光源的时间相干性和空间相干性对干涉、衍射的影响

合集下载

光学 1.6 光的时间空间相干性

光学  1.6 光的时间空间相干性

( j 1) j( )
j
(4)
由此得干涉条纹的可见度降为零时的干涉级为: (5)
与该干涉级对应的光程差为实现相干的最大光程差即:
max
( ) 2 j ( )
(6)
上式表明,光源的单色性决定了产生清晰的干涉图样条纹的 最大光程差 max (即与光源的光谱宽度成反比) 3、相干长度 Lc及波列长度 L与最大光程差 max的关系
L max Lc
相干长度与光谱宽度的关系
Lc max 2 2 k | |
(7)
(8)
相干时间
Lc 2 1 t0 0 c c c | |
max
(9)
( 0发光时间或寿命)
(9)式表明,波列的空间长度和持续时间(寿命)是与谱线 的宽度成反比的。 由此可见,“波列长度是有限的”和“光是非单色的”两 种说法完全等效,它们是光源同样性质的不同表述。它们实 际上是分别在时域和频域之间的描述.其之间的关系傅立叶变 换. 5、时间相干性 ① 定义:时间相干性是指沿传播方向多大距离内的两个点 分出来的光才能满足相干条件。 ② 量度:时间相干性用相干波长(波列长度,最大光程差) 或用相干时间(波列持续时间)来衡量 。
d max
r0 b

(14)
图6.8
(13)
dmax表示出了光场中相干范围的横向线度。
b
4、空间相干性 ① 定义:光场的空间相干性是描述光场中在光的传播路径上空 间横向两点在同一时刻光振动的关联程度,所以又称为横向干 性。 ② 量度: 空间相干性用相干区域的孔径角或线度来描述. ③ 本质:从本质上看,空间相干性问题来源于扩展光源不 同部分发光的独立性;从后果上看,空间相干性问题表现在 波场的横方向上(波前),集中于分波前的干涉装置内。

光的干涉 知识点总结

光的干涉 知识点总结

第二章 光的干涉 知识点总结2.1.1光的干涉现象两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的光强之和,形成稳定的明暗交替或彩色条纹的现象,称为光的干涉现象。

2.1.2干涉原理注:波的叠加原理和独立性原理成立于线性介质中,本书主要讨论的就是线性介质中的情况. (1)光波的独立传播原理当两列波或多列波在同一波场中传播时,每一列波的传播方式都不因其他波的存在而受到影响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理在两列或多列波的交叠区域,波场中某点的振动等于各个波单独存在时在该点所产生振动之和。

波叠加例子用到的数学技巧: (1) A +iB =√A 2+B 2(A √A 2+B2+i B √A 2+B 2)=A t e iφt(2)eiφ1=ei[(φ12+φ22)+(φ12−φ22)] eiφ1=ei[(φ12+φ22)−(φ12−φ22)]注:叠加结果为光波复振幅的矢量和,而非强度和。

分为相干叠加(叠加场的光强不等于参与叠加的波的强度和)和非相干叠加(叠加场的光强等于参与叠加的波的强度和). 2.1.3波叠加的相干条件干涉项:相干条件:(干涉项不为零)(为了获得稳定的叠加分布) (为了使干涉场强不随时间变化) 2.1.4 干涉场的衬比度1.两束平行光的干涉场(学会推导) (1)两束平行光的干涉场 干涉场强分布:21ωω=10200⋅≠E E 2010ϕϕ-=常数()()212121212()()()2=+⋅+=++⋅I r E E E E I r I r E E 12102012201021212010212{cos()()()cos()()()}⋅=⋅+⋅++-++-⋅+---E E E E k k r t k k r t ϕϕωωϕϕωω()()()*12121212,(,)(,)(,)(,)2cos =++=++∆I x y U x y U x y U x y U x y I I I I ϕ亮度最大值处:∆φ=2mπ亮度最小值处:∆φ=(2m +1)π 条纹间距公式∆x =λsin θ1+sin θ2空间频率:ƒ=1∆x ⁄(2)定义衬比度以参与相干叠加的两个光场参数表示:衬比度的物理意义 1.光强起伏2.相干度2.2分波前干涉2.2.1普通光源实现相干叠加的方法 (1)普通光源特性• 发光断续性 • 相位无序性• 各点源发光的独立性根源:微观上持续发光时间τ0有限。

空间相干性

空间相干性
光的空间相干性
一、光的空间相干性和光的时间相干性是共存的。 在杨氏双缝实验中,观察屏幕上离O点较远位置处的y
y 点干涉条纹时,不仅涉及空间相干性,而且涉及时间相干
性。
s1
S
d
s2
r1
y•
r2
0
r0
杨氏双缝实验
(点光源或者线光源)
二、光源的线度对空间相干性的影响 两个线光源的情况:
此时 V=0 s和s’ 间的距离为d‘
(1)当两个线光源相互靠近时,两套 干涉条纹相互错开距离较小 (2)当两个线光源远距离时,两套干 涉条纹相互错开距离增大 (3)当一套条纹亮纹与另一套条纹暗 纹重合, ,即两套条纹,零级相互错开 半个条纹宽度时合成光强度成为均匀, 干涉条纹消失。
Q
d
=
r' 2
-
r' 1
da (a
sin a )
称为临d界' 宽度。其值为: 的光源对应的光场空间相干性较差。
杨氏双缝实验
0
(点光源或者线光源)
若双缝s1、s2之间的距离小于 ,则在屏幕上能观察到干涉条纹,说明s1、s2的光场是相干的,或者说这是光场具有空间相干性
d'=2 d'=r'l/d 一、光的空间相干性和光的时间相干性是共存的。
杨氏双缝实验
(3)当一套条纹亮纹与另一0套条纹暗0 纹重合, ,即两套条纹,零级相互错开半个条纹宽度时合成光强度成为均匀,干涉条纹消失。
距为 的线光源对,由于每对线光源在屏幕 1)而且光的空间相干性和光源的线度有关。
d ' 在杨氏双缝实验中,观察屏幕上离O点较远位置处的y点干涉条纹时,不仅涉及空间相干性,而且涉及时间相干性。

光的干涉定律

光的干涉定律

光的干涉定律光的干涉是光学中一种重要的现象,它指的是当两束或多束光波相遇时,它们会发生叠加而产生干涉现象。

干涉定律是描述光的干涉现象的基本原则,它由一系列定律组成,包括叠加原理、相干性条件和干涉条纹的产生规律。

一、叠加原理光的叠加原理是光的干涉定律的基础。

根据叠加原理,当两束或多束光波相遇时,它们的振幅将会叠加在一起。

若两束光波的波峰和波谷重合,它们的振幅叠加将会导致光强增大,形成明亮的干涉条纹;若两束光波的波峰和波谷错开,它们的振幅叠加将会导致光强减小,形成暗淡的干涉条纹。

这种由光波叠加而产生的干涉现象是波动理论的一项重要验证。

二、相干性条件实现光的干涉现象需要满足一定的相干性条件。

相干性条件是指两束光波的频率、相位和方向必须满足一定的关系,才能形成干涉现象。

一般来说,相干性条件可以通过光源的特性和光波传播的特性来确定。

1. 相干光源相干光源是实现光的干涉的基础要求之一。

相干光源指的是光波的频率、相位和方向的变化相对较小,从而使得干涉现象能够持续发生。

常见的相干光源包括激光和自然光经过准直器后形成的平行光等。

2. 空间相干性空间相干性是指两束光波在传播过程中,它们的相位关系在空间上保持稳定。

若两束光波的相位关系在空间上发生了剧烈变化,它们将不再满足相干性条件,干涉现象也将不再发生。

3. 时间相干性时间相干性是指两束光波在传播过程中,它们的相位关系在时间上保持稳定。

若两束光波的相位关系在时间上发生了剧烈变化,它们将不再满足相干性条件,干涉现象也将不再发生。

三、干涉条纹的产生当满足相干性条件后,光的干涉现象会表现为干涉条纹的产生。

干涉条纹是干涉现象的可视化结果,它们呈现出一系列明暗相间的条纹。

干涉条纹的产生与光的波动性有关。

当两束光波相遇时,它们会通过叠加作用形成干涉条纹。

当两束光波的相位差为整数倍的波长时,它们的振幅叠加将会导致干涉增强,形成明亮的条纹;当两束光波的相位差为半整数倍的波长时,它们的振幅叠加将会导致干涉减弱,形成暗淡的条纹。

光源的相干性一

光源的相干性一

二、空间相干性
3 综合空间相干性 为了综合描述纵向空间相干性和横向空间相干性,将相
干长度和相干面积的乘积定义为一个新的物理量—相干
体积。
V =LA
c c
c
3 c c 2 c ( ) ( )2 2 ( ) 2
c
物理意义:如果要求传播方向上 角之内并具有频带宽
Δθ
二、空间相干性
2 横向空间相干性 在杨氏双缝干涉实验中,宽度为Δx 的光源(A)照 射两对称小孔 S1 、 S2 后,光波场具有明显相干
性的条件为:
x
该式称为空间相干性反比公式,即光源的线度与相
干孔径角的乘积为常数。
二、空间相干性
2 横向空间相干性 得出
2 Ac (x) ( )
根据相干时间tc的定义:在光传播方向上,两个光 波场之间能够相遇的最大时间间隔也就是每列光波 经过P点的持续时间。
P t
一、时间相干性
P ∆t t
P
t ∆t
P
t
∆t
∆t>t,两列光波在传播方向上没有交叠区域; ∆t=t,两列光波在传播方向上首尾相连;
∆t<t,两列光波在传播方向上有交叠区域;
相干时间tc=每列光波经过P点的持续时间
1 纵向空间相干性 根据光谱学中光源单色性参数R的定义:
R
0
1 tc 0


0
得到
R

0
Lc
该式进一步说明了相干时间 t c 和相干长度 Lc 是反映光源单色性物理量。
二、空间相干性
2 横向空间相干性 定义:在与光传播方向垂直的平面上,任意两个 不同点 S1 、 S2 处光波可具有相干性的最大面积, 常用相干面积Ac来进行描述。

2.2-2分波前干涉-光的相干性

2.2-2分波前干涉-光的相干性
2
0 2
0
0 2

2
, 0
10:51
3、造成谱线宽度的原因 (1)自然宽度
Ej
Ei
·


Ej Ei
E ~
E i E j h
(2) 多普勒增宽
v T,
(3) 碰撞增宽
T
i(k) i0 o k 1k 0k 2 k
dI dI0 (1 cos k L) i(k )(1 cos k L)dk
I ( L) i (k )(1 cos k L)dk
0
注意到
i(k )dk=I
0 0

i0 i(k ) 0
k k 0 k / 2 k k 0 k / 2
a1 · P a2
只有同一波列
S
c1 c2
S1 b 1 S2 b2
b1 c1 S c2 S1 b2 S2
分成的两部分,
经过不同的路 程再相遇时, 才能发生干涉。
能干涉
不能干涉
波列长度就是相干长度:
L c M
10:51
普通单色光:
:10 — 10 nm
3
1
M :10 — 10 m
A B O
S1
S2
10:51
二、相干间隔和相干孔径角
1、相干间隔 S1 由
R b b0 , d 若 b 和 R一定,
b
d0
R
S2 令
d0
R b
则要得到干涉条纹,必须 R d b —相干间隔
涉的两个次波源间的最大距离。
相干间隔d0 是光场中正对光源的平面上能够产生干

光的干涉和光的相干性 (2)

光的干涉和光的相干性 (2)

干涉现象与相干性的区别
干涉现象:光波 叠加后形成的明 暗条纹,是光的 相干性的直接表 现。
相干性:光波之 间的相位差和频 率差,决定了干 涉现象的性质和 强度。
干涉条纹:干涉 现象中形成的明 暗条纹,其宽度 和间距与相干性 有关。
相干性测量:通 过测量干涉条纹 的性质,可以了 解光波的相干性。
干涉与相干性在光学实验中的应用
光的干涉:两束或两束以上的光波在空间相遇时,会发生叠加,形成干涉现象 相干性:光波的相干性是指光波之间的相位差和频率差之间的关系 干涉条件:光的干涉需要满足相干性、频率相同和相位差恒定的条件 干涉图样:干涉现象会产生各种不同的干涉图样,如明暗相间的条纹、彩色的环状等 相干性的影响:相干性的大小会影响干涉图样的清晰度和亮度,相干性越好,干涉图样越清晰,亮度越高
对信息科学的影响
光的干涉和相干性是信息科学的基础理论之一 光的干涉和相干性在光纤通信、激光雷达等领域有广泛应用 光的干涉和相干性研究有助于提高信息传输速度和质量 光的干涉和相干性研究有助于推动量子通信、量子计算等新兴领域的发展
对现代科技发展的贡献
光的干涉和相干性是现代光学技术的基础,如激光、光纤通信等。
干涉现象的应用
光学仪器:如显微镜、望远镜等,利用光的干涉原理提高成像质量
光纤通信:利用光的干涉原理实现高速、大容量的信息传输
激光技术:利用光的干涉原理产生高强度、单色性的激光束 生物医学:利用光的干涉原理进行细胞、组织、器官等的无损检测和治 疗
02 光的相干性
相干性的定义
光的相干性是指两 束光在空间和时间 上的相位差保持恒 定的特性。
两列光波的相位差恒 定
两列光波的振动方向 相同
两列光波的强度相同
干涉现象的分类

3-3时间相干性和空间相干性

3-3时间相干性和空间相干性

§3--3时间相干性和空间相干性Temporal Coherence and Spatial Coherence )一)问题的提出:S 2d 1r 2r 1)单色光入射时,只能在中央条纹附近看到有限的为数不多的几条干涉条纹。

2)单缝或双缝宽度增大时,干涉条纹变得模糊起来。

S 1DX O为什么?二)时间相干性XO S 1S 2d D指由原子一次发光所持续的时间来确定的光的相干性问题--原子发光时间越长,观察到清楚的干涉条纹就越多,时间相干性就越好。

1r 2r 1)两波列的光程差为零()21r r =可产生相干叠加。

X OS 1S 2d D1r 2r )(12L r r <−能参与产生相干叠加的波列长度减小干涉条纹变模糊了!P若是明纹,则明纹不亮;若是暗纹;暗纹不暗原因:XOS 1S 2dD1r 2r )(12L r r ≥−波列不能在P 点叠加产生干涉。

干涉条纹消失了!原因:P此乃高干涉级条纹看不清或消失的原因之一L<δ结论:产生光的干涉还须加一附加条件:tc L Δ=L<δ结论:产生光的干涉还须加一附加条件:tc L Δ=E 2E 1E 3tc L Δ=1)波列长度L 又称相干长度。

L 越长,光波的相干叠加长度越长,干涉条纹越清晰,相干性也越好。

注意:2)原子一次发光的时间Δt 称为相干时间。

Δt 越大,相干长度越长,相干性越好,因此用这种原子一次持续发光的时间来描述这种相干性故称为时间相干性。

三)空间相干性S 1S 2d DXOIb光源总是有一定的线度的,当光源线度不大时:从S 和S’发出的光产生的干涉条纹叠加后,仍能分辩清楚明暗条纹。

SS’S 1S 2d DXOIb当光源线度b 较大时:从S 和S’发出的光产生的干涉条纹叠加后,干涉条纹对比度降低,明暗条纹变得模糊。

SS’S 1S 2d DXOI b当光源线度b 增大到某一限度时:干涉条纹消失,S 和S’发出的光的光程差之差差λ/2SS’可见:为了产生清晰的干涉条纹,光源的线度受到一定限度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

109-光源的时间相干性和空间相干性对干涉、衍射现象的影响 摘要:光波作为一种概率波,其波动性已早已为我们所熟知,并且基于其波动特性的干涉和衍射现象已用于科学研究和生产实践的各个领域。

因此,提高光波的相干性对充分利用干涉和衍射现象具有重要意义。

光波的相干性与光源的性质有着密切的联系,因此搞清楚光源的时间相干性和空间相干性具有重要意义。

关键词:时间相干性;谱线宽度;空间相干性
正文:
光源的时间相干性体现为其单色性,即所发射光子频率的离散程度。

其具体数值指标为谱线宽度,其值越小说明发射光子频率的离散程度越小,光源的单色性越好,其时间相干性越好。

普通单色光源的谱线宽度的数量级为千分之几纳米到几纳米,而激光的谱线宽度只有nm,甚至更小,因此,激光的相干性要远远优于普通单色光源。

也正是基于激光的强相干性,光学全息技术、非线性光学、激光制冷技术、原子捕陷等近代物理技术才获得了快速的发展。

并且,多光子吸收等在普通单色光源下不可能发现的现象也在激光出现后被发现,极大地促进了人们对原子更为精系结构及能级跃迁机理的认识。

光源的空间相干性体现为光源的大小对相干性的影响。

由于从普通光源的不同部位发出的光是不相干,因此光源的大小必然影响到其相干性。

其具体临界数量关系式为:bd=R λ,其中λ为单色光的波长,R 为光源
与衍射孔的距离,b 为光源的宽度,
d 为衍射孔的距离。

当d,R, λ固定
时,光源的宽度b 必须小于R λ/d,
才可以在衍射屏上观察到干涉条
纹。

同样,当b,R,λ固定时,d 必须
小于R λ/b,称该值为相干间隔,以
此来衡量光源的空间相干性。

由于激光光源各处发出的光都是想干的,所以激光光源的光场相干间隔的限制,这也是激光具有强相干性的原因之一。

迈克尔逊侧性干涉仪巧妙地利用了空间相干性原理来测得恒星的角直径,便是利用空间相干性的典型例子。

在光栅光谱仪的实验中,减小光入射缝的宽度实际上是相当于减小了b ,从而提高了光源的空间相干性,故得到原子光谱的谱线更加精细,体现在电脑图谱上就是突起变得更加尖锐。

参考文献
[1].张三慧.大学物理:第四册.北京:清华大学出版社,2000.
[2].张三慧.大学物理:第五册.北京:清华大学出版社
,2000.。

相关文档
最新文档