在解决实际问题时,教师可以通过引导学生将问题抽象成数学模型,然后再对模型进行分析和求解。

通过这种方式,学生可以更加直观地理解问题的本质,从而更好地解决问题。

三、转化的思想方法在小学数学课堂中的意义和价值1. 帮助学生理解数学知识通过转化的思想方法,学生可以更加直观地理解数学知识,从而更好地掌握和运用数学知识。

这有助于提高学生的数学学习兴趣,激发他们对数学的好奇心和探索欲望。

2. 培养学生解决问题的能力通过转化的思想方法,学生可以更加灵活地运用数学知识,从而更好地解决问题。

这有助于培养学生的解决问题的能力,提高他们的问题解决能力和创新意识。

四、小学数学课堂中转化的思想方法的应用策略1. 注重问题的实际意义在小学数学课堂中应用转化的思想方法时,教师应该注重问题的实际意义,引导学生将数学知识与实际问题相结合,从而更好地理解和应用数学知识。

2. 引导学生积极参与在小学数学课堂中应用转化的思想方法时,教师应该引导学生积极参与,鼓励他们根据自己的理解和体会来转化和解决问题,从而更好地培养他们的数学思维和解决问题的能力。

数学的转化思想方法

数学的转化思想方法

数学的转化思想方法数学的转化思想方法导语:数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。

以下是店铺为大家整理分享的数学的转化思想方法,欢迎阅读参考。

数学的转化思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。

常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。

整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。

用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。

常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。

分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。

将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。

分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。

运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。

分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学的转化思想方法数学的转化思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。

常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。

整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。

用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。

常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。

分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。

将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。

分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。

运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。

分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。

分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论。

常见的情形为:由字母系数引起的讨论;由绝对值引起的讨论;由点、线的运动变化引起的讨论;由图形引起的讨论;由边、点的不确定引起的讨论;存在特殊情形而引起的讨论;应用问题中的分类讨论等。

转化的数学思想:将未知解法或难以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题。

解题的过程实际就是转化的过程。

常见的情形为:高次转化为低次、多元转化为一元、式子转化为方程、次元转化为主元、正面转化为反面、分散转化为集中、未知转化为已知、动转化为静、部分转化为整体、还有一般与特殊、数与形、相等与不等之间的相互转化。

数形结合的数学思想:数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。

数、式能反映图形的准确性,图形能增强数、式的直观性,“数形结合”可以调动和促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

数形结合是研究数学问题的有效途径和重要策略,它体现了数学的和谐美、统一美。

华罗庚先生曾用“数缺形时少直觉,形少数时难入微”作高度的概括。

常见的情形为:利用数轴、函数的图象和性质、几何模型、方程与不等式以及数式特征可以将代数问题转化为集合问题;利用代数计算、几何图形特征可以将几何问题转化为代数问题;利用三角知识解决几何问题;利用统计图表让统计数据更形象更直观等。

函数与方程的`思想:函数的思想就是利用运动与变化的观点、集合与对应的思想,去分析和研究数学中的等量关系,建立和构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决。

方程的思想就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

函数与方程的思想实际是就是一种模型化的思想。

常见的情形为:数字问题、面积问题、几何问题方程化;应用函数思想解方程问题、不等问题、几何问题、实际问题;利用方程作判断;构建方程模型探求实际问题;应用函数设计方案和探求面积等。

常用数学方法如:配方法、消元法、换元法、待定系数法、构造法、主元法、面积法、类比法、参数法、降次法、图表法、估算法、分析法、综合法、拼凑法、割补法、反证法、倒数法、同一法等。

初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.(1)转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题.初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛.(2)数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数”)与直观的图象(“形“)结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用.(3)分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、解决数学问题.譬如,初中数学从整体上看分为代数、几何、概率统计等几大版块,并分别采用不同方法进行研究,就是分类思想的体现.具体而言,实数的分类,方程的分类、三角形的分类、函数的分类、统计量的分类等等,都是分类思想的具体体现.分类思想在初中数学中有大量运用,从初中数学内容的组织与展开到数学概念的界定与划分再到数学问题的分析与解决都大量运用着分类思想.(4)函数与方程思想.函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用。

除上述几种主要的数学思想之外,初中数学中还有集合思想、对应思想、符号化思想、公理化思想等.初中数学主要包括如下基本的数学方法:(1)几种重要的科学思维方法:比较与分类、观察与尝试、分析与综合、概括与抽象、特殊与一般、归纳与类比等;(2)几种重要的推理方法:完全归纳法、综合法、分析法、反证法、演绎法等;(3)几种常用的求解方法:待定系数法、数学建模法、配方法、消元法、换元法、构造法、坐标法、参数法等.1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的。

相关文档
最新文档